doc-src/TutorialI/Overview/FP1.thy
author nipkow
Wed, 26 Jun 2002 12:17:21 +0200
changeset 13250 efd5db7dc7cc
parent 13238 a6cb18a25cbb
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
     1
(*<*)theory FP1 = Main:(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     2
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     3
lemma "if xs = ys
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     4
       then rev xs = rev ys
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     5
       else rev xs \<noteq> rev ys"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     6
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     7
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     8
lemma "case xs of
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     9
         []   \<Rightarrow> tl xs = xs
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    10
       | y#ys \<Rightarrow> tl xs \<noteq> xs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    11
apply(case_tac xs)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    12
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    13
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    14
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    15
subsection{*More Types*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    16
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    17
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    18
subsubsection{*Natural Numbers*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    19
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    20
consts sum :: "nat \<Rightarrow> nat"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    21
primrec "sum 0 = 0"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    22
        "sum (Suc n) = Suc n + sum n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    23
12631
wenzelm
parents: 11292
diff changeset
    24
lemma "sum n + sum n = n*(Suc n)"
wenzelm
parents: 11292
diff changeset
    25
apply(induct_tac n)
wenzelm
parents: 11292
diff changeset
    26
apply(auto)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    27
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    28
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
    29
text{*Some examples of linear arithmetic:*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    30
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    31
lemma "\<lbrakk> \<not> m < n; m < n+(1::int) \<rbrakk> \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    32
by(auto)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    33
12631
wenzelm
parents: 11292
diff changeset
    34
lemma "min i (max j k) = max (min k i) (min i (j::nat))"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    35
by(arith)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    36
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
    37
text{*Not proved automatically because it involves multiplication:*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    38
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    39
lemma "n*n = n \<Longrightarrow> n=0 \<or> n=(1::int)"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    40
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    41
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    42
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    43
subsubsection{*Pairs*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    44
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    45
lemma "fst(x,y) = snd(z,x)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    46
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    47
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    48
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    49
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    50
subsection{*Definitions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    51
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    52
consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    53
defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    54
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    55
constdefs nand :: "bool \<Rightarrow> bool \<Rightarrow> bool"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    56
         "nand x y \<equiv> \<not>(x \<and> y)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    57
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    58
lemma "\<not> xor x x"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    59
apply(unfold xor_def)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    60
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    61
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    62
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    63
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    64
subsection{*Simplification*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    65
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    66
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    67
subsubsection{*Simplification Rules*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    68
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    69
lemma fst_conv[simp]: "fst(x,y) = x"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    70
by auto
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    71
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
    72
text{*Setting and resetting the @{text simp} attribute:*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    73
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    74
declare fst_conv[simp]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    75
declare fst_conv[simp del]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    76
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    77
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    78
subsubsection{*The Simplification Method*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    79
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    80
lemma "x*(y+1) = y*(x+1::nat)"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    81
apply simp
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    82
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    83
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    84
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    85
subsubsection{*Adding and Deleting Simplification Rules*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    86
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    87
lemma "\<forall>x::nat. x*(y+z) = r"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    88
apply (simp add: add_mult_distrib2)
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
    89
(*<*)oops(*>*)text_raw{* \isanewline\isanewline *}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    90
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    91
lemma "rev(rev(xs @ [])) = xs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    92
apply (simp del: rev_rev_ident)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    93
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    94
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    95
subsubsection{*Assumptions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    96
12631
wenzelm
parents: 11292
diff changeset
    97
lemma "\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \<rbrakk> \<Longrightarrow> ys = zs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
    98
by simp
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    99
12631
wenzelm
parents: 11292
diff changeset
   100
lemma "\<forall>x. f x = g (f (g x)) \<Longrightarrow> f [] = f [] @ []"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   101
by(simp (no_asm))
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   102
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   103
subsubsection{*Rewriting with Definitions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   104
12631
wenzelm
parents: 11292
diff changeset
   105
lemma "xor A (\<not>A)"
wenzelm
parents: 11292
diff changeset
   106
apply(simp only: xor_def)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   107
apply simp
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   108
done
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   109
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   110
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   111
subsubsection{*Conditional Equations*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   112
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   113
lemma hd_Cons_tl[simp]: "xs \<noteq> []  \<Longrightarrow>  hd xs # tl xs = xs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   114
by(case_tac xs, simp_all)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   115
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   116
lemma "xs \<noteq> [] \<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   117
by simp
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   118
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   119
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   120
subsubsection{*Automatic Case Splits*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   121
12631
wenzelm
parents: 11292
diff changeset
   122
lemma "\<forall>xs. if xs = [] then A else B"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   123
apply simp
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
   124
(*<*)oops(*>*)text_raw{* \isanewline\isanewline *}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   125
12631
wenzelm
parents: 11292
diff changeset
   126
lemma "case xs @ [] of [] \<Rightarrow> P | y#ys \<Rightarrow> Q ys y"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   127
apply simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   128
apply(simp split: list.split)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   129
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   130
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   131
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   132
subsubsection{*Arithmetic*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   133
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
   134
text{*Is simple enough for the default arithmetic:*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   135
lemma "\<lbrakk> \<not> m < n; m < n+(1::nat) \<rbrakk> \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   136
by simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   137
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
   138
text{*Contains boolean combinations and needs full arithmetic:*}
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   139
lemma "\<not> m < n \<and> m < n+(1::nat) \<Longrightarrow> m = n"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   140
apply simp
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   141
by(arith)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   142
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   143
(*<*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   144
subsubsection{*Tracing*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   145
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   146
lemma "rev [a] = []"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   147
apply(simp)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   148
oops
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   149
(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   150
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   151
