| author | blanchet | 
| Sun, 01 May 2011 18:37:24 +0200 | |
| changeset 42562 | f1d903f789b1 | 
| parent 41082 | 9ff94e7cc3b3 | 
| child 43753 | fe5e846c0839 | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | *) | |
| 4 | ||
| 22454 | 5 | header {* Abstract lattices *}
 | 
| 21249 | 6 | |
| 7 | theory Lattices | |
| 35121 | 8 | imports Orderings Groups | 
| 21249 | 9 | begin | 
| 10 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 11 | subsection {* Abstract semilattice *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 12 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 13 | text {*
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 14 | This locales provide a basic structure for interpretation into | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 15 | bigger structures; extensions require careful thinking, otherwise | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 16 | undesired effects may occur due to interpretation. | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 17 | *} | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 18 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 19 | locale semilattice = abel_semigroup + | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 20 | assumes idem [simp]: "f a a = a" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 21 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 22 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 23 | lemma left_idem [simp]: | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 24 | "f a (f a b) = f a b" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 25 | by (simp add: assoc [symmetric]) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 26 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 27 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 28 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 29 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 30 | subsection {* Idempotent semigroup *}
 | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 31 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 32 | class ab_semigroup_idem_mult = ab_semigroup_mult + | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 33 | assumes mult_idem: "x * x = x" | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 34 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 35 | sublocale ab_semigroup_idem_mult < times!: semilattice times proof | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 36 | qed (fact mult_idem) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 37 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 38 | context ab_semigroup_idem_mult | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 39 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 40 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 41 | lemmas mult_left_idem = times.left_idem | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 42 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 43 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 44 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35121diff
changeset | 45 | |
| 35724 | 46 | subsection {* Concrete lattices *}
 | 
| 21249 | 47 | |
| 25206 | 48 | notation | 
| 25382 | 49 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 32568 | 50 | less (infix "\<sqsubset>" 50) and | 
| 41082 | 51 |   bot ("\<bottom>") and
 | 
| 52 |   top ("\<top>")
 | |
| 53 | ||
| 25206 | 54 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 55 | class semilattice_inf = order + | 
| 21249 | 56 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 57 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 58 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 59 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 60 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 61 | class semilattice_sup = order + | 
| 21249 | 62 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 63 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 64 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 65 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 26014 | 66 | begin | 
| 67 | ||
| 68 | text {* Dual lattice *}
 | |
| 69 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 70 | lemma dual_semilattice: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 71 | "class.semilattice_inf (op \<ge>) (op >) sup" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 72 | by (rule class.semilattice_inf.intro, rule dual_order) | 
| 27682 | 73 | (unfold_locales, simp_all add: sup_least) | 
| 26014 | 74 | |
| 75 | end | |
| 21249 | 76 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 77 | class lattice = semilattice_inf + semilattice_sup | 
| 21249 | 78 | |
| 25382 | 79 | |
| 28562 | 80 | subsubsection {* Intro and elim rules*}
 | 
| 21733 | 81 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 82 | context semilattice_inf | 
| 21733 | 83 | begin | 
| 21249 | 84 | |
| 32064 | 85 | lemma le_infI1: | 
| 86 | "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | |
| 87 | by (rule order_trans) auto | |
| 21249 | 88 | |
| 32064 | 89 | lemma le_infI2: | 
| 90 | "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | |
| 91 | by (rule order_trans) auto | |
| 21733 | 92 | |
| 32064 | 93 | lemma le_infI: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 36008 | 94 | by (rule inf_greatest) (* FIXME: duplicate lemma *) | 
| 21249 | 95 | |
| 32064 | 96 | lemma le_infE: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 36008 | 97 | by (blast intro: order_trans inf_le1 inf_le2) | 
| 21249 | 98 | |
| 21734 | 99 | lemma le_inf_iff [simp]: | 
| 32064 | 100 | "x \<sqsubseteq> y \<sqinter> z \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<sqsubseteq> z" | 
| 101 | by (blast intro: le_infI elim: le_infE) | |
| 21733 | 102 | |
| 32064 | 103 | lemma le_iff_inf: | 
