doc-src/TutorialI/IsarOverview/Isar/Logic.thy
author berghofe
Wed, 10 Jul 2002 18:37:51 +0200
changeset 13341 f15ed50d16cf
parent 13338 20ca66539bef
child 13347 867f876589e7
permissions -rw-r--r--
- Moved abs_def to drule.ML - elim_defs now takes a boolean argument which controls the automatic expansion of theorems mentioning constants whose definitions are eliminated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory Logic = Main:(*>*)
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
     2
text{* We begin by looking at a simplified grammar for Isar proofs
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
     3
where parentheses are used for grouping and $^?$ indicates an optional item:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     4
\begin{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     5
\begin{tabular}{lrl}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     6
\emph{proof} & ::= & \isakeyword{proof} \emph{method}$^?$
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
     7
                     \emph{statement}*
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     8
                     \isakeyword{qed} \\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
     9
                 &$\mid$& \isakeyword{by} \emph{method}\\[1ex]
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    10
\emph{statement} &::= & \isakeyword{fix} \emph{variables} \\
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    11
             &$\mid$& \isakeyword{assume} \emph{propositions} \\
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    12
             &$\mid$& (\isakeyword{from} \emph{facts})$^?$ 
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    13
                    (\isakeyword{show} $\mid$ \isakeyword{have})
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    14
                      \emph{propositions} \emph{proof} \\[1ex]
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    15
\emph{proposition} &::=& (\emph{label}{\bf:})$^?$ \emph{string} \\[1ex]
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    16
\emph{fact} &::=& \emph{label}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    17
\end{tabular}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    18
\end{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    19
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    20
This is a typical proof skeleton:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    21
\begin{center}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{tabular}{@ {}ll}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    23
\isakeyword{proof}\\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    24
\hspace*{3ex}\isakeyword{assume} @{text"\""}\emph{the-assm}@{text"\""}\\
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    25
\hspace*{3ex}\isakeyword{have} @{text"\""}\dots@{text"\""}  & -- intermediate result\\
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    26
\hspace*{3ex}\vdots\\
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    27
\hspace*{3ex}\isakeyword{have} @{text"\""}\dots@{text"\""}  & -- intermediate result\\
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    28
\hspace*{3ex}\isakeyword{show} @{text"\""}\emph{the-concl}@{text"\""}\\
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    29
\isakeyword{qed}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    30
\end{tabular}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    31
\end{center}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    32
It proves \emph{the-assm}~@{text"\<Longrightarrow>"}~\emph{the-concl}.
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    33
Text starting with ``--'' is a comment.
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    34
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    35
Note that propositions in \isakeyword{assume} may but need not be
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
    36
separated by \isakeyword{and}, whose purpose is to structure the
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
    37
assumptions into possibly named blocks. For example in
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    38
\begin{center}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    39
\isakeyword{assume} @{text"A:"} $A_1$ $A_2$ \isakeyword{and} @{text"B:"} $A_3$
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    40
\isakeyword{and} $A_4$
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    41
\end{center}
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
    42
label @{text A} refers to the list of propositions $A_1$ $A_2$ and
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    43
label @{text B} to $A_3$.
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    44
*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    45
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    46
section{*Logic*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    47
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    48
subsection{*Propositional logic*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    49
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    50
subsubsection{*Introduction rules*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    51
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    52
text{* We start with a really trivial toy proof to introduce the basic
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    53
features of structured proofs. *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    54
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    55
proof (rule impI)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    56
  assume a: "A"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    57
  show "A" by(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    58
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    59
text{*\noindent
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    60
The operational reading: the \isakeyword{assume}-\isakeyword{show} block
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    61
proves @{prop"A \<Longrightarrow> A"},
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    62
which rule @{thm[source]impI} turns into the desired @{prop"A \<longrightarrow> A"}.
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
    63
However, this text is much too detailed for comfort. Therefore Isar
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    64
implements the following principle:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    65
\begin{quote}\em
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    66
Command \isakeyword{proof} automatically tries to select an introduction rule
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    67
based on the goal and a predefined list of rules.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    68
\end{quote}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    69
Here @{thm[source]impI} is applied automatically:
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    70
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    71
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    72
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    73
proof
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    74
  assume a: "A"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    75
  show "A" by(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    76
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    77
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    78
text{* Trivial proofs, in particular those by assumption, should be trivial
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
    79
to perform. Proof ``.'' does just that (and a bit more). Thus
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    80
naming of assumptions is often superfluous: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    81
lemma "A \<longrightarrow> A"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    82
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    83
  assume "A"
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    84
  show "A" .
