author | wenzelm |
Fri, 02 Jan 1998 13:24:53 +0100 | |
changeset 4508 | f102cb0140fe |
parent 4091 | 771b1f6422a8 |
child 5067 | 62b6288e6005 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/List.ML |
0 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
Datatype definition of Lists |
|
7 |
*) |
|
8 |
||
516 | 9 |
open List; |
0 | 10 |
|
516 | 11 |
(*** Aspects of the datatype definition ***) |
0 | 12 |
|
2469 | 13 |
Addsimps list.case_eqns; |
14 |
||
15 |
||
0 | 16 |
(*An elimination rule, for type-checking*) |
516 | 17 |
val ConsE = list.mk_cases list.con_defs "Cons(a,l) : list(A)"; |
0 | 18 |
|
19 |
(*Proving freeness results*) |
|
516 | 20 |
val Cons_iff = list.mk_free "Cons(a,l)=Cons(a',l') <-> a=a' & l=l'"; |
21 |
val Nil_Cons_iff = list.mk_free "~ Nil=Cons(a,l)"; |
|
0 | 22 |
|
23 |
(*Perform induction on l, then prove the major premise using prems. *) |
|
24 |
fun list_ind_tac a prems i = |
|
516 | 25 |
EVERY [res_inst_tac [("x",a)] list.induct i, |
1461 | 26 |
rename_last_tac a ["1"] (i+2), |
27 |
ares_tac prems i]; |
|
0 | 28 |
|
435 | 29 |
goal List.thy "list(A) = {0} + (A * list(A))"; |
525
e62519a8497d
ZF/List, ex/Brouwer,Data,LList,Ntree,TF,Term: much simplified proof of _unfold
lcp
parents:
516
diff
changeset
|
30 |
let open list; val rew = rewrite_rule con_defs in |
4091 | 31 |
by (blast_tac (claset() addSIs (map rew intrs) addEs [rew elim]) 1) |
525
e62519a8497d
ZF/List, ex/Brouwer,Data,LList,Ntree,TF,Term: much simplified proof of _unfold
lcp
parents:
516
diff
changeset
|
32 |
end; |
760 | 33 |
qed "list_unfold"; |
435 | 34 |
|
0 | 35 |
(** Lemmas to justify using "list" in other recursive type definitions **) |
36 |
||
516 | 37 |
goalw List.thy list.defs "!!A B. A<=B ==> list(A) <= list(B)"; |
0 | 38 |
by (rtac lfp_mono 1); |
516 | 39 |
by (REPEAT (rtac list.bnd_mono 1)); |
0 | 40 |
by (REPEAT (ares_tac (univ_mono::basic_monos) 1)); |
760 | 41 |
qed "list_mono"; |
0 | 42 |
|
43 |
(*There is a similar proof by list induction.*) |
|
516 | 44 |
goalw List.thy (list.defs@list.con_defs) "list(univ(A)) <= univ(A)"; |
0 | 45 |
by (rtac lfp_lowerbound 1); |
46 |
by (rtac (A_subset_univ RS univ_mono) 2); |
|
4091 | 47 |
by (blast_tac (claset() addSIs [zero_in_univ, Inl_in_univ, Inr_in_univ, |
1461 | 48 |
Pair_in_univ]) 1); |
760 | 49 |
qed "list_univ"; |
0 | 50 |
|
908
1f99a44c10cb
Updated comment about list_subset_univ and list_into_univ.