| 104 | "x \<sqsubseteq> y \<longleftrightarrow> x \<sqinter> y = x" | |
| 105 | by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1]) | |
| 21249 | 106 | |
| 36008 | 107 | lemma inf_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<le> d \<Longrightarrow> a \<sqinter> b \<sqsubseteq> c \<sqinter> d" | 
| 108 | by (fast intro: inf_greatest le_infI1 le_infI2) | |
| 109 | ||
| 25206 | 110 | lemma mono_inf: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 111 | fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_inf" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 112 | shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<sqsubseteq> f A \<sqinter> f B" | 
| 25206 | 113 | by (auto simp add: mono_def intro: Lattices.inf_greatest) | 
| 21733 | 114 | |
| 25206 | 115 | end | 
| 21733 | 116 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 117 | context semilattice_sup | 
| 21733 | 118 | begin | 
| 21249 | 119 | |
| 32064 | 120 | lemma le_supI1: | 
| 121 | "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | |
| 25062 | 122 | by (rule order_trans) auto | 
| 21249 | 123 | |
| 32064 | 124 | lemma le_supI2: | 
| 125 | "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | |
| 25062 | 126 | by (rule order_trans) auto | 
| 21733 | 127 | |
| 32064 | 128 | lemma le_supI: | 
| 129 | "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | |
| 36008 | 130 | by (rule sup_least) (* FIXME: duplicate lemma *) | 
| 21249 | 131 | |
| 32064 | 132 | lemma le_supE: | 
| 133 | "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 36008 | 134 | by (blast intro: order_trans sup_ge1 sup_ge2) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 135 | |
| 32064 | 136 | lemma le_sup_iff [simp]: | 
| 137 | "x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z" | |
| 138 | by (blast intro: le_supI elim: le_supE) | |
| 21733 | 139 | |
| 32064 | 140 | lemma le_iff_sup: | 
| 141 | "x \<sqsubseteq> y \<longleftrightarrow> x \<squnion> y = y" | |
| 142 | by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1]) | |
| 21734 | 143 | |
| 36008 | 144 | lemma sup_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<le> d \<Longrightarrow> a \<squnion> b \<sqsubseteq> c \<squnion> d" | 
| 145 | by (fast intro: sup_least le_supI1 le_supI2) | |
| 146 | ||
| 25206 | 147 | lemma mono_sup: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 148 | fixes f :: "'a \<Rightarrow> 'b\<Colon>semilattice_sup" | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 149 | shows "mono f \<Longrightarrow> f A \<squnion> f B \<sqsubseteq> f (A \<squnion> B)" | 
| 25206 | 150 | by (auto simp add: mono_def intro: Lattices.sup_least) | 
| 21733 | 151 | |
| 25206 | 152 | end | 
| 23878 | 153 | |
| 21733 | 154 | |
| 32064 | 155 | subsubsection {* Equational laws *}
 | 
| 21249 | 156 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 157 | sublocale semilattice_inf < inf!: semilattice inf | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 158 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 159 | fix a b c | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 160 | show "(a \<sqinter> b) \<sqinter> c = a \<sqinter> (b \<sqinter> c)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 161 | by (rule antisym) (auto intro: le_infI1 le_infI2) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 162 | show "a \<sqinter> b = b \<sqinter> a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 163 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 164 | show "a \<sqinter> a = a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 165 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 166 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 167 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 168 | context semilattice_inf | 
| 21733 | 169 | begin | 
| 170 | ||
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 171 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 172 | by (fact inf.assoc) | 
| 21733 | 173 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 174 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 175 | by (fact inf.commute) | 
| 21733 | 176 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 177 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 178 | by (fact inf.left_commute) | 
| 21733 | 179 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 180 | lemma inf_idem: "x \<sqinter> x = x" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 181 | by (fact inf.idem) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 182 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 183 | lemma inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 184 | by (fact inf.left_idem) | 
| 21733 | 185 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 186 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | 
| 32064 | 187 | by (rule antisym) auto | 
| 21733 | 188 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 189 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | 
| 32064 | 190 | by (rule antisym) auto | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 191 | |
| 32064 | 192 | lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem | 
| 21733 | 193 | |
| 194 | end | |
| 195 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 196 | sublocale semilattice_sup < sup!: semilattice sup | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 197 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 198 | fix a b c | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 199 | show "(a \<squnion> b) \<squnion> c = a \<squnion> (b \<squnion> c)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 200 | by (rule antisym) (auto intro: le_supI1 le_supI2) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 201 | show "a \<squnion> b = b \<squnion> a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 202 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 203 | show "a \<squnion> a = a" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 204 | by (rule antisym) auto | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 205 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 206 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 207 | context semilattice_sup | 