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    85
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    86
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    87
text{* To hide proofs by assumption further, \isakeyword{by}@{text"(method)"}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    88
first applies @{text method} and then tries to solve all remaining subgoals
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    89
by assumption: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    90
lemma "A \<longrightarrow> A \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    91
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    92
  assume A
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
    93
  show "A \<and> A" by(rule conjI)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    94
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    95
text{*\noindent A drawback of these implicit proofs by assumption is that it
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
    96
is no longer obvious where an assumption is used.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
    97
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    98
Proofs of the form \isakeyword{by}@{text"(rule"}~\emph{name}@{text")"} can be
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
    99
abbreviated to ``..''
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   100
if \emph{name} refers to one of the predefined introduction rules:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   101
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   102
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   103
lemma "A \<longrightarrow> A \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   104
proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   105
  assume A
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   106
  show "A \<and> A" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   107
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   108
text{*\noindent
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   109
This is what happens: first the matching introduction rule @{thm[source]conjI}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   110
is applied (first ``.''), then the two subgoals are solved by assumption
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   111
(second ``.''). *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   112
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   113
subsubsection{*Elimination rules*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   114
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   115
text{*A typical elimination rule is @{thm[source]conjE}, $\land$-elimination:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   116
@{thm[display,indent=5]conjE[no_vars]}  In the following proof it is applied
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   117
by hand, after its first (``\emph{major}'') premise has been eliminated via
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   118
@{text"[OF AB]"}: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   119
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   120
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   121
  assume AB: "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   122
  show "B \<and> A"
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   123
  proof (rule conjE[OF AB])  -- {*@{prop"(A \<Longrightarrow> B \<Longrightarrow> R) \<Longrightarrow> R"}*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   124
    assume A and B
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   125
    show ?thesis ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   126
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   127
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   128
text{*\noindent Note that the term @{text"?thesis"} always stands for the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   129
``current goal'', i.e.\ the enclosing \isakeyword{show} (or
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   130
\isakeyword{have}) statement.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   131
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   132
This is too much proof text. Elimination rules should be selected
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   133
automatically based on their major premise, the formula or rather connective
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   134
to be eliminated. In Isar they are triggered by propositions being fed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   135
\emph{into} a proof block. Syntax:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   136
\begin{center}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   137
\isakeyword{from} \emph{fact} \isakeyword{show} \emph{proposition}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   138
\end{center}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   139
where \emph{fact} stands for the name of a previously proved
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   140
proposition, e.g.\ an assumption, an intermediate result or some global
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   141
theorem. The fact may also be modified with @{text of}, @{text OF} etc.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   142
This command applies an elimination rule (from a predefined list)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   143
whose first premise is solved by the fact. Thus: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   144
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   145
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   146
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   147
  assume AB: "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   148
  from AB show "B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   149
  proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   150
    assume A and B
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   151
    show ?thesis ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   152
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   153
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   154
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   155
text{* Now we come a second important principle:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   156
\begin{quote}\em
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   157
Try to arrange the sequence of propositions in a UNIX-like pipe,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   158
such that the proof of each proposition builds on the previous proposition.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   159
\end{quote}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   160
The previous proposition can be referred to via the fact @{text this}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   161
This greatly reduces the need for explicit naming of propositions:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   162
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   163
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   164
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   165
  assume "A \<and> B"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   166
  from this show "B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   167
  proof
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   168
    assume A and B
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   169
    show ?thesis ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   170
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   171
qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   172
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   173
text{*\noindent Because of the frequency of \isakeyword{from}~@{text
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   174
this} Isar provides two abbreviations:
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   175
\begin{center}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   176
\begin{tabular}{rcl}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   177
\isakeyword{then} &=& \isakeyword{from} @{text this} \\
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   178
\isakeyword{thus} &=& \isakeyword{then} \isakeyword{show}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   179
\end{tabular}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   180
\end{center}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   181
\medskip
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   182
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   183
Here is an alternative proof that operates purely by forward reasoning: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   184
lemma "A \<and> B \<longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   185
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   186
  assume ab: "A \<and> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   187
  from ab have a: A ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   188
  from ab have b: B ..