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   152
subsection{*Case Study: Compiling Expressions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   153
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   154
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   155
subsubsection{*Expressions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   156
12631
wenzelm
parents: 11292
diff changeset
   157
types 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   158
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   159
datatype ('a,'v)expr = Cex 'v
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   160
                     | Vex 'a
12631
wenzelm
parents: 11292
diff changeset
   161
                     | Bex "'v binop"  "('a,'v)expr"  "('a,'v)expr"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   162
12631
wenzelm
parents: 11292
diff changeset
   163
consts value :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   164
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   165
"value (Cex v) env = v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   166
"value (Vex a) env = env a"
12631
wenzelm
parents: 11292
diff changeset
   167
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   168
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   169
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   170
subsubsection{*The Stack Machine*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   171
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   172
datatype ('a,'v) instr = Const 'v
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   173
                       | Load 'a
12631
wenzelm
parents: 11292
diff changeset
   174
                       | Apply "'v binop"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   175
12631
wenzelm
parents: 11292
diff changeset
   176
consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   177
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   178
"exec [] s vs = vs"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   179
"exec (i#is) s vs = (case i of
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   180
    Const v  \<Rightarrow> exec is s (v#vs)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   181
  | Load a   \<Rightarrow> exec is s ((s a)#vs)
12631
wenzelm
parents: 11292
diff changeset
   182
  | Apply f  \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   183
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   184
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   185
subsubsection{*The Compiler*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   186
12631
wenzelm
parents: 11292
diff changeset
   187
consts comp :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   188
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   189
"comp (Cex v)       = [Const v]"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   190
"comp (Vex a)       = [Load a]"
12631
wenzelm
parents: 11292
diff changeset
   191
"comp (Bex f e1 e2) = (comp e2) @ (comp e1) @ [Apply f]"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   192
12631
wenzelm
parents: 11292
diff changeset
   193
theorem "exec (comp e) s [] = [value e s]"
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   194
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   195
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   196
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   197
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   198
subsection{*Advanced Datatypes*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   199
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   200
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   201
subsubsection{*Mutual Recursion*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   202
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   203
datatype 'a aexp = IF   "'a bexp" "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   204
                 | Sum  "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   205
                 | Var 'a
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   206
                 | Num nat
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   207
and      'a bexp = Less "'a aexp" "'a aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   208
                 | And  "'a bexp" "'a bexp"
12631
wenzelm
parents: 11292
diff changeset
   209
                 | Neg  "'a bexp"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   210
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   211
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   212
consts  evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat"
12631
wenzelm
parents: 11292
diff changeset
   213
        evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   214
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   215
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   216
  "evala (IF b a1 a2) env =
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   217
     (if evalb b env then evala a1 env else evala a2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   218
  "evala (Sum a1 a2) env = evala a1 env + evala a2 env"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   219
  "evala (Var v) env = env v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   220
  "evala (Num n) env = n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   221
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   222
  "evalb (Less a1 a2) env = (evala a1 env < evala a2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   223
  "evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   224
  "evalb (Neg b) env = (\<not> evalb b env)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   225
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   226
consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   227
       substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   228
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   229
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   230
  "substa s (IF b a1 a2) =
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   231
     IF (substb s b) (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   232
  "substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   233
  "substa s (Var v) = s v"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   234
  "substa s (Num n) = Num n"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   236
  "substb s (Less a1 a2) = Less (substa s a1) (substa s a2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   237
  "substb s (And b1 b2) = And (substb s b1) (substb s b2)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   238
  "substb s (Neg b) = Neg (substb s b)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   239
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   240
lemma substitution_lemma:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   241
 "evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and>
12631
wenzelm
parents: 11292
diff changeset
   242
  evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)"
wenzelm
parents: 11292
diff changeset
   243
apply(induct_tac a and b)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   244
by simp_all
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   245
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   246
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   247
subsubsection{*Nested Recursion*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   248
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   249
datatype tree = C "tree list"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   250
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   251
text{*Some trees:*}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   252
term "C []"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   253
term "C [C [C []], C []]"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   254
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   255
consts
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   256
mirror :: "tree \<Rightarrow> tree"
12631
wenzelm
parents: 11292
diff changeset
   257
mirrors:: "tree list \<Rightarrow> tree list"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   258
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   259
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   260
  "mirror(C ts) = C(mirrors ts)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   261
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   262
  "mirrors [] = []"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   263
  "mirrors (t # ts) = mirrors ts @ [mirror t]"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   264
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   265
lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   266
apply(induct_tac t and ts)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   267
apply simp_all
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   268
(*<*)oops(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   269
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   270
text{*
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   271
\begin{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   272
Complete the above proof.
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   273
\end{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   274
*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   275
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   276
subsubsection{*Datatypes Involving Functions*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   277
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   278
datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   279
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   280
text{*A big tree:*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   281
term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   282
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   283
consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   284
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   285
"map_bt f Tip      = Tip"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   286
"map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   287
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   288
lemma "map_bt (g o f) T = map_bt g (map_bt f T)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   289
apply(induct_tac T, rename_tac[2] F)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   290
apply simp_all
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   291
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   292
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   293
text{* This is \emph{not} allowed:
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   294
\begin{verbatim}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   295
datatype lambda = C "lambda => lambda"
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12631
diff changeset
   296
\end{verbatim}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   297
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   298
\begin{exercise}
11237
0ef5ecc1fd4d *** empty log message ***
nipkow
parents: 11236
diff changeset
   299
Define a datatype of ordinals and the ordinal $\Gamma_0$.
11236
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   300
\end{exercise}
17403c5a9eb1 *** empty log message ***
nipkow
parents: 11235
diff changeset
   301
*}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13238
diff changeset
   302
(*<*)end(*>*)