| 435 |      1 | (*  Title: 	ZF/ex/Fin.ML
 | 
| 363 |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 484 |      4 |     Copyright   1994  University of Cambridge
 | 
| 363 |      5 | 
 | 
|  |      6 | Finite powerset operator
 | 
|  |      7 | 
 | 
| 484 |      8 | prove X:Fin(A) ==> |X| < nat
 | 
| 363 |      9 | 
 | 
| 484 |     10 | prove:  b: Fin(A) ==> inj(b,b)<=surj(b,b)
 | 
| 363 |     11 | *)
 | 
|  |     12 | 
 | 
|  |     13 | structure Fin = Inductive_Fun
 | 
| 444 |     14 |  (val thy        = Arith.thy |> add_consts [("Fin", "i=>i", NoSyn)]
 | 
| 477 |     15 |   val thy_name   = "Fin"
 | 
| 363 |     16 |   val rec_doms   = [("Fin","Pow(A)")]
 | 
|  |     17 |   val sintrs     = ["0 : Fin(A)",
 | 
|  |     18 |                     "[| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)"]
 | 
|  |     19 |   val monos      = []
 | 
|  |     20 |   val con_defs   = []
 | 
|  |     21 |   val type_intrs = [empty_subsetI, cons_subsetI, PowI]
 | 
|  |     22 |   val type_elims = [make_elim PowD]);
 | 
|  |     23 | 
 | 
|  |     24 | val [Fin_0I, Fin_consI] = Fin.intrs;
 | 
|  |     25 | 
 | 
|  |     26 | 
 | 
|  |     27 | goalw Fin.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
 | 
|  |     28 | by (rtac lfp_mono 1);
 | 
|  |     29 | by (REPEAT (rtac Fin.bnd_mono 1));
 | 
|  |     30 | by (REPEAT (ares_tac (Pow_mono::basic_monos) 1));
 | 
|  |     31 | val Fin_mono = result();
 | 
|  |     32 | 
 | 
|  |     33 | (* A : Fin(B) ==> A <= B *)
 | 
|  |     34 | val FinD = Fin.dom_subset RS subsetD RS PowD;
 | 
|  |     35 | 
 | 
|  |     36 | (** Induction on finite sets **)
 | 
|  |     37 | 
 | 
|  |     38 | (*Discharging x~:y entails extra work*)
 | 
|  |     39 | val major::prems = goal Fin.thy 
 | 
|  |     40 |     "[| b: Fin(A);  \
 | 
|  |     41 | \       P(0);        \
 | 
|  |     42 | \       !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y)) \
 | 
|  |     43 | \    |] ==> P(b)";
 | 
|  |     44 | by (rtac (major RS Fin.induct) 1);
 | 
| 437 |     45 | by (excluded_middle_tac "a:b" 2);
 | 
| 363 |     46 | by (etac (cons_absorb RS ssubst) 3 THEN assume_tac 3);	    (*backtracking!*)
 | 
|  |     47 | by (REPEAT (ares_tac prems 1));
 | 
|  |     48 | val Fin_induct = result();
 | 
|  |     49 | 
 | 
|  |     50 | (** Simplification for Fin **)
 | 
|  |     51 | val Fin_ss = arith_ss addsimps Fin.intrs;
 | 
|  |     52 | 
 | 
|  |     53 | (*The union of two finite sets is finite.*)
 | 
|  |     54 | val major::prems = goal Fin.thy
 | 
|  |     55 |     "[| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)";
 | 
|  |     56 | by (rtac (major RS Fin_induct) 1);
 | 
|  |     57 | by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Un_0, Un_cons]))));
 | 
|  |     58 | val Fin_UnI = result();
 | 
|  |     59 | 
 | 
|  |     60 | (*The union of a set of finite sets is finite.*)
 | 
|  |     61 | val [major] = goal Fin.thy "C : Fin(Fin(A)) ==> Union(C) : Fin(A)";
 | 
|  |     62 | by (rtac (major RS Fin_induct) 1);
 | 
|  |     63 | by (ALLGOALS (asm_simp_tac (Fin_ss addsimps [Union_0, Union_cons, Fin_UnI])));
 | 
|  |     64 | val Fin_UnionI = result();
 | 
|  |     65 | 
 | 
|  |     66 | (*Every subset of a finite set is finite.*)
 | 
|  |     67 | goal Fin.thy "!!b A. b: Fin(A) ==> ALL z. z<=b --> z: Fin(A)";
 | 
|  |     68 | by (etac Fin_induct 1);
 | 
|  |     69 | by (simp_tac (Fin_ss addsimps [subset_empty_iff]) 1);
 | 
|  |     70 | by (safe_tac (ZF_cs addSDs [subset_cons_iff RS iffD1]));
 | 
|  |     71 | by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 2);
 | 
|  |     72 | by (ALLGOALS (asm_simp_tac Fin_ss));
 | 
|  |     73 | val Fin_subset_lemma = result();
 | 
|  |     74 | 
 | 
|  |     75 | goal Fin.thy "!!c b A. [| c<=b;  b: Fin(A) |] ==> c: Fin(A)";
 | 
|  |     76 | by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
 | 
|  |     77 | val Fin_subset = result();
 | 
|  |     78 | 
 | 
|  |     79 | val major::prems = goal Fin.thy 
 | 
|  |     80 |     "[| c: Fin(A);  b: Fin(A);  				\
 | 
|  |     81 | \       P(b);       						\
 | 
|  |     82 | \       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
 | 
|  |     83 | \    |] ==> c<=b --> P(b-c)";
 | 
|  |     84 | by (rtac (major RS Fin_induct) 1);
 | 
|  |     85 | by (rtac (Diff_cons RS ssubst) 2);
 | 
|  |     86 | by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Diff_0, cons_subset_iff, 
 | 
|  |     87 | 				Diff_subset RS Fin_subset]))));
 | 
|  |     88 | val Fin_0_induct_lemma = result();
 | 
|  |     89 | 
 | 
|  |     90 | val prems = goal Fin.thy 
 | 
|  |     91 |     "[| b: Fin(A);  						\
 | 
|  |     92 | \       P(b);        						\
 | 
|  |     93 | \       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
 | 
|  |     94 | \    |] ==> P(0)";
 | 
|  |     95 | by (rtac (Diff_cancel RS subst) 1);
 | 
|  |     96 | by (rtac (Fin_0_induct_lemma RS mp) 1);
 | 
|  |     97 | by (REPEAT (ares_tac (subset_refl::prems) 1));
 | 
|  |     98 | val Fin_0_induct = result();
 | 
| 484 |     99 | 
 | 
|  |    100 | (*Functions from a finite ordinal*)
 | 
|  |    101 | val prems = goal Fin.thy "n: nat ==> n->A <= Fin(nat*A)";
 | 
|  |    102 | by (nat_ind_tac "n" prems 1);
 | 
|  |    103 | by (simp_tac (ZF_ss addsimps [Pi_empty1, Fin_0I, subset_iff, cons_iff]) 1);
 | 
|  |    104 | by (asm_simp_tac (ZF_ss addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
 | 
|  |    105 | by (fast_tac (ZF_cs addSIs [Fin_consI]) 1);
 | 
|  |    106 | val nat_fun_subset_Fin = result();
 |