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   189
  from b a show "B \<and> A" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   190
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   191
text{*\noindent
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   192
It is worth examining this text in detail because it exhibits a number of new concepts.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   193
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   194
For a start, this is the first time we have proved intermediate propositions
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   195
(\isakeyword{have}) on the way to the final \isakeyword{show}. This is the
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   196
norm in any nontrivial proof where one cannot bridge the gap between the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   197
assumptions and the conclusion in one step. Both \isakeyword{have}s above are
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   198
proved automatically via @{thm[source]conjE} triggered by
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   199
\isakeyword{from}~@{text ab}.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   200
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   201
The \isakeyword{show} command illustrates two things:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   202
\begin{itemize}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   203
\item \isakeyword{from} can be followed by any number of facts.
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   204
Given \isakeyword{from}~@{text f}$_1$~\dots~@{text f}$_n$, the
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   205
\isakeyword{proof} step after \isakeyword{show}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   206
tries to find an elimination rule whose first $n$ premises can be proved
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   207
by the given facts in the given order.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   208
\item If there is no matching elimination rule, introduction rules are tried,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   209
again using the facts to prove the premises.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   210
\end{itemize}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   211
In this case, the proof succeeds with @{thm[source]conjI}. Note that the proof
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   212
would fail if we had written \isakeyword{from}~@{text"a b"}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   213
instead of \isakeyword{from}~@{text"b a"}.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   214
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   215
This treatment of facts fed into a proof is not restricted to implicit
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   216
application of introduction and elimination rules but applies to explicit
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   217
application of rules as well. Thus you could replace the final ``..'' above
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   218
with \isakeyword{by}@{text"(rule conjI)"}. 
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   219
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   220
Note that Isar's predefined introduction and elimination rules include all the
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   221
usual natural deduction rules. We conclude this
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   222
section with an extended example --- which rules are used implicitly where?
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   223
Rule @{thm[source]ccontr} is @{thm ccontr[no_vars]}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   224
*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   225
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   226
lemma "\<not> (A \<and> B) \<longrightarrow> \<not> A \<or> \<not> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   227
proof
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   228
  assume n: "\<not> (A \<and> B)"
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   229
  show "\<not> A \<or> \<not> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   230
  proof (rule ccontr)
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   231
    assume nn: "\<not> (\<not> A \<or> \<not> B)"
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   232
    have "\<not> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   233
    proof
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   234
      assume A
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   235
      have "\<not> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   236
      proof
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   237
        assume B
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   238
        have "A \<and> B" ..
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   239
        with n show False ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   240
      qed
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   241
      hence "\<not> A \<or> \<not> B" ..
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   242
      with nn show False ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   243
    qed
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   244
    hence "\<not> A \<or> \<not> B" ..
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   245
    with nn show False ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   246
  qed
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   247
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   248
text{*\noindent Apart from demonstrating the strangeness of classical
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   249
arguments by contradiction, this example also introduces two new
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   250
abbreviations:
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   251
\begin{center}
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   252
\begin{tabular}{lcl}
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   253
\isakeyword{hence} &=& \isakeyword{then} \isakeyword{have} \\
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   254
\isakeyword{with}~\emph{facts} &=&
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   255
\isakeyword{from}~\emph{facts} \isakeyword{and} @{text this}
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   256
\end{tabular}
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   257
\end{center}
13326
900f220c800d *** empty log message ***
nipkow
parents: 13322
diff changeset
   258
*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   259
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   260
subsection{*Avoiding duplication*}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   261
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   262
text{* So far our examples have been a bit unnatural: normally we want to
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   263
prove rules expressed with @{text"\<Longrightarrow>"}, not @{text"\<longrightarrow>"}. Here is an example:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   264
*}
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   265
lemma "A \<and> B \<Longrightarrow> B \<and> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   266
proof
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   267
  assume "A \<and> B" thus "B" ..
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   268
next
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   269
  assume "A \<and> B" thus "A" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   270
qed
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   271
text{*\noindent The \isakeyword{proof} always works on the conclusion,
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   272
@{prop"B \<and> A"} in our case, thus selecting $\land$-introduction. Hence
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   273
we must show @{prop B} and @{prop A}; both are proved by
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   274
$\land$-elimination and the proofs are separated by \isakeyword{next}:
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   275
\begin{description}
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   276
\item[\isakeyword{next}] deals with multiple subgoals. For example,
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   277
when showing @{term"A \<and> B"} we need to show both @{term A} and @{term
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   278
B}.  Each subgoal is proved separately, in \emph{any} order. The
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   279
individual proofs are separated by \isakeyword{next}.