lcp
parents:
782
diff
changeset
|
51 |
(*These two theorems justify datatypes involving list(nat), list(A), ...*) |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
760
diff
changeset
|
52 |
bind_thm ("list_subset_univ", ([list_mono, list_univ] MRS subset_trans)); |
0 | 53 |
|
435 | 54 |
goal List.thy "!!l A B. [| l: list(A); A <= univ(B) |] ==> l: univ(B)"; |
55 |
by (REPEAT (ares_tac [list_subset_univ RS subsetD] 1)); |
|
760 | 56 |
qed "list_into_univ"; |
435 | 57 |
|
0 | 58 |
val major::prems = goal List.thy |
59 |
"[| l: list(A); \ |
|
15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset
|
60 |
\ c: C(Nil); \ |
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset
|
61 |
\ !!x y. [| x: A; y: list(A) |] ==> h(x,y): C(Cons(x,y)) \ |
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset
|
62 |
\ |] ==> list_case(c,h,l) : C(l)"; |
516 | 63 |
by (rtac (major RS list.induct) 1); |
4091 | 64 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps (list.case_eqns @ prems)))); |
760 | 65 |
qed "list_case_type"; |
0 | 66 |
|
67 |
||
68 |
(** For recursion **) |
|
69 |
||
516 | 70 |
goalw List.thy list.con_defs "rank(a) < rank(Cons(a,l))"; |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
71 |
by (simp_tac rank_ss 1); |
760 | 72 |
qed "rank_Cons1"; |
0 | 73 |
|
516 | 74 |
goalw List.thy list.con_defs "rank(l) < rank(Cons(a,l))"; |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
75 |
by (simp_tac rank_ss 1); |
760 | 76 |
qed "rank_Cons2"; |
0 | 77 |
|
516 | 78 |
|
79 |
(*** List functions ***) |
|
80 |
||
81 |
(** hd and tl **) |
|
82 |
||
83 |
goalw List.thy [hd_def] "hd(Cons(a,l)) = a"; |
|
84 |
by (resolve_tac list.case_eqns 1); |
|
760 | 85 |
qed "hd_Cons"; |
516 | 86 |
|
87 |
goalw List.thy [tl_def] "tl(Nil) = Nil"; |
|
88 |
by (resolve_tac list.case_eqns 1); |
|
760 | 89 |
qed "tl_Nil"; |
516 | 90 |
|
91 |
goalw List.thy [tl_def] "tl(Cons(a,l)) = l"; |
|
92 |
by (resolve_tac list.case_eqns 1); |
|
760 | 93 |
qed "tl_Cons"; |
516 | 94 |
|
2469 | 95 |
Addsimps [hd_Cons, tl_Nil, tl_Cons]; |
96 |
||
516 | 97 |
goal List.thy "!!l. l: list(A) ==> tl(l) : list(A)"; |
98 |
by (etac list.elim 1); |
|
4091 | 99 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps list.intrs))); |
760 | 100 |
qed "tl_type"; |
516 | 101 |
|
102 |
(** drop **) |
|
103 |
||
104 |
goalw List.thy [drop_def] "drop(0, l) = l"; |
|
105 |
by (rtac rec_0 1); |
|
760 | 106 |
qed "drop_0"; |
516 | 107 |
|
108 |
goalw List.thy [drop_def] "!!i. i:nat ==> drop(i, Nil) = Nil"; |
|
109 |
by (etac nat_induct 1); |
|
2469 | 110 |
by (ALLGOALS Asm_simp_tac); |
760 | 111 |
qed "drop_Nil"; |
516 | 112 |
|
113 |
goalw List.thy [drop_def] |
|
114 |
"!!i. i:nat ==> drop(succ(i), Cons(a,l)) = drop(i,l)"; |
|
2493 | 115 |
by (rtac sym 1); |
516 | 116 |
by (etac nat_induct 1); |