| 21733 | 208 | begin | 
| 21249 | 209 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 210 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 211 | by (fact sup.assoc) | 
| 21733 | 212 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 213 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 214 | by (fact sup.commute) | 
| 21733 | 215 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 216 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 217 | by (fact sup.left_commute) | 
| 21733 | 218 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 219 | lemma sup_idem: "x \<squnion> x = x" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 220 | by (fact sup.idem) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 221 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 222 | lemma sup_left_idem: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 223 | by (fact sup.left_idem) | 
| 21733 | 224 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 225 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | 
| 32064 | 226 | by (rule antisym) auto | 
| 21733 | 227 | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 228 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | 
| 32064 | 229 | by (rule antisym) auto | 
| 21249 | 230 | |
| 32064 | 231 | lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem | 
| 21733 | 232 | |
| 233 | end | |
| 21249 | 234 | |
| 21733 | 235 | context lattice | 
| 236 | begin | |
| 237 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 238 | lemma dual_lattice: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 239 | "class.lattice (op \<ge>) (op >) sup inf" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 240 | by (rule class.lattice.intro, rule dual_semilattice, rule class.semilattice_sup.intro, rule dual_order) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 241 | (unfold_locales, auto) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 242 | |
| 21733 | 243 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 244 | by (blast intro: antisym inf_le1 inf_greatest sup_ge1) | 
| 21733 | 245 | |
| 246 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 247 | by (blast intro: antisym sup_ge1 sup_least inf_le1) | 
| 21733 | 248 | |
| 32064 | 249 | lemmas inf_sup_aci = inf_aci sup_aci | 
| 21734 | 250 | |
| 22454 | 251 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 252 | ||
| 21734 | 253 | text{* Towards distributivity *}
 | 
| 21249 | 254 | |
| 21734 | 255 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 32064 | 256 | by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) | 
| 21734 | 257 | |
| 258 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 32064 | 259 | by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) | 
| 21734 | 260 | |
| 261 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 262 | |
| 21733 | 263 | lemma distrib_imp1: | 
| 21249 | 264 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 265 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 266 | proof- | |
| 267 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 34209 | 268 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | 
| 21249 | 269 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | 
| 270 | by(simp add:inf_sup_absorb inf_commute) | |
| 271 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 272 | finally show ?thesis . | |
| 273 | qed | |
| 274 | ||
| 21733 | 275 | lemma distrib_imp2: | 
| 21249 | 276 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 277 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 278 | proof- | |
| 279 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 34209 | 280 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | 
| 21249 | 281 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | 
| 282 | by(simp add:sup_inf_absorb sup_commute) | |
| 283 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 284 | finally show ?thesis . | |
| 285 | qed | |
| 286 | ||
| 21733 | 287 | end | 
| 21249 | 288 | |
| 32568 | 289 | subsubsection {* Strict order *}
 | 
| 290 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 291 | context semilattice_inf | 
| 32568 | 292 | begin | 
| 293 | ||
| 294 | lemma less_infI1: | |
| 295 | "a \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 296 | by (auto simp add: less_le inf_absorb1 intro: le_infI1) | 
| 32568 | 297 | |
| 298 | lemma less_infI2: | |
| 299 | "b \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" | |
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32568diff
changeset | 300 | by (auto simp add: less_le inf_absorb2 intro: le_infI2) | 
| 32568 | 301 | |
| 302 | end | |
| 303 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 304 | context semilattice_sup | 
| 32568 | 305 | begin | 
| 306 | ||
| 307 | lemma less_supI1: | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 308 | "x \<sqsubset> a \<Longrightarrow> x \<sqsubset> a \<squnion> b" | 
| 32568 | 309 | proof - | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 310 | interpret dual: semilattice_inf "op \<ge>" "op >" sup | 
| 32568 | 311 | by (fact dual_semilattice) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 312 | assume "x \<sqsubset> a" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 313 | then show "x \<sqsubset> a \<squnion> b" | 
| 32568 | 314 | by (fact dual.less_infI1) | 
| 315 | qed | |
| 316 | ||
| 317 | lemma less_supI2: | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 318 | "x \<sqsubset> b \<Longrightarrow> x \<sqsubset> a \<squnion> b" | 
