author | wenzelm |
Thu, 02 Feb 2006 16:31:38 +0100 | |
changeset 18909 | f1333b0ff9e5 |
parent 18081 | fe15796b257d |
child 25131 | 2c8caac48ade |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Tr.thy |
2 |
ID: $Id$ |
|
3 |
Author: Franz Regensburger |
|
4 |
||
16070
4a83dd540b88
removed LICENCE note -- everything is subject to Isabelle licence as
wenzelm
parents:
15649
diff
changeset
|
5 |
Introduce infix if_then_else_fi and boolean connectives andalso, orelse. |
2640 | 6 |
*) |
7 |
||
15649 | 8 |
header {* The type of lifted booleans *} |
9 |
||
10 |
theory Tr |
|
16228 | 11 |
imports Lift |
15649 | 12 |
begin |
2640 | 13 |
|
16631 | 14 |
defaultsort pcpo |
15 |
||
2782 | 16 |
types |
17 |
tr = "bool lift" |
|
18 |
||
2766 | 19 |
translations |
2782 | 20 |
"tr" <= (type) "bool lift" |
2640 | 21 |
|
22 |
consts |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
23 |
TT :: "tr" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
24 |
FF :: "tr" |
18081
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
25 |
trifte :: "'c \<rightarrow> 'c \<rightarrow> tr \<rightarrow> 'c" |
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
26 |
trand :: "tr \<rightarrow> tr \<rightarrow> tr" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
27 |
tror :: "tr \<rightarrow> tr \<rightarrow> tr" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
28 |
neg :: "tr \<rightarrow> tr" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
29 |
If2 :: "[tr, 'c, 'c] \<Rightarrow> 'c" |
2640 | 30 |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
31 |
syntax |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
32 |
"@cifte" :: "[tr, 'c, 'c] \<Rightarrow> 'c" ("(3If _/ (then _/ else _) fi)" 60) |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
33 |
"@andalso" :: "tr \<Rightarrow> tr \<Rightarrow> tr" ("_ andalso _" [36,35] 35) |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
34 |
"@orelse" :: "tr \<Rightarrow> tr \<Rightarrow> tr" ("_ orelse _" [31,30] 30) |
2640 | 35 |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
36 |
translations |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
37 |
"x andalso y" == "trand\<cdot>x\<cdot>y" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
38 |
"x orelse y" == "tror\<cdot>x\<cdot>y" |
18081
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
39 |
"If b then e1 else e2 fi" == "trifte\<cdot>e1\<cdot>e2\<cdot>b" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
40 |
|
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
41 |
translations |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
42 |
"\<Lambda> TT. t" == "trifte\<cdot>t\<cdot>\<bottom>" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
43 |
"\<Lambda> FF. t" == "trifte\<cdot>\<bottom>\<cdot>t" |
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
44 |
|
2640 | 45 |
defs |
18081
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
46 |
TT_def: "TT \<equiv> Def True" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
47 |
FF_def: "FF \<equiv> Def False" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
48 |
neg_def: "neg \<equiv> flift2 Not" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
49 |
ifte_def: "trifte \<equiv> \<Lambda> t e. FLIFT b. if b then t else e" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
50 |
andalso_def: "trand \<equiv> \<Lambda> x y. If x then y else FF fi" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
51 |
orelse_def: "tror \<equiv> \<Lambda> x y. If x then TT else y fi" |
fe15796b257d
changed order of arguments for constant behind If-then-else-fi syntax; added LAM patterns for TT, FF
huffman
parents:
18070
diff
changeset
|
52 |
If2_def: "If2 Q x y \<equiv> If Q then x else y fi" |
15649 | 53 |
|
54 |
text {* Exhaustion and Elimination for type @{typ tr} *} |
|
55 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
56 |
lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF" |
15649 | 57 |
apply (unfold FF_def TT_def) |
58 |
apply (induct_tac "t") |
|
59 |
apply fast |
|
60 |
apply fast |
|
61 |
done |
|
62 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
63 |
lemma trE: "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
15649 | 64 |
apply (rule Exh_tr [THEN disjE]) |
65 |
apply fast |
|
66 |
apply (erule disjE) |
|
67 |
apply fast |
|
68 |
apply fast |
|
69 |
done |
|
70 |
||
71 |
text {* tactic for tr-thms with case split *} |
|
72 |
||
73 |
lemmas tr_defs = andalso_def orelse_def neg_def ifte_def TT_def FF_def |
|
74 |
(* |
|
75 |
fun prover t = prove_goal thy t |
|
76 |
(fn prems => |
|
77 |
[ |
|
78 |
(res_inst_tac [("p","y")] trE 1), |
|
79 |
(REPEAT(asm_simp_tac (simpset() addsimps |
|
80 |
[o_def,flift1_def,flift2_def,inst_lift_po]@tr_defs) 1)) |
|
81 |
]) |
|
82 |
*) |
|
83 |
