author | wenzelm |
Fri, 02 Jan 1998 13:24:53 +0100 | |
changeset 4508 | f102cb0140fe |
parent 120 | 09287f26bfb8 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/zf.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
||
6 |
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
open ZF; |
|
10 |
||
11 |
signature ZF_LEMMAS = |
|
12 |
sig |
|
13 |
val ballE : thm |
|
14 |
val ballI : thm |
|
15 |
val ball_cong : thm |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
16 |
val ball_simp : thm |
0 | 17 |
val ball_tac : int -> tactic |
18 |
val bexCI : thm |
|
19 |
val bexE : thm |
|
20 |
val bexI : thm |
|
21 |
val bex_cong : thm |
|
22 |
val bspec : thm |
|
23 |
val CollectD1 : thm |
|
24 |
val CollectD2 : thm |
|
25 |
val CollectE : thm |
|
26 |
val CollectI : thm |
|
27 |
val Collect_cong : thm |
|
28 |
val emptyE : thm |
|
29 |
val empty_subsetI : thm |
|
30 |
val equalityCE : thm |
|
31 |
val equalityD1 : thm |
|
32 |
val equalityD2 : thm |
|
33 |
val equalityE : thm |
|
34 |
val equalityI : thm |
|
35 |
val equality_iffI : thm |
|
36 |
val equals0D : thm |
|
37 |
val equals0I : thm |
|
38 |
val ex1_functional : thm |
|
39 |
val InterD : thm |
|
40 |
val InterE : thm |
|
41 |
val InterI : thm |
|
42 |
val INT_E : thm |
|
43 |
val INT_I : thm |
|
44 |
val lemmas_cs : claset |
|
45 |
val PowD : thm |
|
46 |
val PowI : thm |
|
47 |
val RepFunE : thm |
|
48 |
val RepFunI : thm |
|
49 |
val RepFun_eqI : thm |
|
50 |
val RepFun_cong : thm |
|
51 |
val ReplaceE : thm |
|
52 |
val ReplaceI : thm |
|
53 |
val Replace_iff : thm |
|
54 |
val Replace_cong : thm |
|
55 |
val rev_ballE : thm |
|
56 |
val rev_bspec : thm |
|
57 |
val rev_subsetD : thm |
|
58 |
val separation : thm |
|
59 |
val setup_induction : thm |
|
60 |
val set_mp_tac : int -> tactic |
|
61 |
val subsetCE : thm |
|
62 |
val subsetD : thm |
|
63 |
val subsetI : thm |
|
64 |
val subset_refl : thm |
|
65 |
val subset_trans : thm |
|
66 |
val UnionE : thm |
|
67 |
val UnionI : thm |
|
68 |
val UN_E : thm |
|
69 |
val UN_I : thm |
|
70 |
end; |
|
71 |
||
72 |
||
73 |
structure ZF_Lemmas : ZF_LEMMAS = |
|
74 |
struct |
|
75 |
||
76 |
(*** Bounded universal quantifier ***) |
|
77 |
||
78 |
val ballI = prove_goalw ZF.thy [Ball_def] |
|
79 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)" |
|
80 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]); |
|
81 |
||
82 |
val bspec = prove_goalw ZF.thy [Ball_def] |
|
83 |
"[| ALL x:A. P(x); x: A |] ==> P(x)" |
|
84 |
(fn major::prems=> |
|
85 |
[ (rtac (major RS spec RS mp) 1), |
|
86 |
(resolve_tac prems 1) ]); |
|
87 |
||
88 |
val ballE = prove_goalw ZF.thy [Ball_def] |
|
37 | 89 |
"[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q" |
0 | 90 |
(fn major::prems=> |
91 |
[ (rtac (major RS allE) 1), |
|
92 |
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]); |
|
93 |
||
94 |
(*Used in the datatype package*) |
|
95 |
val rev_bspec = prove_goal ZF.thy |
|
96 |
"!!x A P. [| x: A; ALL x:A. P(x) |] ==> P(x)" |
|
97 |
(fn _ => |
|
98 |
[ REPEAT (ares_tac [bspec] 1) ]); |
|
99 |
||
100 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
101 |
val rev_ballE = prove_goal ZF.thy |
|
37 | 102 |
"[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q" |
0 | 103 |
(fn major::prems=> |
104 |
[ (rtac (major RS ballE) 1), |
|
105 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
106 |
||
107 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*) |
|
108 |
val ball_tac = dtac bspec THEN' assume_tac; |
|
109 |
||
110 |