| 32568 | 319 | proof - | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 320 | interpret dual: semilattice_inf "op \<ge>" "op >" sup | 
| 32568 | 321 | by (fact dual_semilattice) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 322 | assume "x \<sqsubset> b" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 323 | then show "x \<sqsubset> a \<squnion> b" | 
| 32568 | 324 | by (fact dual.less_infI2) | 
| 325 | qed | |
| 326 | ||
| 327 | end | |
| 328 | ||
| 21249 | 329 | |
| 24164 | 330 | subsection {* Distributive lattices *}
 | 
| 21249 | 331 | |
| 22454 | 332 | class distrib_lattice = lattice + | 
| 21249 | 333 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 334 | ||
| 21733 | 335 | context distrib_lattice | 
| 336 | begin | |
| 337 | ||
| 338 | lemma sup_inf_distrib2: | |
| 21249 | 339 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 32064 | 340 | by(simp add: inf_sup_aci sup_inf_distrib1) | 
| 21249 | 341 | |
| 21733 | 342 | lemma inf_sup_distrib1: | 
| 21249 | 343 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 344 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 345 | ||
| 21733 | 346 | lemma inf_sup_distrib2: | 
| 21249 | 347 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 32064 | 348 | by(simp add: inf_sup_aci inf_sup_distrib1) | 
| 21249 | 349 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 350 | lemma dual_distrib_lattice: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 351 | "class.distrib_lattice (op \<ge>) (op >) sup inf" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 352 | by (rule class.distrib_lattice.intro, rule dual_lattice) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 353 | (unfold_locales, fact inf_sup_distrib1) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 354 | |
| 36008 | 355 | lemmas sup_inf_distrib = | 
| 356 | sup_inf_distrib1 sup_inf_distrib2 | |
| 357 | ||
| 358 | lemmas inf_sup_distrib = | |
| 359 | inf_sup_distrib1 inf_sup_distrib2 | |
| 360 | ||
| 21733 | 361 | lemmas distrib = | 
| 21249 | 362 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 363 | ||
| 21733 | 364 | end | 
| 365 | ||
| 21249 | 366 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 367 | subsection {* Bounded lattices and boolean algebras *}
 | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 368 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 369 | class bounded_lattice_bot = lattice + bot | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 370 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 371 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 372 | lemma inf_bot_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 373 | "\<bottom> \<sqinter> x = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 374 | by (rule inf_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 375 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 376 | lemma inf_bot_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 377 | "x \<sqinter> \<bottom> = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 378 | by (rule inf_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 379 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 380 | lemma sup_bot_left [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 381 | "\<bottom> \<squnion> x = x" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 382 | by (rule sup_absorb2) simp | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 383 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 384 | lemma sup_bot_right [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 385 | "x \<squnion> \<bottom> = x" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 386 | by (rule sup_absorb1) simp | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 387 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 388 | lemma sup_eq_bot_iff [simp]: | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 389 | "x \<squnion> y = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 390 | by (simp add: eq_iff) | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 391 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 392 | end | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 393 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 394 | class bounded_lattice_top = lattice + top | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 395 | begin | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 396 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 397 | lemma sup_top_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 398 | "\<top> \<squnion> x = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 399 | by (rule sup_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 400 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 401 | lemma sup_top_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 402 | "x \<squnion> \<top> = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 403 | by (rule sup_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 404 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 405 | lemma inf_top_left [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 406 | "\<top> \<sqinter> x = x" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 407 | by (rule inf_absorb2) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 408 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 409 | lemma inf_top_right [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 410 | "x \<sqinter> \<top> = x" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 411 | by (rule inf_absorb1) simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 412 | |
| 36008 | 413 | lemma inf_eq_top_iff [simp]: | 
| 414 | "x \<sqinter> y = \<top> \<longleftrightarrow> x = \<top> \<and> y = \<top>" | |
| 415 | by (simp add: eq_iff) | |
| 32568 | 416 | |