2469 | 117 |
by (Simp_tac 1); |
118 |
by (Asm_simp_tac 1); |
|
760 | 119 |
qed "drop_succ_Cons"; |
516 | 120 |
|
2469 | 121 |
Addsimps [drop_0, drop_Nil, drop_succ_Cons]; |
122 |
||
516 | 123 |
goalw List.thy [drop_def] |
124 |
"!!i l. [| i:nat; l: list(A) |] ==> drop(i,l) : list(A)"; |
|
125 |
by (etac nat_induct 1); |
|
4091 | 126 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [tl_type]))); |
760 | 127 |
qed "drop_type"; |
516 | 128 |
|
129 |
(** list_rec -- by Vset recursion **) |
|
130 |
||
131 |
goal List.thy "list_rec(Nil,c,h) = c"; |
|
132 |
by (rtac (list_rec_def RS def_Vrec RS trans) 1); |
|
4091 | 133 |
by (simp_tac (simpset() addsimps list.case_eqns) 1); |
760 | 134 |
qed "list_rec_Nil"; |
516 | 135 |
|
136 |
goal List.thy "list_rec(Cons(a,l), c, h) = h(a, l, list_rec(l,c,h))"; |
|
137 |
by (rtac (list_rec_def RS def_Vrec RS trans) 1); |
|
138 |
by (simp_tac (rank_ss addsimps (rank_Cons2::list.case_eqns)) 1); |
|
760 | 139 |
qed "list_rec_Cons"; |
516 | 140 |
|
2469 | 141 |
Addsimps [list_rec_Nil, list_rec_Cons]; |
142 |
||
143 |
||
516 | 144 |
(*Type checking -- proved by induction, as usual*) |
145 |
val prems = goal List.thy |
|
146 |
"[| l: list(A); \ |
|
147 |
\ c: C(Nil); \ |
|
148 |
\ !!x y r. [| x:A; y: list(A); r: C(y) |] ==> h(x,y,r): C(Cons(x,y)) \ |
|
149 |
\ |] ==> list_rec(l,c,h) : C(l)"; |
|
150 |
by (list_ind_tac "l" prems 1); |
|
4091 | 151 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems))); |
760 | 152 |
qed "list_rec_type"; |
516 | 153 |
|
154 |
(** Versions for use with definitions **) |
|
155 |
||
156 |
val [rew] = goal List.thy |
|
157 |
"[| !!l. j(l)==list_rec(l, c, h) |] ==> j(Nil) = c"; |
|
158 |
by (rewtac rew); |
|
159 |
by (rtac list_rec_Nil 1); |
|
760 | 160 |
qed "def_list_rec_Nil"; |
516 | 161 |
|
162 |
val [rew] = goal List.thy |
|
163 |
"[| !!l. j(l)==list_rec(l, c, h) |] ==> j(Cons(a,l)) = h(a,l,j(l))"; |
|
164 |
by (rewtac rew); |
|
165 |
by (rtac list_rec_Cons 1); |
|
760 | 166 |
qed "def_list_rec_Cons"; |
516 | 167 |
|
168 |
fun list_recs def = map standard |
|
1461 | 169 |
([def] RL [def_list_rec_Nil, def_list_rec_Cons]); |
516 | 170 |
|
171 |
(** map **) |
|
172 |
||
173 |
val [map_Nil,map_Cons] = list_recs map_def; |
|
2469 | 174 |
Addsimps [map_Nil, map_Cons]; |
516 | 175 |
|
176 |
val prems = goalw List.thy [map_def] |
|
177 |
"[| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)"; |
|
178 |
by (REPEAT (ares_tac (prems @ list.intrs @ [list_rec_type]) 1)); |
|
760 | 179 |
qed "map_type"; |
516 | 180 |
|
181 |
val [major] = goal List.thy "l: list(A) ==> map(h,l) : list({h(u). u:A})"; |
|
182 |
by (rtac (major RS map_type) 1); |
|
183 |
by (etac RepFunI 1); |
|
760 | 184 |
qed "map_type2"; |
516 | 185 |
|
186 |
(** length **) |
|
187 |
||
188 |
