| author | kuncar | 
| Tue, 25 Feb 2014 19:07:14 +0100 | |
| changeset 55736 | f1ed1e9cd080 | 
| parent 55422 | 6445a05a1234 | 
| child 56154 | f0a927235162 | 
| permissions | -rw-r--r-- | 
| 30439 | 1 | (* Title: HOL/Decision_Procs/Ferrack.thy | 
| 29789 | 2 | Author: Amine Chaieb | 
| 3 | *) | |
| 4 | ||
| 5 | theory Ferrack | |
| 41849 | 6 | imports Complex_Main Dense_Linear_Order DP_Library | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 7 | "~~/src/HOL/Library/Code_Target_Numeral" "~~/src/HOL/Library/Old_Recdef" | 
| 29789 | 8 | begin | 
| 9 | ||
| 10 | section {* Quantifier elimination for @{text "\<real> (0, 1, +, <)"} *}
 | |
| 11 | ||
| 12 | (*********************************************************************************) | |
| 13 | (**** SHADOW SYNTAX AND SEMANTICS ****) | |
| 14 | (*********************************************************************************) | |
| 15 | ||
| 16 | datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num | |
| 17 | | Mul int num | |
| 18 | ||
| 19 | (* A size for num to make inductive proofs simpler*) | |
| 36853 | 20 | primrec num_size :: "num \<Rightarrow> nat" where | 
| 29789 | 21 | "num_size (C c) = 1" | 
| 36853 | 22 | | "num_size (Bound n) = 1" | 
| 23 | | "num_size (Neg a) = 1 + num_size a" | |
| 24 | | "num_size (Add a b) = 1 + num_size a + num_size b" | |
| 25 | | "num_size (Sub a b) = 3 + num_size a + num_size b" | |
| 26 | | "num_size (Mul c a) = 1 + num_size a" | |
| 27 | | "num_size (CN n c a) = 3 + num_size a " | |
| 29789 | 28 | |
| 29 | (* Semantics of numeral terms (num) *) | |
| 36853 | 30 | primrec Inum :: "real list \<Rightarrow> num \<Rightarrow> real" where | 
| 29789 | 31 | "Inum bs (C c) = (real c)" | 
| 36853 | 32 | | "Inum bs (Bound n) = bs!n" | 
| 33 | | "Inum bs (CN n c a) = (real c) * (bs!n) + (Inum bs a)" | |
| 34 | | "Inum bs (Neg a) = -(Inum bs a)" | |
| 35 | | "Inum bs (Add a b) = Inum bs a + Inum bs b" | |
| 36 | | "Inum bs (Sub a b) = Inum bs a - Inum bs b" | |
| 37 | | "Inum bs (Mul c a) = (real c) * Inum bs a" | |
| 29789 | 38 | (* FORMULAE *) | 
| 39 | datatype fm = | |
| 40 | T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| | |
| 41 | NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm | |
| 42 | ||
| 43 | ||
| 44 | (* A size for fm *) | |
| 36853 | 45 | fun fmsize :: "fm \<Rightarrow> nat" where | 
| 29789 | 46 | "fmsize (NOT p) = 1 + fmsize p" | 
| 36853 | 47 | | "fmsize (And p q) = 1 + fmsize p + fmsize q" | 
| 48 | | "fmsize (Or p q) = 1 + fmsize p + fmsize q" | |
| 49 | | "fmsize (Imp p q) = 3 + fmsize p + fmsize q" | |
| 50 | | "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)" | |
| 51 | | "fmsize (E p) = 1 + fmsize p" | |
| 52 | | "fmsize (A p) = 4+ fmsize p" | |
| 53 | | "fmsize p = 1" | |
| 29789 | 54 | (* several lemmas about fmsize *) | 
| 55 | lemma fmsize_pos: "fmsize p > 0" | |
| 56 | by (induct p rule: fmsize.induct) simp_all | |
| 57 | ||
| 58 | (* Semantics of formulae (fm) *) | |
| 36853 | 59 | primrec Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool" where | 
| 29789 | 60 | "Ifm bs T = True" | 
| 36853 | 61 | | "Ifm bs F = False" | 
| 62 | | "Ifm bs (Lt a) = (Inum bs a < 0)" | |
| 63 | | "Ifm bs (Gt a) = (Inum bs a > 0)" | |
| 64 | | "Ifm bs (Le a) = (Inum bs a \<le> 0)" | |
| 65 | | "Ifm bs (Ge a) = (Inum bs a \<ge> 0)" | |
| 66 | | "Ifm bs (Eq a) = (Inum bs a = 0)" | |
| 67 | | "Ifm bs (NEq a) = (Inum bs a \<noteq> 0)" | |
| 68 | | "Ifm bs (NOT p) = (\<not> (Ifm bs p))" | |
| 69 | | "Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)" | |
| 70 | | "Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)" | |