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 417 | end | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 418 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 419 | class bounded_lattice = bounded_lattice_bot + bounded_lattice_top | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 420 | begin | 
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 421 | |
| 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 422 | lemma dual_bounded_lattice: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 423 | "class.bounded_lattice (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>" | 
| 36352 
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36096diff
changeset | 424 | by unfold_locales (auto simp add: less_le_not_le) | 
| 32568 | 425 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 426 | end | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 427 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 428 | class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus + | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 429 | assumes inf_compl_bot: "x \<sqinter> - x = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 430 | and sup_compl_top: "x \<squnion> - x = \<top>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 431 | assumes diff_eq: "x - y = x \<sqinter> - y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 432 | begin | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 433 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 434 | lemma dual_boolean_algebra: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 435 | "class.boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus (op \<ge>) (op >) (op \<squnion>) (op \<sqinter>) \<top> \<bottom>" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
36352diff
changeset | 436 | by (rule class.boolean_algebra.intro, rule dual_bounded_lattice, rule dual_distrib_lattice) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 437 | (unfold_locales, auto simp add: inf_compl_bot sup_compl_top diff_eq) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 438 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 439 | lemma compl_inf_bot: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 440 | "- x \<sqinter> x = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 441 | by (simp add: inf_commute inf_compl_bot) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 442 | |
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 443 | lemma compl_sup_top: | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 444 | "- x \<squnion> x = \<top>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 445 | by (simp add: sup_commute sup_compl_top) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 446 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 447 | lemma compl_unique: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 448 | assumes "x \<sqinter> y = \<bottom>" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 449 | and "x \<squnion> y = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 450 | shows "- x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 451 | proof - | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 452 | have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 453 | using inf_compl_bot assms(1) by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 454 | then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 455 | by (simp add: inf_commute) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 456 | then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 457 | by (simp add: inf_sup_distrib1) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 458 | then have "- x \<sqinter> \<top> = y \<sqinter> \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 459 | using sup_compl_top assms(2) by simp | 
| 34209 | 460 | then show "- x = y" by simp | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 461 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 462 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 463 | lemma double_compl [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 464 | "- (- x) = x" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 465 | using compl_inf_bot compl_sup_top by (rule compl_unique) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 466 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 467 | lemma compl_eq_compl_iff [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 468 | "- x = - y \<longleftrightarrow> x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 469 | proof | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 470 | assume "- x = - y" | 
| 36008 | 471 | then have "- (- x) = - (- y)" by (rule arg_cong) | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 472 | then show "x = y" by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 473 | next | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 474 | assume "x = y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 475 | then show "- x = - y" by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 476 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 477 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 478 | lemma compl_bot_eq [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 479 | "- \<bottom> = \<top>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 480 | proof - | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 481 | from sup_compl_top have "\<bottom> \<squnion> - \<bottom> = \<top>" . | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 482 | then show ?thesis by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 483 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 484 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 485 | lemma compl_top_eq [simp]: | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 486 | "- \<top> = \<bottom>" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 487 | proof - | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 488 | from inf_compl_bot have "\<top> \<sqinter> - \<top> = \<bottom>" . | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 489 | then show ?thesis by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 490 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 491 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 492 | lemma compl_inf [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 493 | "- (x \<sqinter> y) = - x \<squnion> - y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 494 | proof (rule compl_unique) | 