val [length_Nil,length_Cons] = list_recs length_def; |
|
2469 | 189 |
Addsimps [length_Nil,length_Cons]; |
516 | 190 |
|
191 |
goalw List.thy [length_def] |
|
192 |
"!!l. l: list(A) ==> length(l) : nat"; |
|
193 |
by (REPEAT (ares_tac [list_rec_type, nat_0I, nat_succI] 1)); |
|
760 | 194 |
qed "length_type"; |
516 | 195 |
|
196 |
(** app **) |
|
197 |
||
198 |
val [app_Nil,app_Cons] = list_recs app_def; |
|
2469 | 199 |
Addsimps [app_Nil, app_Cons]; |
516 | 200 |
|
201 |
goalw List.thy [app_def] |
|
202 |
"!!xs ys. [| xs: list(A); ys: list(A) |] ==> xs@ys : list(A)"; |
|
203 |
by (REPEAT (ares_tac [list_rec_type, list.Cons_I] 1)); |
|
760 | 204 |
qed "app_type"; |
516 | 205 |
|
206 |
(** rev **) |
|
207 |
||
208 |
val [rev_Nil,rev_Cons] = list_recs rev_def; |
|
2469 | 209 |
Addsimps [rev_Nil,rev_Cons] ; |
516 | 210 |
|
211 |
goalw List.thy [rev_def] |
|
212 |
"!!xs. xs: list(A) ==> rev(xs) : list(A)"; |
|
213 |
by (REPEAT (ares_tac (list.intrs @ [list_rec_type, app_type]) 1)); |
|
760 | 214 |
qed "rev_type"; |
516 | 215 |
|
216 |
||
217 |
(** flat **) |
|
218 |
||
219 |
val [flat_Nil,flat_Cons] = list_recs flat_def; |
|
2469 | 220 |
Addsimps [flat_Nil,flat_Cons]; |
516 | 221 |
|
222 |
goalw List.thy [flat_def] |
|
223 |
"!!ls. ls: list(list(A)) ==> flat(ls) : list(A)"; |
|
224 |
by (REPEAT (ares_tac (list.intrs @ [list_rec_type, app_type]) 1)); |
|
760 | 225 |
qed "flat_type"; |
516 | 226 |
|
227 |
||
1926 | 228 |
(** set_of_list **) |
229 |
||
230 |
val [set_of_list_Nil,set_of_list_Cons] = list_recs set_of_list_def; |
|
2469 | 231 |
Addsimps [set_of_list_Nil,set_of_list_Cons]; |
1926 | 232 |
|
233 |
goalw List.thy [set_of_list_def] |
|
234 |
"!!l. l: list(A) ==> set_of_list(l) : Pow(A)"; |
|
2033 | 235 |
by (etac list_rec_type 1); |
3016 | 236 |
by (ALLGOALS (Blast_tac)); |
1926 | 237 |
qed "set_of_list_type"; |
238 |
||
239 |
goal List.thy |
|
240 |
"!!l. xs: list(A) ==> \ |
|
241 |
\ set_of_list (xs@ys) = set_of_list(xs) Un set_of_list(ys)"; |
|
242 |
by (etac list.induct 1); |
|
4091 | 243 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_cons]))); |
1926 | 244 |
qed "set_of_list_append"; |
245 |
||
246 |
||
516 | 247 |
(** list_add **) |
248 |
||
249 |
val [list_add_Nil,list_add_Cons] = list_recs list_add_def; |
|
2469 | 250 |
Addsimps [list_add_Nil,list_add_Cons]; |
516 | 251 |
|
252 |
goalw List.thy [list_add_def] |
|
253 |
"!!xs. xs: list(nat) ==> list_add(xs) : nat"; |
|
254 |
by (REPEAT (ares_tac [list_rec_type, nat_0I, add_type] 1)); |
|
760 | 255 |
qed "list_add_type"; |
516 | 256 |
|
257 |
val list_typechecks = |
|
258 |
list.intrs @ |
|
259 |
[list_rec_type, map_type, map_type2, app_type, length_type, |
|
260 |
rev_type, flat_type, list_add_type]; |
|
261 |
||
4091 | 262 |
simpset_ref() := simpset() setSolver (type_auto_tac list_typechecks); |