| 71 | | "Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))" | |
| 72 | | "Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)" | |
| 73 | | "Ifm bs (E p) = (\<exists> x. Ifm (x#bs) p)" | |
| 74 | | "Ifm bs (A p) = (\<forall> x. Ifm (x#bs) p)" | |
| 29789 | 75 | |
| 76 | lemma IfmLeSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Le (Sub s t)) = (s' \<le> t')" | |
| 77 | apply simp | |
| 78 | done | |
| 79 | ||
| 80 | lemma IfmLtSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Lt (Sub s t)) = (s' < t')" | |
| 81 | apply simp | |
| 82 | done | |
| 83 | lemma IfmEqSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Eq (Sub s t)) = (s' = t')" | |
| 84 | apply simp | |
| 85 | done | |
| 86 | lemma IfmNOT: " (Ifm bs p = P) \<Longrightarrow> (Ifm bs (NOT p) = (\<not>P))" | |
| 87 | apply simp | |
| 88 | done | |
| 89 | lemma IfmAnd: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (And p q) = (P \<and> Q))" | |
| 90 | apply simp | |
| 91 | done | |
| 92 | lemma IfmOr: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Or p q) = (P \<or> Q))" | |
| 93 | apply simp | |
| 94 | done | |
| 95 | lemma IfmImp: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Imp p q) = (P \<longrightarrow> Q))" | |
| 96 | apply simp | |
| 97 | done | |
| 98 | lemma IfmIff: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Iff p q) = (P = Q))" | |
| 99 | apply simp | |
| 100 | done | |
| 101 | ||
| 102 | lemma IfmE: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (E p) = (\<exists>x. P x))" | |
| 103 | apply simp | |
| 104 | done | |
| 105 | lemma IfmA: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (A p) = (\<forall>x. P x))" | |
| 106 | apply simp | |
| 107 | done | |
| 108 | ||
| 36853 | 109 | fun not:: "fm \<Rightarrow> fm" where | 
| 29789 | 110 | "not (NOT p) = p" | 
| 36853 | 111 | | "not T = F" | 
| 112 | | "not F = T" | |
| 113 | | "not p = NOT p" | |
| 29789 | 114 | lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)" | 
| 115 | by (cases p) auto | |
| 116 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 117 | definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 118 | "conj p q = (if (p = F \<or> q=F) then F else if p=T then q else if q=T then p else | 
| 29789 | 119 | if p = q then p else And p q)" | 
| 120 | lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)" | |
| 121 | by (cases "p=F \<or> q=F",simp_all add: conj_def) (cases p,simp_all) | |
| 122 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 123 | definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 124 | "disj p q = (if (p = T \<or> q=T) then T else if p=F then q else if q=F then p | 
| 29789 | 125 | else if p=q then p else Or p q)" | 
| 126 | ||
| 127 | lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)" | |
| 128 | by (cases "p=T \<or> q=T",simp_all add: disj_def) (cases p,simp_all) | |
| 129 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 130 | definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 131 | "imp p q = (if (p = F \<or> q=T \<or> p=q) then T else if p=T then q else if q=F then not p | 
| 29789 | 132 | else Imp p q)" | 
| 133 | lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)" | |
| 134 | by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 135 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 136 | definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 137 | "iff p q = (if (p = q) then T else if (p = NOT q \<or> NOT p = q) then F else | 
| 29789 | 138 | if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else | 
| 139 | Iff p q)" | |
| 140 | lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)" | |
| 141 | by (unfold iff_def,cases "p=q", simp,cases "p=NOT q", simp) (cases "NOT p= q", auto) | |