| 36008 | 495 | have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))" | 
| 496 | by (simp only: inf_sup_distrib inf_aci) | |
| 497 | then show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = \<bottom>" | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 498 | by (simp add: inf_compl_bot) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 499 | next | 
| 36008 | 500 | have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))" | 
| 501 | by (simp only: sup_inf_distrib sup_aci) | |
| 502 | then show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = \<top>" | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 503 | by (simp add: sup_compl_top) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 504 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 505 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 506 | lemma compl_sup [simp]: | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 507 | "- (x \<squnion> y) = - x \<sqinter> - y" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 508 | proof - | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 509 | interpret boolean_algebra "\<lambda>x y. x \<squnion> - y" uminus "op \<ge>" "op >" "op \<squnion>" "op \<sqinter>" \<top> \<bottom> | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 510 | by (rule dual_boolean_algebra) | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 511 | then show ?thesis by simp | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 512 | qed | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 513 | |
| 36008 | 514 | lemma compl_mono: | 
| 515 | "x \<sqsubseteq> y \<Longrightarrow> - y \<sqsubseteq> - x" | |
| 516 | proof - | |
| 517 | assume "x \<sqsubseteq> y" | |
| 518 | then have "x \<squnion> y = y" by (simp only: le_iff_sup) | |
| 519 | then have "- (x \<squnion> y) = - y" by simp | |
| 520 | then have "- x \<sqinter> - y = - y" by simp | |
| 521 | then have "- y \<sqinter> - x = - y" by (simp only: inf_commute) | |
| 522 | then show "- y \<sqsubseteq> - x" by (simp only: le_iff_inf) | |
| 523 | qed | |
| 524 | ||
| 525 | lemma compl_le_compl_iff: (* TODO: declare [simp] ? *) | |
| 526 | "- x \<le> - y \<longleftrightarrow> y \<le> x" | |
| 527 | by (auto dest: compl_mono) | |
| 528 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 529 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 530 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 531 | |
| 22454 | 532 | subsection {* Uniqueness of inf and sup *}
 | 
| 533 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 534 | lemma (in semilattice_inf) inf_unique: | 
| 22454 | 535 | fixes f (infixl "\<triangle>" 70) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 536 | assumes le1: "\<And>x y. x \<triangle> y \<sqsubseteq> x" and le2: "\<And>x y. x \<triangle> y \<sqsubseteq> y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 537 | and greatest: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" | 
| 22737 | 538 | shows "x \<sqinter> y = x \<triangle> y" | 
| 22454 | 539 | proof (rule antisym) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 540 | show "x \<triangle> y \<sqsubseteq> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 541 | next | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 542 | have leI: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" by (blast intro: greatest) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 543 | show "x \<sqinter> y \<sqsubseteq> x \<triangle> y" by (rule leI) simp_all | 
| 22454 | 544 | qed | 
| 545 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 546 | lemma (in semilattice_sup) sup_unique: | 
| 22454 | 547 | fixes f (infixl "\<nabla>" 70) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 548 | assumes ge1 [simp]: "\<And>x y. x \<sqsubseteq> x \<nabla> y" and ge2: "\<And>x y. y \<sqsubseteq> x \<nabla> y" | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 549 | and least: "\<And>x y z. y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<nabla> z \<sqsubseteq> x" | 
| 22737 | 550 | shows "x \<squnion> y = x \<nabla> y" | 
| 22454 | 551 | proof (rule antisym) | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 552 | show "x \<squnion> y \<sqsubseteq> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 553 | next | 
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 554 | have leI: "\<And>x y z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<nabla> y \<sqsubseteq> z" by (blast intro: least) | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 555 | show "x \<nabla> y \<sqsubseteq> x \<squnion> y" by (rule leI) simp_all | 
| 22454 | 556 | qed | 
| 36008 | 557 | |
| 22454 | 558 | |
| 22916 | 559 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 560 |   special case of @{const inf}/@{const sup} *}
 | |
| 561 | ||
| 32512 | 562 | sublocale linorder < min_max!: distrib_lattice less_eq less min max | 
| 28823 | 563 | proof | 
| 22916 | 564 | fix x y z | 
| 32512 | 565 | show "max x (min y z) = min (max x y) (max x z)" | 
| 566 | by (auto simp add: min_def max_def) | |