text {* distinctness for type @{typ tr} *} |
|
84 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
85 |
lemma dist_less_tr [simp]: |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
86 |
"\<not> TT \<sqsubseteq> \<bottom>" "\<not> FF \<sqsubseteq> \<bottom>" "\<not> TT \<sqsubseteq> FF" "\<not> FF \<sqsubseteq> TT" |
15649 | 87 |
by (simp_all add: tr_defs) |
88 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
89 |
lemma dist_eq_tr [simp]: |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
90 |
"TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT" |
15649 | 91 |
by (simp_all add: tr_defs) |
92 |
||
93 |
text {* lemmas about andalso, orelse, neg and if *} |
|
94 |
||
95 |
lemma ifte_thms [simp]: |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
96 |
"If \<bottom> then e1 else e2 fi = \<bottom>" |
15649 | 97 |
"If FF then e1 else e2 fi = e2" |
98 |
"If TT then e1 else e2 fi = e1" |
|
16756 | 99 |
by (simp_all add: ifte_def TT_def FF_def) |
15649 | 100 |
|
101 |
lemma andalso_thms [simp]: |
|
102 |
"(TT andalso y) = y" |
|
103 |
"(FF andalso y) = FF" |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
104 |
"(\<bottom> andalso y) = \<bottom>" |
15649 | 105 |
"(y andalso TT) = y" |
106 |
"(y andalso y) = y" |
|
107 |
apply (unfold andalso_def, simp_all) |
|
108 |
apply (rule_tac p=y in trE, simp_all) |
|
109 |
apply (rule_tac p=y in trE, simp_all) |
|
110 |
done |
|
111 |
||
112 |
lemma orelse_thms [simp]: |
|
113 |
"(TT orelse y) = TT" |
|
114 |
"(FF orelse y) = y" |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
115 |
"(\<bottom> orelse y) = \<bottom>" |
15649 | 116 |
"(y orelse FF) = y" |
117 |
"(y orelse y) = y" |
|
118 |
apply (unfold orelse_def, simp_all) |
|
119 |
apply (rule_tac p=y in trE, simp_all) |
|
120 |
apply (rule_tac p=y in trE, simp_all) |
|
121 |
done |
|
122 |
||
123 |
lemma neg_thms [simp]: |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
124 |
"neg\<cdot>TT = FF" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
125 |
"neg\<cdot>FF = TT" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
126 |
"neg\<cdot>\<bottom> = \<bottom>" |
15649 | 127 |
by (simp_all add: neg_def TT_def FF_def) |
128 |
||
129 |
text {* split-tac for If via If2 because the constant has to be a constant *} |
|
130 |
||
131 |
lemma split_If2: |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
132 |
"P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))" |
15649 | 133 |
apply (unfold If2_def) |
134 |
apply (rule_tac p = "Q" in trE) |
|
135 |
apply (simp_all) |
|
136 |
done |
|
137 |
||
16121 | 138 |
ML {* |
15649 | 139 |
val split_If_tac = |
140 |
simp_tac (HOL_basic_ss addsimps [symmetric (thm "If2_def")]) |
|
141 |
THEN' (split_tac [thm "split_If2"]) |
|
142 |
*} |
|
143 |
||
144 |
subsection "Rewriting of HOLCF operations to HOL functions" |
|
145 |
||
146 |
lemma andalso_or: |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
147 |
"t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)" |
15649 | 148 |
apply (rule_tac p = "t" in trE) |
149 |
apply simp_all |
|
150 |
done |
|
151 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
152 |
lemma andalso_and: |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
153 |
"t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)" |
15649 | 154 |
apply (rule_tac p = "t" in trE) |
155 |
apply simp_all |
|
156 |
done |
|
157 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
158 |
lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x" |
15649 | 159 |
by (simp add: FF_def) |
160 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
161 |
lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)" |
15649 | 162 |
by (simp add: FF_def) |
163 |
||
164 |
lemma Def_bool3 [simp]: "(Def x = TT) = x" |
|
165 |
by (simp add: TT_def) |
|
166 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
167 |
lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)" |
15649 | 168 |
by (simp add: TT_def) |
169 |
||
170 |
lemma If_and_if: |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
171 |
"(If Def P then A else B fi) = (if P then A else B)" |
15649 | 172 |
apply (rule_tac p = "Def P" in trE) |
173 |
apply (auto simp add: TT_def[symmetric] FF_def[symmetric]) |
|
174 |
done |
|
175 |
||
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
176 |
subsection {* Compactness *} |
15649 | 177 |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
178 |
lemma compact_TT [simp]: "compact TT" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
179 |
by (rule compact_chfin) |
15649 | 180 |
|
18070
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
181 |
lemma compact_FF [simp]: "compact FF" |
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
huffman
parents:
16756
diff
changeset
|
182 |
by (rule compact_chfin) |
2640 | 183 |
|
184 |
end |