| 142 | ||
| 143 | lemma conj_simps: | |
| 144 | "conj F Q = F" | |
| 145 | "conj P F = F" | |
| 146 | "conj T Q = Q" | |
| 147 | "conj P T = P" | |
| 148 | "conj P P = P" | |
| 149 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> conj P Q = And P Q" | |
| 150 | by (simp_all add: conj_def) | |
| 151 | ||
| 152 | lemma disj_simps: | |
| 153 | "disj T Q = T" | |
| 154 | "disj P T = T" | |
| 155 | "disj F Q = Q" | |
| 156 | "disj P F = P" | |
| 157 | "disj P P = P" | |
| 158 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> disj P Q = Or P Q" | |
| 159 | by (simp_all add: disj_def) | |
| 160 | lemma imp_simps: | |
| 161 | "imp F Q = T" | |
| 162 | "imp P T = T" | |
| 163 | "imp T Q = Q" | |
| 164 | "imp P F = not P" | |
| 165 | "imp P P = T" | |
| 166 | "P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> imp P Q = Imp P Q" | |
| 167 | by (simp_all add: imp_def) | |
| 168 | lemma trivNOT: "p \<noteq> NOT p" "NOT p \<noteq> p" | |
| 169 | apply (induct p, auto) | |
| 170 | done | |
| 171 | ||
| 172 | lemma iff_simps: | |
| 173 | "iff p p = T" | |
| 174 | "iff p (NOT p) = F" | |
| 175 | "iff (NOT p) p = F" | |
| 176 | "iff p F = not p" | |
| 177 | "iff F p = not p" | |
| 178 | "p \<noteq> NOT T \<Longrightarrow> iff T p = p" | |
| 179 | "p\<noteq> NOT T \<Longrightarrow> iff p T = p" | |
| 180 | "p\<noteq>q \<Longrightarrow> p\<noteq> NOT q \<Longrightarrow> q\<noteq> NOT p \<Longrightarrow> p\<noteq> F \<Longrightarrow> q\<noteq> F \<Longrightarrow> p \<noteq> T \<Longrightarrow> q \<noteq> T \<Longrightarrow> iff p q = Iff p q" | |
| 181 | using trivNOT | |
| 182 | by (simp_all add: iff_def, cases p, auto) | |
| 183 | (* Quantifier freeness *) | |
| 36853 | 184 | fun qfree:: "fm \<Rightarrow> bool" where | 
| 29789 | 185 | "qfree (E p) = False" | 
| 36853 | 186 | | "qfree (A p) = False" | 
| 187 | | "qfree (NOT p) = qfree p" | |
| 188 | | "qfree (And p q) = (qfree p \<and> qfree q)" | |
| 189 | | "qfree (Or p q) = (qfree p \<and> qfree q)" | |
| 190 | | "qfree (Imp p q) = (qfree p \<and> qfree q)" | |
| 191 | | "qfree (Iff p q) = (qfree p \<and> qfree q)" | |
| 192 | | "qfree p = True" | |
| 29789 | 193 | |
| 194 | (* Boundedness and substitution *) | |
| 36853 | 195 | primrec numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *) where | 
| 29789 | 196 | "numbound0 (C c) = True" | 
| 36853 | 197 | | "numbound0 (Bound n) = (n>0)" | 
| 198 | | "numbound0 (CN n c a) = (n\<noteq>0 \<and> numbound0 a)" | |
| 199 | | "numbound0 (Neg a) = numbound0 a" | |
| 200 | | "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)" | |
| 201 | | "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)" | |
| 202 | | "numbound0 (Mul i a) = numbound0 a" | |
| 203 | ||
| 29789 | 204 | lemma numbound0_I: | 
| 205 | assumes nb: "numbound0 a" | |
| 206 | shows "Inum (b#bs) a = Inum (b'#bs) a" | |
| 207 | using nb | |
| 41842 | 208 | by (induct a) simp_all | 
| 29789 | 209 | |
| 36853 | 210 | primrec bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *) where | 
| 29789 | 211 | "bound0 T = True" | 
| 36853 | 212 | | "bound0 F = True" | 
| 213 | | "bound0 (Lt a) = numbound0 a" | |
| 214 | | "bound0 (Le a) = numbound0 a" | |
| 215 | | "bound0 (Gt a) = numbound0 a" | |
| 216 | | "bound0 (Ge a) = numbound0 a" | |
| 217 | | "bound0 (Eq a) = numbound0 a" | |
| 218 | | "bound0 (NEq a) = numbound0 a" | |
| 219 | | "bound0 (NOT p) = bound0 p" | |
| 220 | | "bound0 (And p q) = (bound0 p \<and> bound0 q)" | |
| 221 | | "bound0 (Or p q) = (bound0 p \<and> bound0 q)" | |
| 222 | | "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))" | |