| 22916 | 567 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 568 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 569 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{semilattice_inf, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 570 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 571 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 572 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{semilattice_sup, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 573 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 574 | |
| 21249 | 575 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 576 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 577 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 578 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 579 | min_max.inf.left_commute | 
| 21249 | 580 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 581 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 582 | min_max.sup.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34209diff
changeset | 583 | |
| 21249 | 584 | |
| 22454 | 585 | subsection {* Bool as lattice *}
 | 
| 586 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 587 | instantiation bool :: boolean_algebra | 
| 25510 | 588 | begin | 
| 589 | ||
| 590 | definition | |
| 41080 | 591 | bool_Compl_def [simp]: "uminus = Not" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 592 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 593 | definition | 
| 41080 | 594 | bool_diff_def [simp]: "A - B \<longleftrightarrow> A \<and> \<not> B" | 
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 595 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 596 | definition | 
| 41080 | 597 | [simp]: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" | 
| 25510 | 598 | |
| 599 | definition | |
| 41080 | 600 | [simp]: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" | 
| 25510 | 601 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 602 | instance proof | 
| 41080 | 603 | qed auto | 
| 22454 | 604 | |
| 25510 | 605 | end | 
| 606 | ||
| 32781 | 607 | lemma sup_boolI1: | 
| 608 | "P \<Longrightarrow> P \<squnion> Q" | |
| 41080 | 609 | by simp | 
| 32781 | 610 | |
| 611 | lemma sup_boolI2: | |
| 612 | "Q \<Longrightarrow> P \<squnion> Q" | |
| 41080 | 613 | by simp | 
| 32781 | 614 | |
| 615 | lemma sup_boolE: | |
| 616 | "P \<squnion> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 617 | by auto | 
| 32781 | 618 | |
| 23878 | 619 | |
| 620 | subsection {* Fun as lattice *}
 | |
| 621 | ||
| 25510 | 622 | instantiation "fun" :: (type, lattice) lattice | 
| 623 | begin | |
| 624 | ||
| 625 | definition | |
| 41080 | 626 | "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" | 
| 627 | ||
| 628 | lemma inf_apply: | |
| 629 | "(f \<sqinter> g) x = f x \<sqinter> g x" | |
| 630 | by (simp add: inf_fun_def) | |
| 25510 | 631 | |
| 632 | definition | |
| 41080 | 633 | "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" | 
| 634 | ||
| 635 | lemma sup_apply: | |
| 636 | "(f \<squnion> g) x = f x \<squnion> g x" | |
| 637 | by (simp add: sup_fun_def) | |
| 25510 | 638 | |
| 32780 | 639 | instance proof | 
| 41080 | 640 | qed (simp_all add: le_fun_def inf_apply sup_apply) | 
| 23878 | 641 | |
| 25510 | 642 | end | 
| 23878 | 643 | |
| 41080 | 644 | instance "fun" :: (type, distrib_lattice) distrib_lattice proof | 
| 645 | qed (rule ext, simp add: sup_inf_distrib1 inf_apply sup_apply) | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 646 | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 647 | instance "fun" :: (type, bounded_lattice) bounded_lattice .. | 
| 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
32781diff
changeset | 648 | |
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 649 | instantiation "fun" :: (type, uminus) uminus | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 650 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 651 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 652 | definition | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 653 | fun_Compl_def: "- A = (\<lambda>x. - A x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 654 | |
| 41080 | 655 | lemma uminus_apply: | 
| 656 | "(- A) x = - (A x)" | |
| 657 | by (simp add: fun_Compl_def) | |
| 658 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 659 | instance .. | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 660 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 661 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 662 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 663 | instantiation "fun" :: (type, minus) minus | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 664 | begin | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 665 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 666 | definition | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 667 | fun_diff_def: "A - B = (\<lambda>x. A x - B x)" | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 668 | |
| 41080 | 669 | lemma minus_apply: | 
| 670 | "(A - B) x = A x - B x" | |
| 671 | by (simp add: fun_diff_def) | |
| 672 | ||
| 31991 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 673 | instance .. | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 674 | |
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 675 | end | 
| 
37390299214a
added boolean_algebra type class; tuned lattice duals
 haftmann parents: 
30729diff
changeset | 676 | |
| 41080 | 677 | instance "fun" :: (type, boolean_algebra) boolean_algebra proof | 
| 678 | qed (rule ext, simp_all add: inf_apply sup_apply bot_apply top_apply uminus_apply minus_apply inf_compl_bot sup_compl_top diff_eq)+ | |
| 26794 | 679 | |
| 25062 | 680 | no_notation | 
| 25382 | 681 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 682 | less (infix "\<sqsubset>" 50) and | |
| 683 | inf (infixl "\<sqinter>" 70) and | |
| 32568 | 684 | sup (infixl "\<squnion>" 65) and | 
| 685 |   top ("\<top>") and
 | |
| 686 |   bot ("\<bottom>")
 | |
| 25062 | 687 | |
| 21249 | 688 | end |