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*) |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
111 |
val ball_simp = prove_goal ZF.thy "(ALL x:A. True) <-> True" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
112 |
(fn _=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]); |
0 | 113 |
|
114 |
(*Congruence rule for rewriting*) |
|
115 |
val ball_cong = prove_goalw ZF.thy [Ball_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
116 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
117 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]); |
0 | 118 |
|
119 |
(*** Bounded existential quantifier ***) |
|
120 |
||
121 |
val bexI = prove_goalw ZF.thy [Bex_def] |
|
122 |
"[| P(x); x: A |] ==> EX x:A. P(x)" |
|
123 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]); |
|
124 |
||
125 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
126 |
val bexCI = prove_goal ZF.thy |
|
127 |
"[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)" |
|
128 |
(fn prems=> |
|
129 |
[ (rtac classical 1), |
|
130 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); |
|
131 |
||
132 |
val bexE = prove_goalw ZF.thy [Bex_def] |
|
133 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \ |
|
134 |
\ |] ==> Q" |
|
135 |
(fn major::prems=> |
|
136 |
[ (rtac (major RS exE) 1), |
|
137 |
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]); |
|
138 |
||
139 |
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*) |
|
140 |
||
141 |
val bex_cong = prove_goalw ZF.thy [Bex_def] |
|
142 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \ |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
143 |
\ |] ==> Bex(A,P) <-> Bex(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
144 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]); |
0 | 145 |
|
146 |
(*** Rules for subsets ***) |
|
147 |
||
148 |
val subsetI = prove_goalw ZF.thy [subset_def] |
|
149 |
"(!!x.x:A ==> x:B) ==> A <= B" |
|
150 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]); |
|
151 |
||
152 |
(*Rule in Modus Ponens style [was called subsetE] *) |
|
153 |
val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B" |
|
154 |
(fn major::prems=> |
|
155 |
[ (rtac (major RS bspec) 1), |
|
156 |
(resolve_tac prems 1) ]); |
|
157 |
||
158 |
(*Classical elimination rule*) |
|
159 |
val subsetCE = prove_goalw ZF.thy [subset_def] |
|
37 | 160 |
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P" |
0 | 161 |
(fn major::prems=> |
162 |
[ (rtac (major RS ballE) 1), |
|
163 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
164 |
||
165 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
|
166 |
val set_mp_tac = dtac subsetD THEN' assume_tac; |
|
167 |
||
168 |
(*Sometimes useful with premises in this order*) |
|
169 |
val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B" |
|
170 |
(fn _=> [REPEAT (ares_tac [subsetD] 1)]); |
|
171 |
||
172 |
val subset_refl = prove_goal ZF.thy "A <= A" |
|
173 |
(fn _=> [ (rtac subsetI 1), atac 1 ]); |
|
174 |
||
175 |
val subset_trans = prove_goal ZF.thy "[| A<=B; B<=C |] ==> A<=C" |
|
176 |
(fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]); |
|
177 |
||
178 |
||
179 |
(*** Rules for equality ***) |
|
180 |
||
181 |
(*Anti-symmetry of the subset relation*) |
|
182 |
val equalityI = prove_goal ZF.thy "[| A <= B; B <= A |] ==> A = B" |
|
183 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]); |
|
184 |
||
185 |
val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B" |
|
186 |
(fn [prem] => |
|
187 |
[ (rtac equalityI 1), |
|
188 |
(REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]); |