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   280
\end{description}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   281
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   282
This is all very well as long as formulae are small. Let us now look at some
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   283
devices to avoid repeating (possibly large) formulae. A very general method
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   284
is pattern matching: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   285
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   286
lemma "large_A \<and> large_B \<Longrightarrow> large_B \<and> large_A"
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   287
      (is "?AB \<Longrightarrow> ?B \<and> ?A")
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   288
proof
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   289
  assume ?AB thus ?B ..
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   290
next
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   291
  assume ?AB thus ?A ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   292
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   293
text{*\noindent Any formula may be followed by
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   294
@{text"("}\isakeyword{is}~\emph{pattern}@{text")"} which causes the pattern
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   295
to be matched against the formula, instantiating the @{text"?"}-variables in
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   296
the pattern. Subsequent uses of these variables in other terms simply causes
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   297
them to be replaced by the terms they stand for.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   298
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   299
We can simplify things even more by stating the theorem by means of the
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   300
\isakeyword{assumes} and \isakeyword{shows} elements which allow direct
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   301
naming of assumptions: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   302
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   303
lemma assumes AB: "large_A \<and> large_B"
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   304
  shows "large_B \<and> large_A" (is "?B \<and> ?A")
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   305
proof
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   306
  from AB show ?B ..
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   307
next
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   308
  from AB show ?A ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   309
qed
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   310
text{*\noindent Note the difference between @{text ?AB}, a term, and
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   311
@{text AB}, a fact.
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   312
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   313
Finally we want to start the proof with $\land$-elimination so we
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   314
don't have to perform it twice, as above. Here is a slick way to
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   315
achieve this: *}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   316
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   317
lemma assumes AB: "large_A \<and> large_B"
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   318
  shows "large_B \<and> large_A" (is "?B \<and> ?A")
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   319
using AB
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   320
proof
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   321
  assume ?A and ?B show ?thesis ..
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   322
qed
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   323
text{*\noindent Command \isakeyword{using} can appear before a proof
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   324
and adds further facts to those piped into the proof. Here @{text AB}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   325
is the only such fact and it triggers $\land$-elimination. Another
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   326
frequent usage is as follows:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   327
\begin{center}
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   328
\isakeyword{from} \emph{important facts}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   329
\isakeyword{show} \emph{something}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   330
\isakeyword{using} \emph{minor facts}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   331
\end{center}
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   332
\medskip
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   333
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   334
Sometimes it is necessary to suppress the implicit application of rules in a
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   335
\isakeyword{proof}. For example \isakeyword{show}~@{prop"A \<or> B"} would
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   336
trigger $\lor$-introduction, requiring us to prove @{prop A}. A simple
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   337
``@{text"-"}'' prevents this \emph{faut pas}: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   338
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   339
lemma assumes AB: "A \<or> B" shows "B \<or> A"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   340
proof -
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   341
  from AB show ?thesis
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   342
  proof
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   343
    assume A show ?thesis ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   344
  next
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   345
    assume B show ?thesis ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   346
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   347
qed
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   348
text{*\noindent Could \isakeyword{using} help to eliminate this ``@{text"-"}''? *}
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   349
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   350
subsection{*Predicate calculus*}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   351
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   352
text{* Command \isakeyword{fix} introduces new local variables into a
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   353
proof. The pair \isakeyword{fix}-\isakeyword{show} corresponds to @{text"\<And>"}
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   354
(the universal quantifier at the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   355
meta-level) just like \isakeyword{assume}-\isakeyword{show} corresponds to
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   356
@{text"\<Longrightarrow>"}. Here is a sample proof, annotated with the rules that are
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   357
applied implicitly: *}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   358
lemma assumes P: "\<forall>x. P x" shows "\<forall>x. P(f x)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   359
proof  -- "@{thm[source]allI}: @{thm allI[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   360
  fix a
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   361
  from P show "P(f a)" ..  --"@{thm[source]allE}: @{thm allE[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   362
qed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   363
text{*\noindent Note that in the proof we have chosen to call the bound
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   364
variable @{term a} instead of @{term x} merely to show that the choice of
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   365
local names is irrelevant.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   366
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   367
Next we look at @{text"\<exists>"} which is a bit more tricky.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   368
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   369
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   370
lemma assumes Pf: "\<exists>x. P(f x)" shows "\<exists>y. P y"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   371
proof -
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   372
  from Pf show ?thesis
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   373
  proof  -- "@{thm[source]exE}: @{thm exE[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   374
    fix a
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   375
    assume "P(f a)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   376
    show ?thesis ..  --"@{thm[source]exI}: @{thm exI[no_vars]}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   377
  qed
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   378
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   379
text{*\noindent Explicit $\exists$-elimination as seen above can become
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   380
cumbersome in practice.  The derived Isar language element
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   381
\isakeyword{obtain} provides a more appealing form of generalized
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   382
existence reasoning: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   383
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   384
lemma assumes Pf: "\<exists>x. P(f x)" shows "\<exists>y. P y"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   385
proof -
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   386
  from Pf obtain x where "P(f x)" ..