516 | 263 |
|
264 |
||
265 |
(*** theorems about map ***) |
|
266 |
||
267 |
val prems = goal List.thy |
|
3840 | 268 |
"l: list(A) ==> map(%u. u, l) = l"; |
516 | 269 |
by (list_ind_tac "l" prems 1); |
3016 | 270 |
by (ALLGOALS Asm_simp_tac); |
760 | 271 |
qed "map_ident"; |
516 | 272 |
|
273 |
val prems = goal List.thy |
|
3840 | 274 |
"l: list(A) ==> map(h, map(j,l)) = map(%u. h(j(u)), l)"; |
516 | 275 |
by (list_ind_tac "l" prems 1); |
3016 | 276 |
by (ALLGOALS Asm_simp_tac); |
760 | 277 |
qed "map_compose"; |
516 | 278 |
|
279 |
val prems = goal List.thy |
|
280 |
"xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)"; |
|
281 |
by (list_ind_tac "xs" prems 1); |
|
3016 | 282 |
by (ALLGOALS Asm_simp_tac); |
760 | 283 |
qed "map_app_distrib"; |
516 | 284 |
|
285 |
val prems = goal List.thy |
|
286 |
"ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))"; |
|
287 |
by (list_ind_tac "ls" prems 1); |
|
4091 | 288 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [map_app_distrib]))); |
760 | 289 |
qed "map_flat"; |
516 | 290 |
|
291 |
val prems = goal List.thy |
|
292 |
"l: list(A) ==> \ |
|
293 |
\ list_rec(map(h,l), c, d) = \ |
|
294 |
\ list_rec(l, c, %x xs r. d(h(x), map(h,xs), r))"; |
|
295 |
by (list_ind_tac "l" prems 1); |
|
3016 | 296 |
by (ALLGOALS Asm_simp_tac); |
760 | 297 |
qed "list_rec_map"; |
516 | 298 |
|
299 |
(** theorems about list(Collect(A,P)) -- used in ex/term.ML **) |
|
300 |
||
301 |
(* c : list(Collect(B,P)) ==> c : list(B) *) |
|
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
760
diff
changeset
|
302 |
bind_thm ("list_CollectD", (Collect_subset RS list_mono RS subsetD)); |
516 | 303 |
|
304 |
val prems = goal List.thy |
|
305 |
"l: list({x:A. h(x)=j(x)}) ==> map(h,l) = map(j,l)"; |
|
306 |
by (list_ind_tac "l" prems 1); |
|
3016 | 307 |
by (ALLGOALS Asm_simp_tac); |
760 | 308 |
qed "map_list_Collect"; |
516 | 309 |
|
310 |
(*** theorems about length ***) |
|
311 |
||
312 |
val prems = goal List.thy |
|
313 |
"xs: list(A) ==> length(map(h,xs)) = length(xs)"; |
|
314 |
by (list_ind_tac "xs" prems 1); |
|
3016 | 315 |
by (ALLGOALS Asm_simp_tac); |
760 | 316 |
qed "length_map"; |
516 | 317 |
|
318 |
val prems = goal List.thy |
|
319 |
"xs: list(A) ==> length(xs@ys) = length(xs) #+ length(ys)"; |
|
320 |
by (list_ind_tac "xs" prems 1); |
|
3016 | 321 |
by (ALLGOALS Asm_simp_tac); |
760 | 322 |
qed "length_app"; |
516 | 323 |
|
324 |
(* [| m: nat; n: nat |] ==> m #+ succ(n) = succ(n) #+ m |
|
325 |
Used for rewriting below*) |
|
326 |
val add_commute_succ = nat_succI RSN (2,add_commute); |
|
327 |
||
328 |
val prems = goal List.thy |
|
329 |
"xs: list(A) ==> length(rev(xs)) = length(xs)"; |
|
330 |
by (list_ind_tac "xs" prems 1); |
|
4091 | 331 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [length_app, add_commute_succ]))); |