|
189 |
||
190 |
val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B" |
|
191 |
(fn prems=> |
|
192 |
[ (rtac (extension RS iffD1 RS conjunct1) 1), |
|
193 |
(resolve_tac prems 1) ]); |
|
194 |
||
195 |
val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A" |
|
196 |
(fn prems=> |
|
197 |
[ (rtac (extension RS iffD1 RS conjunct2) 1), |
|
198 |
(resolve_tac prems 1) ]); |
|
199 |
||
200 |
val equalityE = prove_goal ZF.thy |
|
201 |
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" |
|
202 |
(fn prems=> |
|
203 |
[ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]); |
|
204 |
||
205 |
val equalityCE = prove_goal ZF.thy |
|
37 | 206 |
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P" |
0 | 207 |
(fn major::prems=> |
208 |
[ (rtac (major RS equalityE) 1), |
|
209 |
(REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]); |
|
210 |
||
211 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
212 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
213 |
put universal quantifiers over the free variables in p. |
|
214 |
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*) |
|
215 |
val setup_induction = prove_goal ZF.thy |
|
216 |
"[| p: A; !!z. z: A ==> p=z --> R |] ==> R" |
|
217 |
(fn prems=> |
|
218 |
[ (rtac mp 1), |
|
219 |
(REPEAT (resolve_tac (refl::prems) 1)) ]); |
|
220 |
||
221 |
||
222 |
(*** Rules for Replace -- the derived form of replacement ***) |
|
223 |
||
224 |
val ex1_functional = prove_goal ZF.thy |
|
225 |
"[| EX! z. P(a,z); P(a,b); P(a,c) |] ==> b = c" |
|
226 |
(fn prems=> |
|
227 |
[ (cut_facts_tac prems 1), |
|
228 |
(best_tac FOL_dup_cs 1) ]); |
|
229 |
||
230 |
val Replace_iff = prove_goalw ZF.thy [Replace_def] |
|
231 |
"b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))" |
|
232 |
(fn _=> |
|
233 |
[ (rtac (replacement RS iff_trans) 1), |
|
234 |
(REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1 |
|
235 |
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]); |
|
236 |
||
237 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *) |
|
238 |
val ReplaceI = prove_goal ZF.thy |
|
239 |
"[| x: A; P(x,b); !!y. P(x,y) ==> y=b |] ==> \ |
|
240 |
\ b : {y. x:A, P(x,y)}" |
|
241 |
(fn prems=> |
|
242 |
[ (rtac (Replace_iff RS iffD2) 1), |
|
243 |
(REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]); |
|
244 |
||
245 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) |
|
246 |
val ReplaceE = prove_goal ZF.thy |
|
247 |
"[| b : {y. x:A, P(x,y)}; \ |
|
248 |
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \ |
|
249 |
\ |] ==> R" |
|
250 |
(fn prems=> |
|
251 |
[ (rtac (Replace_iff RS iffD1 RS bexE) 1), |
|
252 |
(etac conjE 2), |
|
253 |
(REPEAT (ares_tac prems 1)) ]); |
|
254 |
||
255 |
val Replace_cong = prove_goal ZF.thy |
|
256 |
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \ |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
257 |
\ Replace(A,P) = Replace(B,Q)" |
0 | 258 |
(fn prems=> |
259 |
let val substprems = prems RL [subst, ssubst] |
|
260 |
and iffprems = prems RL [iffD1,iffD2] |
|
261 |
in [ (rtac equalityI 1), |
|
262 |
(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1 |
|
263 |
ORELSE resolve_tac [subsetI, ReplaceI] 1 |
|
264 |
ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ] |
|
265 |
end); |
|
266 |
||
267 |
(*** Rules for RepFun ***) |
|
268 |
||
269 |
val RepFunI = prove_goalw ZF.thy [RepFun_def] |
|
270 |
"!!a A. a : A ==> f(a) : {f(x). x:A}" |
|
271 |
(fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]); |
|
272 |
||
120 | 273 |