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   387
  thus "\<exists>y. P y" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   388
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   389
text{*\noindent Note how the proof text follows the usual mathematical style
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   390
of concluding $P(x)$ from $\exists x. P(x)$, while carefully introducing $x$
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   391
as a new local variable.  Technically, \isakeyword{obtain} is similar to
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   392
\isakeyword{fix} and \isakeyword{assume} together with a soundness proof of
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   393
the elimination involved.
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   394
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   395
Here is a proof of a well known tautology.
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   396
Figure out which rule is used where!  *}
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   397
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   398
lemma assumes ex: "\<exists>x. \<forall>y. P x y" shows "\<forall>y. \<exists>x. P x y"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   399
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   400
  fix y
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   401
  from ex obtain x where "\<forall>y. P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   402
  hence "P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   403
  thus "\<exists>x. P x y" ..
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   404
qed
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   405
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   406
text{* So far we have confined ourselves to single step proofs. Of course
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   407
powerful automatic methods can be used just as well. Here is an example,
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   408
Cantor's theorem that there is no surjective function from a set to its
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   409
powerset: *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   410
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   411
proof
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   412
  let ?S = "{x. x \<notin> f x}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   413
  show "?S \<notin> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   414
  proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   415
    assume "?S \<in> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   416
    then obtain y where fy: "?S = f y" ..
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   417
    show False
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   418
    proof cases
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   419
      assume "y \<in> ?S"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   420
      with fy show False by blast
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   421
    next
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   422
      assume "y \<notin> ?S"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   423
      with fy show False by blast
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   424
    qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   425
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   426
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   427
text{*\noindent
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   428
For a start, the example demonstrates two new constructs:
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   429
\begin{itemize}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   430
\item \isakeyword{let} introduces an abbreviation for a term, in our case
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   431
the witness for the claim, because the term occurs multiple times in the proof.
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   432
\item Proof by @{text"cases"} starts a proof by cases. Note that it remains
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   433
implicit what the two cases are: it is merely expected that the two subproofs
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   434
prove @{prop"P \<Longrightarrow> Q"} and @{prop"\<not>P \<Longrightarrow> Q"} for suitable @{term P} and
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   435
@{term Q}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   436
\end{itemize}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   437
If you wonder how to \isakeyword{obtain} @{term y}:
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   438
via the predefined elimination rule @{thm rangeE[no_vars]}.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   439
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   440
Method @{text blast} is used because the contradiction does not follow easily
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   441
by just a single rule. If you find the proof too cryptic for human
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   442
consumption, here is a more detailed version; the beginning up to
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   443
\isakeyword{obtain} stays unchanged. *}
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   444
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   445
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   446
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   447
  let ?S = "{x. x \<notin> f x}"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   448
  show "?S \<notin> range f"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   449
  proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   450
    assume "?S \<in> range f"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   451
    then obtain y where fy: "?S = f y" ..
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   452
    show False
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   453
    proof cases
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   454
      assume A: "y \<in> ?S"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   455
      hence isin: "y \<in> f y"   by(simp add:fy)
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   456
      from A have "y \<notin> f y"   by simp
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   457
      with isin show False    by contradiction
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   458
    next
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   459
      assume A: "y \<notin> ?S"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   460
      hence notin: "y \<notin> f y"   by(simp add:fy)
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   461
      from A have "y \<in> f y"    by simp
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   462
      with notin show False    by contradiction
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   463
    qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   464
  qed
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   465
qed
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   466
text{*\noindent Method @{text contradiction} succeeds if both $P$ and
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   467
$\neg P$ are among the assumptions and the facts fed into that step, in any order.
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   468
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   469
As it happens, Cantor's theorem can be proved automatically by best-first
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   470
search. Depth-first search would diverge, but best-first search successfully
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   471
navigates through the large search space:
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   472
*}
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   473
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   474
theorem "\<exists>S. S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   475
by best
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   476
text{*\noindent Of course this only works in the context of HOL's carefully
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   477
constructed introduction and elimination rules for set theory.