760 | 332 |
qed "length_rev"; |
516 | 333 |
|
334 |
val prems = goal List.thy |
|
335 |
"ls: list(list(A)) ==> length(flat(ls)) = list_add(map(length,ls))"; |
|
336 |
by (list_ind_tac "ls" prems 1); |
|
4091 | 337 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [length_app]))); |
760 | 338 |
qed "length_flat"; |
516 | 339 |
|
340 |
(** Length and drop **) |
|
341 |
||
342 |
(*Lemma for the inductive step of drop_length*) |
|
343 |
goal List.thy |
|
344 |
"!!xs. xs: list(A) ==> \ |
|
345 |
\ ALL x. EX z zs. drop(length(xs), Cons(x,xs)) = Cons(z,zs)"; |
|
346 |
by (etac list.induct 1); |
|
2469 | 347 |
by (ALLGOALS Asm_simp_tac); |
3016 | 348 |
by (Blast_tac 1); |
760 | 349 |
qed "drop_length_Cons_lemma"; |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
760
diff
changeset
|
350 |
bind_thm ("drop_length_Cons", (drop_length_Cons_lemma RS spec)); |
516 | 351 |
|
352 |
goal List.thy |
|
353 |
"!!l. l: list(A) ==> ALL i: length(l). EX z zs. drop(i,l) = Cons(z,zs)"; |
|
354 |
by (etac list.induct 1); |
|
2469 | 355 |
by (ALLGOALS Asm_simp_tac); |
516 | 356 |
by (rtac conjI 1); |
357 |
by (etac drop_length_Cons 1); |
|
358 |
by (rtac ballI 1); |
|
359 |
by (rtac natE 1); |
|
360 |
by (etac ([asm_rl, length_type, Ord_nat] MRS Ord_trans) 1); |
|
361 |
by (assume_tac 1); |
|
3016 | 362 |
by (ALLGOALS Asm_simp_tac); |
4091 | 363 |
by (ALLGOALS (blast_tac (claset() addIs [succ_in_naturalD, length_type]))); |
760 | 364 |
qed "drop_length_lemma"; |
782
200a16083201
added bind_thm for theorems defined by "standard ..."
clasohm
parents:
760
diff
changeset
|
365 |
bind_thm ("drop_length", (drop_length_lemma RS bspec)); |
516 | 366 |
|
367 |
||
368 |
(*** theorems about app ***) |
|
369 |
||
370 |
val [major] = goal List.thy "xs: list(A) ==> xs@Nil=xs"; |
|
371 |
by (rtac (major RS list.induct) 1); |
|
3016 | 372 |
by (ALLGOALS Asm_simp_tac); |
760 | 373 |
qed "app_right_Nil"; |
516 | 374 |
|
375 |
val prems = goal List.thy "xs: list(A) ==> (xs@ys)@zs = xs@(ys@zs)"; |
|
376 |
by (list_ind_tac "xs" prems 1); |
|
3016 | 377 |
by (ALLGOALS Asm_simp_tac); |
760 | 378 |
qed "app_assoc"; |
516 | 379 |
|
380 |
val prems = goal List.thy |
|
381 |
"ls: list(list(A)) ==> flat(ls@ms) = flat(ls)@flat(ms)"; |
|
382 |
by (list_ind_tac "ls" prems 1); |
|
4091 | 383 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [app_assoc]))); |
760 | 384 |
qed "flat_app_distrib"; |
516 | 385 |
|
386 |
(*** theorems about rev ***) |
|
387 |
||
388 |
val prems = goal List.thy "l: list(A) ==> rev(map(h,l)) = map(h,rev(l))"; |
|
389 |
by (list_ind_tac "l" prems 1); |
|
4091 | 390 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [map_app_distrib]))); |
760 | 391 |
qed "rev_map_distrib"; |
516 | 392 |
|
393 |