(*Useful for coinduction proofs*) |
0 | 274 |
val RepFun_eqI = prove_goal ZF.thy |
275 |
"!!b a f. [| b=f(a); a : A |] ==> b : {f(x). x:A}" |
|
276 |
(fn _ => [ etac ssubst 1, etac RepFunI 1 ]); |
|
277 |
||
278 |
val RepFunE = prove_goalw ZF.thy [RepFun_def] |
|
279 |
"[| b : {f(x). x:A}; \ |
|
280 |
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \ |
|
281 |
\ P" |
|
282 |
(fn major::prems=> |
|
283 |
[ (rtac (major RS ReplaceE) 1), |
|
284 |
(REPEAT (ares_tac prems 1)) ]); |
|
285 |
||
286 |
val RepFun_cong = prove_goalw ZF.thy [RepFun_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
287 |
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
288 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); |
0 | 289 |
|
290 |
||
291 |
(*** Rules for Collect -- forming a subset by separation ***) |
|
292 |
||
293 |
(*Separation is derivable from Replacement*) |
|
294 |
val separation = prove_goalw ZF.thy [Collect_def] |
|
295 |
"a : {x:A. P(x)} <-> a:A & P(a)" |
|
296 |
(fn _=> [ (fast_tac (FOL_cs addIs [bexI,ReplaceI] |
|
297 |
addSEs [bexE,ReplaceE]) 1) ]); |
|
298 |
||
299 |
val CollectI = prove_goal ZF.thy |
|
300 |
"[| a:A; P(a) |] ==> a : {x:A. P(x)}" |
|
301 |
(fn prems=> |
|
302 |
[ (rtac (separation RS iffD2) 1), |
|
303 |
(REPEAT (resolve_tac (prems@[conjI]) 1)) ]); |
|
304 |
||
305 |
val CollectE = prove_goal ZF.thy |
|
306 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R" |
|
307 |
(fn prems=> |
|
308 |
[ (rtac (separation RS iffD1 RS conjE) 1), |
|
309 |
(REPEAT (ares_tac prems 1)) ]); |
|
310 |
||
311 |
val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A" |
|
312 |
(fn [major]=> |
|
313 |
[ (rtac (major RS CollectE) 1), |
|
314 |
(assume_tac 1) ]); |
|
315 |
||
316 |
val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)" |
|
317 |
(fn [major]=> |
|
318 |
[ (rtac (major RS CollectE) 1), |
|
319 |
(assume_tac 1) ]); |
|
320 |
||
321 |
val Collect_cong = prove_goalw ZF.thy [Collect_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
322 |
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
323 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); |
0 | 324 |
|
325 |
(*** Rules for Unions ***) |
|
326 |
||
327 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
|
328 |
val UnionI = prove_goal ZF.thy "[| B: C; A: B |] ==> A: Union(C)" |
|
329 |
(fn prems=> |
|
330 |
[ (resolve_tac [union_iff RS iffD2] 1), |
|
331 |
(REPEAT (resolve_tac (prems @ [bexI]) 1)) ]); |
|
332 |
||
333 |
val UnionE = prove_goal ZF.thy |
|
334 |
"[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R" |
|
335 |
(fn prems=> |
|
336 |
[ (resolve_tac [union_iff RS iffD1 RS bexE] 1), |
|
337 |
(REPEAT (ares_tac prems 1)) ]); |
|
338 |
||
339 |
(*** Rules for Inter ***) |
|
340 |
||
341 |
(*Not obviously useful towards proving InterI, InterD, InterE*) |
|
342 |
val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def] |
|
343 |
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)" |
|
344 |
(fn _=> [ (rtac (separation RS iff_trans) 1), |
|
345 |
(fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]); |
|
346 |
||
347 |
(* Intersection is well-behaved only if the family is non-empty! *) |
|
348 |
val InterI = prove_goalw ZF.thy [Inter_def] |
|
349 |
"[| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)" |
|
350 |
(fn prems=> |
|
351 |
[ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]); |
|
352 |
||
353 |
(*A "destruct" rule -- every B in C contains A as an element, but |
|
354 |
A:B can hold when B:C does not! This rule is analogous to "spec". *) |
|
355 |