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   478
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   479
Finally, whole scripts may appear in the leaves of the proof tree, although
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   480
this is best avoided.  Here is a contrived example: *}
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   481
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   482
lemma "A \<longrightarrow> (A \<longrightarrow> B) \<longrightarrow> B"
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   483
proof
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   484
  assume a: A
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   485
  show "(A \<longrightarrow>B) \<longrightarrow> B"
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   486
    apply(rule impI)
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   487
    apply(erule impE)
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   488
    apply(rule a)
13267
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   489
    apply assumption
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   490
    done
502f69ea6627 *** empty log message ***
nipkow
parents:
diff changeset
   491
qed
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   492
text{*\noindent You may need to resort to this technique if an automatic step
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   493
fails to prove the desired proposition. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   494
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   495
section{*Case distinction and induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   496
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   497
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   498
subsection{*Case distinction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   499
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   500
text{* We have already met the @{text cases} method for performing
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   501
binary case splits. Here is another example: *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   502
lemma "P \<or> \<not> P"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   503
proof cases
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   504
  assume "P" thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   505
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   506
  assume "\<not> P" thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   507
qed
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   508
text{*\noindent Note that the two cases must come in this order.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   509
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   510
This form is appropriate if @{term P} is textually small.  However, if
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   511
@{term P} is large, we don't want to repeat it. This can be avoided by
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   512
the following idiom *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   513
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   514
lemma "P \<or> \<not> P"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   515
proof (cases "P")
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   516
  case True thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   517
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   518
  case False thus ?thesis ..
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   519
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   520
text{*\noindent which is simply a shorthand for the previous
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   521
proof. More precisely, the phrases \isakeyword{case}~@{prop
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   522
True}/@{prop False} abbreviate the corresponding assumptions @{prop P}
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   523
and @{prop"\<not>P"}. In contrast to the previous proof we can prove the cases
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   524
in arbitrary order.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   525
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   526
The same game can be played with other datatypes, for example lists:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   527
*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   528
(*<*)declare length_tl[simp del](*>*)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   529
lemma "length(tl xs) = length xs - 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   530
proof (cases xs)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   531
  case Nil thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   532
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   533
  case Cons thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   534
qed
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   535
text{*\noindent Here \isakeyword{case}~@{text Nil} abbreviates
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   536
\isakeyword{assume}~@{prop"x = []"} and \isakeyword{case}~@{text Cons}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   537
abbreviates \isakeyword{assume}~@{text"xs = _ # _"}. The names of the head
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   538
and tail of @{text xs} have been chosen by the system. Therefore we cannot
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   539
refer to them (this would lead to obscure proofs) and have not even shown
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   540
them. Luckily, this proof is simple enough we do not need to refer to them.
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   541
However, in general one may have to. Hence Isar offers a simple scheme for
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   542
naming those variables: replace the anonymous @{text Cons} by, for example,
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   543
@{text"(Cons y ys)"}, which abbreviates \isakeyword{fix}~@{text"y ys"}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   544
\isakeyword{assume}~@{text"xs = Cons y ys"}, i.e.\ @{prop"xs = y # ys"}. Here
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   545
is a (somewhat contrived) example: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   546
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   547
lemma "length(tl xs) = length xs - 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   548
proof (cases xs)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   549
  case Nil thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   550
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   551
  case (Cons y ys)
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   552
  hence "length(tl xs) = length ys  \<and>  length xs = length ys + 1"
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   553
    by simp
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   554
  thus ?thesis by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   555
qed
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   556
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   557
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   558
subsection{*Induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   559
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   560
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   561
subsubsection{*Structural induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   562
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   563
text{* We start with a simple inductive proof where both cases are proved automatically: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   564
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   565
by (induct n, simp_all)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   566
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   567
text{*\noindent If we want to expose more of the structure of the
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   568
proof, we can use pattern matching to avoid having to repeat the goal
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   569
statement: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   570
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)" (is "?P n")
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   571
proof (induct n)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   572
  show "?P 0" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   573
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   574
  fix n assume "?P n"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   575
  thus "?P(Suc n)" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   576
qed
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   577
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   578
text{* \noindent We could refine this further to show more of the equational
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   579
proof. Instead we explore the same avenue as for case distinctions:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   580
introducing context via the \isakeyword{case} command: *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   581
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   582
proof (induct n)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   583
  case 0 show ?case by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   584
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   585
  case Suc thus ?case by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   586
qed
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   587
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   588
text{* \noindent The implicitly defined @{text ?case} refers to the
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   589
corresponding case to be proved, i.e.\ @{text"?P 0"} in the first case and
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   590
@{text"?P(Suc n)"} in the second case. Context \isakeyword{case}~@{text 0} is
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   591
empty whereas \isakeyword{case}~@{text Suc} assumes @{text"?P n"}. Again we
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   592
have the same problem as with case distinctions: we cannot refer to an anonymous @{term n}
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   593
in the induction step because it has not been introduced via \isakeyword{fix}
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   594
(in contrast to the previous proof). The solution is the same as above:
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   595
replace @{term Suc} by @{text"(Suc i)"}: *}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   596
lemma fixes n::nat shows "n < n*n + 1"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   597
proof (induct n)
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   598
  case 0 show ?case by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   599
next
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   600
  case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   601
qed
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   602
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   603
text{* \noindent Of course we could again have written
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   604
\isakeyword{thus}~@{text ?case} instead of giving the term explicitly
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   605
but we wanted to use @{term i} somewhere.
