| 
2570
 | 
     1  | 
(* $Id$ *)
  | 
| 
 | 
     2  | 
  | 
| 
17291
 | 
     3  | 
theory Dagstuhl
  | 
| 
 | 
     4  | 
imports Stream
  | 
| 
 | 
     5  | 
begin
  | 
| 
2570
 | 
     6  | 
  | 
| 
 | 
     7  | 
consts
  | 
| 
17291
 | 
     8  | 
  y  :: "'a"
  | 
| 
2570
 | 
     9  | 
  | 
| 
19763
 | 
    10  | 
definition
  | 
| 
17291
 | 
    11  | 
  YS :: "'a stream"
  | 
| 
19763
 | 
    12  | 
  "YS = fix$(LAM x. y && x)"
  | 
| 
17291
 | 
    13  | 
  YYS :: "'a stream"
  | 
| 
19763
 | 
    14  | 
  "YYS = fix$(LAM z. y && y && z)"
  | 
| 
2570
 | 
    15  | 
  | 
| 
19742
 | 
    16  | 
lemma YS_def2: "YS = y && YS"
  | 
| 
 | 
    17  | 
  apply (rule trans)
  | 
| 
 | 
    18  | 
  apply (rule fix_eq2)
  | 
| 
19763
 | 
    19  | 
  apply (rule YS_def [THEN eq_reflection])
  | 
| 
19742
 | 
    20  | 
  apply (rule beta_cfun)
  | 
| 
 | 
    21  | 
  apply simp
  | 
| 
 | 
    22  | 
  done
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma YYS_def2: "YYS = y && y && YYS"
  | 
| 
 | 
    25  | 
  apply (rule trans)
  | 
| 
 | 
    26  | 
  apply (rule fix_eq2)
  | 
| 
19763
 | 
    27  | 
  apply (rule YYS_def [THEN eq_reflection])
  | 
| 
19742
 | 
    28  | 
  apply (rule beta_cfun)
  | 
| 
 | 
    29  | 
  apply simp
  | 
| 
 | 
    30  | 
  done
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma lemma3: "YYS << y && YYS"
  | 
| 
19763
 | 
    34  | 
  apply (rule YYS_def [THEN eq_reflection, THEN def_fix_ind])
  | 
| 
19742
 | 
    35  | 
  apply simp_all
  | 
| 
 | 
    36  | 
  apply (rule monofun_cfun_arg)
  | 
| 
 | 
    37  | 
  apply (rule monofun_cfun_arg)
  | 
| 
 | 
    38  | 
  apply assumption
  | 
| 
 | 
    39  | 
  done
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma lemma4: "y && YYS << YYS"
  | 
| 
 | 
    42  | 
  apply (subst YYS_def2)
  | 
| 
 | 
    43  | 
  back
  | 
| 
 | 
    44  | 
  apply (rule monofun_cfun_arg)
  | 
| 
 | 
    45  | 
  apply (rule lemma3)
  | 
| 
 | 
    46  | 
  done
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma lemma5: "y && YYS = YYS"
  | 
| 
 | 
    49  | 
  apply (rule antisym_less)
  | 
| 
 | 
    50  | 
  apply (rule lemma4)
  | 
| 
 | 
    51  | 
  apply (rule lemma3)
  | 
| 
 | 
    52  | 
  done
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma wir_moel: "YS = YYS"
  | 
| 
 | 
    55  | 
  apply (rule stream.take_lemmas)
  | 
| 
 | 
    56  | 
  apply (induct_tac n)
  | 
| 
 | 
    57  | 
  apply (simp (no_asm) add: stream.rews)
  | 
| 
 | 
    58  | 
  apply (subst YS_def2)
  | 
| 
 | 
    59  | 
  apply (subst YYS_def2)
  | 
| 
 | 
    60  | 
  apply (simp add: stream.rews)
  | 
| 
 | 
    61  | 
  apply (rule lemma5 [symmetric, THEN subst])
  | 
| 
 | 
    62  | 
  apply (rule refl)
  | 
| 
 | 
    63  | 
  done
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
(* ------------------------------------------------------------------------ *)
  | 
| 
 | 
    66  | 
(* Zweite L"osung: Bernhard Möller                                          *)
  | 
| 
 | 
    67  | 
(* statt Beweis von  wir_moel "uber take_lemma beidseitige Inclusion        *)
  | 
| 
 | 
    68  | 
(* verwendet lemma5                                                         *)
  | 
| 
 | 
    69  | 
(* ------------------------------------------------------------------------ *)
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
lemma lemma6: "YYS << YS"
  | 
| 
 | 
    72  | 
  apply (unfold YYS_def)
  | 
| 
 | 
    73  | 
  apply (rule fix_least)
  | 
| 
 | 
    74  | 
  apply (subst beta_cfun)
  | 
| 
 | 
    75  | 
  apply (tactic "cont_tacR 1")
  | 
| 
 | 
    76  | 
  apply (simp add: YS_def2 [symmetric])
  | 
| 
 | 
    77  | 
  done
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma lemma7: "YS << YYS"
  | 
| 
19763
 | 
    80  | 
  apply (rule YS_def [THEN eq_reflection, THEN def_fix_ind])
  | 
| 
19742
 | 
    81  | 
  apply simp_all
  | 
| 
 | 
    82  | 
  apply (subst lemma5 [symmetric])
  | 
| 
 | 
    83  | 
  apply (erule monofun_cfun_arg)
  | 
| 
 | 
    84  | 
  done
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma wir_moel': "YS = YYS"
  | 
| 
 | 
    87  | 
  apply (rule antisym_less)
  | 
| 
 | 
    88  | 
  apply (rule lemma7)
  | 
| 
 | 
    89  | 
  apply (rule lemma6)
  | 
| 
 | 
    90  | 
  done
  | 
| 
17291
 | 
    91  | 
  | 
| 
2570
 | 
    92  | 
end
  |