val InterD = prove_goalw ZF.thy [Inter_def] |
|
356 |
"[| A : Inter(C); B : C |] ==> A : B" |
|
357 |
(fn [major,minor]=> |
|
358 |
[ (rtac (major RS CollectD2 RS bspec) 1), |
|
359 |
(rtac minor 1) ]); |
|
360 |
||
361 |
(*"Classical" elimination rule -- does not require exhibiting B:C *) |
|
362 |
val InterE = prove_goalw ZF.thy [Inter_def] |
|
37 | 363 |
"[| A : Inter(C); A:B ==> R; B~:C ==> R |] ==> R" |
0 | 364 |
(fn major::prems=> |
365 |
[ (rtac (major RS CollectD2 RS ballE) 1), |
|
366 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
367 |
||
368 |
(*** Rules for Unions of families ***) |
|
369 |
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *) |
|
370 |
||
371 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
|
372 |
val UN_I = prove_goal ZF.thy "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))" |
|
373 |
(fn prems=> |
|
374 |
[ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]); |
|
375 |
||
376 |
val UN_E = prove_goal ZF.thy |
|
377 |
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" |
|
378 |
(fn major::prems=> |
|
379 |
[ (rtac (major RS UnionE) 1), |
|
380 |
(REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]); |
|
381 |
||
382 |
||
383 |
(*** Rules for Intersections of families ***) |
|
384 |
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *) |
|
385 |
||
386 |
val INT_I = prove_goal ZF.thy |
|
387 |
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))" |
|
388 |
(fn prems=> |
|
389 |
[ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1 |
|
390 |
ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]); |
|
391 |
||
392 |
val INT_E = prove_goal ZF.thy |
|
393 |
"[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)" |
|
394 |
(fn [major,minor]=> |
|
395 |
[ (rtac (major RS InterD) 1), |
|
396 |
(rtac (minor RS RepFunI) 1) ]); |
|
397 |
||
398 |
||
399 |
(*** Rules for Powersets ***) |
|
400 |
||
401 |
val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)" |
|
402 |
(fn [prem]=> [ (rtac (prem RS (power_set RS iffD2)) 1) ]); |
|
403 |
||
404 |
val PowD = prove_goal ZF.thy "A : Pow(B) ==> A<=B" |
|
405 |
(fn [major]=> [ (rtac (major RS (power_set RS iffD1)) 1) ]); |
|
406 |
||
407 |
||
408 |
(*** Rules for the empty set ***) |
|
409 |
||
410 |
(*The set {x:0.False} is empty; by foundation it equals 0 |
|
411 |
See Suppes, page 21.*) |
|
412 |
val emptyE = prove_goal ZF.thy "a:0 ==> P" |
|
413 |
(fn [major]=> |
|
414 |
[ (rtac (foundation RS disjE) 1), |
|
415 |
(etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1), |
|
416 |
(rtac major 1), |
|
417 |
(etac bexE 1), |
|
418 |
(etac (CollectD2 RS FalseE) 1) ]); |
|
419 |
||
420 |
val empty_subsetI = prove_goal ZF.thy "0 <= A" |
|
421 |
(fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]); |
|
422 |
||
423 |
val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0" |
|
424 |
(fn prems=> |
|
425 |
[ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 |
|
426 |
ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]); |
|
427 |
||
428 |
val equals0D = prove_goal ZF.thy "[| A=0; a:A |] ==> P" |
|
429 |
(fn [major,minor]=> |
|
430 |
[ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]); |
|
431 |
||
432 |
val lemmas_cs = FOL_cs |
|
433 |
addSIs [ballI, InterI, CollectI, PowI, subsetI] |
|
434 |
addIs [bexI, UnionI, ReplaceI, RepFunI] |
|
435 |
addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE, |
|
436 |
CollectE, emptyE] |
|
437 |
addEs [rev_ballE, InterD, make_elim InterD, subsetD, subsetCE]; |
|
438 |
||
439 |
end; |
|
440 |
||
441 |
open ZF_Lemmas; |