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   606
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   607
Let us now tackle a more ambitious lemma: proving complete induction
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   608
@{prop[display,indent=5]"(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n) \<Longrightarrow> P n"}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   609
via structural induction. It is well known that one needs to prove
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   610
something more general first: *}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   611
lemma cind_lemma:
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   612
  assumes A: "(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   613
  shows "\<And>m. m < n \<Longrightarrow> P(m::nat)"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   614
proof (induct n)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   615
  case 0 thus ?case by simp
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   616
next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   617
  case (Suc n m)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   618
  show ?case
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   619
  proof cases
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   620
    assume eq: "m = n"
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   621
    from Suc A have "P n" by blast
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   622
    with eq show "P m" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   623
  next
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   624
    assume neq: "m \<noteq> n"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   625
    with Suc have "m < n" by simp
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   626
    with Suc show "P m" by blast
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   627
  qed
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   628
qed
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   629
text{* \noindent Let us first examine the statement of the lemma.
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   630
In contrast to the style advertised in the
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   631
Tutorial~\cite{LNCS2283}, structured Isar proofs do not need to
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   632
introduce @{text"\<forall>"} or @{text"\<longrightarrow>"} into a theorem to strengthen it
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   633
for induction --- we use @{text"\<And>"} and @{text"\<Longrightarrow>"} instead. This
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   634
simplifies the proof and means we don't have to convert between the
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   635
two kinds of connectives. As usual, at the end of the proof
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   636
@{text"\<And>"} disappears and the bound variable is turned into a
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   637
@{text"?"}-variable. Thus @{thm[source]cind_lemma} becomes
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   638
@{thm[display,indent=5] cind_lemma} Complete induction is an easy
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   639
corollary: instantiation followed by
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   640
simplification, @{thm[source] cind_lemma[of _ n "Suc n", simplified]},
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   641
yields @{thm[display,indent=5] cind_lemma[of _ n "Suc n", simplified]}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   642
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   643
Now we examine the proof.  So what is this funny case @{text"(Suc n m)"}? It
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   644
looks confusing at first and reveals that the very suggestive @{text"(Suc
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   645
n)"} used above is not the whole truth. The variable names after the case
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   646
name (here: @{term Suc}) are the names of the parameters of that subgoal. So
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   647
far the only parameters where the arguments to the constructor, but now we
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   648
have an additional parameter coming from the @{text"\<And>m"} in the main
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   649
\isakeyword{shows} clause. Thus @{text"(Suc n m)"} does not mean that
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   650
constructor @{term Suc} is applied to two arguments but that the two
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   651
parameters in the @{term Suc} case are to be named @{text n} and @{text
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   652
m}. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   653
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   654
subsubsection{*Rule induction*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   655
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   656
text{* We define our own version of reflexive transitive closure of a
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   657
relation *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   658
consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"   ("_*" [1000] 999)
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   659
inductive "r*"
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   660
intros
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   661
refl:  "(x,x) \<in> r*"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   662
step:  "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   663
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   664
text{* \noindent and prove that @{term"r*"} is indeed transitive: *}
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   665
lemma assumes A: "(x,y) \<in> r*" shows "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*"
13317
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   666
using A
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   667
proof induct
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   668
  case refl thus ?case .
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   669
next
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   670
  case step thus ?case by(blast intro: rtc.step)
bb74918cc0dd *** empty log message ***
nipkow
parents: 13313
diff changeset
   671
qed
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   672
text{*\noindent Rule induction is triggered by a fact $(x_1,\dots,x_n)
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   673
\in R$ piped into the proof, here \isakeyword{using}~@{text A}. The
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   674
proof itself follows the inductive definition very
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   675
closely: there is one case for each rule, and it has the same name as
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   676
the rule, analogous to structural induction.