(*Simplifier needs the premises as assumptions because rewriting will not |
|
394 |
instantiate the variable ?A in the rules' typing conditions; note that |
|
395 |
rev_type does not instantiate ?A. Only the premises do. |
|
396 |
*) |
|
397 |
goal List.thy |
|
398 |
"!!xs. [| xs: list(A); ys: list(A) |] ==> rev(xs@ys) = rev(ys)@rev(xs)"; |
|
399 |
by (etac list.induct 1); |
|
4091 | 400 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [app_right_Nil,app_assoc]))); |
760 | 401 |
qed "rev_app_distrib"; |
516 | 402 |
|
403 |
val prems = goal List.thy "l: list(A) ==> rev(rev(l))=l"; |
|
404 |
by (list_ind_tac "l" prems 1); |
|
4091 | 405 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [rev_app_distrib]))); |
760 | 406 |
qed "rev_rev_ident"; |
516 | 407 |
|
408 |
val prems = goal List.thy |
|
409 |
"ls: list(list(A)) ==> rev(flat(ls)) = flat(map(rev,rev(ls)))"; |
|
410 |
by (list_ind_tac "ls" prems 1); |
|
4091 | 411 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps |
516 | 412 |
[map_app_distrib, flat_app_distrib, rev_app_distrib, app_right_Nil]))); |
760 | 413 |
qed "rev_flat"; |
516 | 414 |
|
415 |
||
416 |
(*** theorems about list_add ***) |
|
417 |
||
418 |
val prems = goal List.thy |
|
419 |
"[| xs: list(nat); ys: list(nat) |] ==> \ |
|
420 |
\ list_add(xs@ys) = list_add(ys) #+ list_add(xs)"; |
|
421 |
by (cut_facts_tac prems 1); |
|
422 |
by (list_ind_tac "xs" prems 1); |
|
423 |
by (ALLGOALS |
|
4091 | 424 |
(asm_simp_tac (simpset() addsimps [add_0_right, add_assoc RS sym]))); |
516 | 425 |
by (rtac (add_commute RS subst_context) 1); |
426 |
by (REPEAT (ares_tac [refl, list_add_type] 1)); |
|
760 | 427 |
qed "list_add_app"; |
516 | 428 |
|
429 |
val prems = goal List.thy |
|
430 |
"l: list(nat) ==> list_add(rev(l)) = list_add(l)"; |
|
431 |
by (list_ind_tac "l" prems 1); |
|
432 |
by (ALLGOALS |
|
4091 | 433 |
(asm_simp_tac (simpset() addsimps [list_add_app, add_0_right]))); |
760 | 434 |
qed "list_add_rev"; |
516 | 435 |
|
436 |
val prems = goal List.thy |
|
437 |
"ls: list(list(nat)) ==> list_add(flat(ls)) = list_add(map(list_add,ls))"; |
|
438 |
by (list_ind_tac "ls" prems 1); |
|
4091 | 439 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [list_add_app]))); |
516 | 440 |
by (REPEAT (ares_tac [refl, list_add_type, map_type, add_commute] 1)); |
760 | 441 |
qed "list_add_flat"; |
516 | 442 |
|
443 |
(** New induction rule **) |
|
444 |
||
445 |
val major::prems = goal List.thy |
|
446 |
"[| l: list(A); \ |
|
447 |
\ P(Nil); \ |
|
448 |
\ !!x y. [| x: A; y: list(A); P(y) |] ==> P(y @ [x]) \ |
|
449 |
\ |] ==> P(l)"; |
|
450 |
by (rtac (major RS rev_rev_ident RS subst) 1); |
|
451 |
by (rtac (major RS rev_type RS list.induct) 1); |
|
4091 | 452 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems))); |
760 | 453 |
qed "list_append_induct"; |
516 | 454 |