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   677
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   678
However, this proof is rather terse. Here is a more readable version:
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   679
*}
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   680
13310
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   681
lemma assumes A: "(x,y) \<in> r*" and B: "(y,z) \<in> r*"
d694e65127ba *** empty log message ***
nipkow
parents: 13307
diff changeset
   682
  shows "(x,z) \<in> r*"
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   683
proof -
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   684
  from A B show ?thesis
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   685
  proof induct
13312
ad91cf279f06 *** empty log message ***
nipkow
parents: 13311
diff changeset
   686
    fix x assume "(x,z) \<in> r*"  -- {*@{text B}[@{text y} := @{text x}]*}
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   687
    thus "(x,z) \<in> r*" .
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   688
  next
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   689
    fix x' x y
13313
e4dc78f4e51e *** empty log message ***
nipkow
parents: 13312
diff changeset
   690
    assume 1: "(x',x) \<in> r" and
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   691
           IH: "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" and
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   692
           B:  "(y,z) \<in> r*"
13313
e4dc78f4e51e *** empty log message ***
nipkow
parents: 13312
diff changeset
   693
    from 1 IH[OF B] show "(x',z) \<in> r*" by(rule rtc.step)
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   694
  qed
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   695
qed
13307
cf076cdcfbf3 *** empty log message ***
nipkow
parents: 13305
diff changeset
   696
text{*\noindent We start the proof with \isakeyword{from}~@{text"A
13322
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   697
B"}. Only @{text A} is ``consumed'' by the induction step.
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   698
Since @{text B} is left over we don't just prove @{text
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   699
?thesis} but @{text"B \<Longrightarrow> ?thesis"}, just as in the previous proof. The
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   700
base case is trivial. In the assumptions for the induction step we can
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   701
see very clearly how things fit together and permit ourselves the
3323ecc0b97c *** empty log message ***
nipkow
parents: 13317
diff changeset
   702
obvious forward step @{text"IH[OF B]"}. *}
13305
f88d0c363582 *** empty log message ***
nipkow
parents: 13294
diff changeset
   703
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   704
subsection{*More induction*}
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   705
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   706
text{* We close the section by demonstrating how arbitrary induction rules
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   707
are applied. As a simple example we have chose recursion induction, i.e.\
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   708
induction based on a recursive function definition. The example is an unusual
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   709
definition of rotation of a list: *}
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   710
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   711
consts rot :: "'a list \<Rightarrow> 'a list"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   712
recdef rot "measure length"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   713
"rot [] = []"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   714
"rot [x] = [x]"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   715
"rot (x#y#zs) = y # rot(x#zs)"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   716
13338
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   717
text{* In the first proof we set up each case explicitly, merely using
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   718
pattern matching to abbreviate the statement: *}
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   719
13329
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   720
lemma "length(rot xs) = length xs" (is "?P xs")
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   721
proof (induct xs rule: rot.induct)
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   722
  show "?P []" by simp
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   723
next
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   724
  fix x show "?P [x]" by simp
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   725
next
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   726
  fix x y zs assume "?P (x#zs)"
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   727
  thus "?P (x#y#zs)" by simp
53c4ec15cae0 *** empty log message ***
nipkow
parents: 13326
diff changeset
   728
qed
13338
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   729
text{* This proof skeletons works for arbitrary induction rules, not just
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   730
@{thm[source]rot.induct}.
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   731
13338
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   732
In the following proof we rely on a default naming scheme for cases: they are
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   733
called 1, 2, etc, unless they have been named explicitly. The latter happens
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   734
only with datatypes and inductively defined sets, but not with recursive
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   735
functions. *}
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   736
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   737
lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   738
proof (induct xs rule: rot.induct)
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   739
  case 1 thus ?case by simp
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   740
next
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   741
  case 2 show ?case by simp
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   742
next
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   743
  case 3 thus ?case by simp
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   744
qed
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   745
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   746
text{*Of course both proofs are so simple that they can be condensed to*}
20ca66539bef *** empty log message ***
nipkow
parents: 13330
diff changeset
   747
(*<*)lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"(*>*)
13330
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   748
by (induct xs rule: rot.induct, simp_all)
c9e9b6add754 *** empty log message ***
nipkow
parents: 13329
diff changeset
   749
13294
5e2016d151bd *** empty log message ***
nipkow
parents: 13267
diff changeset
   750
(*<*)end(*>*)