| 223 | | "bound0 (Iff p q) = (bound0 p \<and> bound0 q)" | |
| 224 | | "bound0 (E p) = False" | |
| 225 | | "bound0 (A p) = False" | |
| 29789 | 226 | |
| 227 | lemma bound0_I: | |
| 228 | assumes bp: "bound0 p" | |
| 229 | shows "Ifm (b#bs) p = Ifm (b'#bs) p" | |
| 230 | using bp numbound0_I[where b="b" and bs="bs" and b'="b'"] | |
| 41842 | 231 | by (induct p) auto | 
| 29789 | 232 | |
| 233 | lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)" | |
| 234 | by (cases p, auto) | |
| 235 | lemma not_bn[simp]: "bound0 p \<Longrightarrow> bound0 (not p)" | |
| 236 | by (cases p, auto) | |
| 237 | ||
| 238 | ||
| 239 | lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)" | |
| 240 | using conj_def by auto | |
| 241 | lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)" | |
| 242 | using conj_def by auto | |
| 243 | ||
| 244 | lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)" | |
| 245 | using disj_def by auto | |
| 246 | lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)" | |
| 247 | using disj_def by auto | |
| 248 | ||
| 249 | lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)" | |
| 250 | using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def) | |
| 251 | lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)" | |
| 252 | using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def) | |
| 253 | ||
| 254 | lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)" | |
| 255 | by (unfold iff_def,cases "p=q", auto) | |
| 256 | lemma iff_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)" | |
| 257 | using iff_def by (unfold iff_def,cases "p=q", auto) | |
| 258 | ||
| 36853 | 259 | fun decrnum:: "num \<Rightarrow> num" where | 
| 29789 | 260 | "decrnum (Bound n) = Bound (n - 1)" | 
| 36853 | 261 | | "decrnum (Neg a) = Neg (decrnum a)" | 
| 262 | | "decrnum (Add a b) = Add (decrnum a) (decrnum b)" | |
| 263 | | "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)" | |
| 264 | | "decrnum (Mul c a) = Mul c (decrnum a)" | |
| 265 | | "decrnum (CN n c a) = CN (n - 1) c (decrnum a)" | |
| 266 | | "decrnum a = a" | |
| 29789 | 267 | |
| 36853 | 268 | fun decr :: "fm \<Rightarrow> fm" where | 
| 29789 | 269 | "decr (Lt a) = Lt (decrnum a)" | 
| 36853 | 270 | | "decr (Le a) = Le (decrnum a)" | 
| 271 | | "decr (Gt a) = Gt (decrnum a)" | |
| 272 | | "decr (Ge a) = Ge (decrnum a)" | |
| 273 | | "decr (Eq a) = Eq (decrnum a)" | |
| 274 | | "decr (NEq a) = NEq (decrnum a)" | |
| 275 | | "decr (NOT p) = NOT (decr p)" | |
| 276 | | "decr (And p q) = conj (decr p) (decr q)" | |
| 277 | | "decr (Or p q) = disj (decr p) (decr q)" | |
| 278 | | "decr (Imp p q) = imp (decr p) (decr q)" | |
| 279 | | "decr (Iff p q) = iff (decr p) (decr q)" | |
| 280 | | "decr p = p" | |
| 29789 | 281 | |
| 282 | lemma decrnum: assumes nb: "numbound0 t" | |
| 283 | shows "Inum (x#bs) t = Inum bs (decrnum t)" | |
| 41842 | 284 | using nb by (induct t rule: decrnum.induct, simp_all) | 
| 29789 | 285 | |
| 286 | lemma decr: assumes nb: "bound0 p" | |
| 287 | shows "Ifm (x#bs) p = Ifm bs (decr p)" | |
| 288 | using nb | |
| 41842 | 289 | by (induct p rule: decr.induct, simp_all add: decrnum) | 
| 29789 | 290 | |
| 291 | lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)" | |
| 292 | by (induct p, simp_all) | |
| 293 | ||
| 36853 | 294 | fun isatom :: "fm \<Rightarrow> bool" (* test for atomicity *) where | 
| 29789 | 295 | "isatom T = True" | 
| 36853 | 296 | | "isatom F = True" | 
| 297 | | "isatom (Lt a) = True" | |
| 298 | | "isatom (Le a) = True" | |
| 299 | | "isatom (Gt a) = True" | |
| 300 | | "isatom (Ge a) = True" | |
| 301 | | "isatom (Eq a) = True" | |
| 302 | | "isatom (NEq a) = True" | |
| 303 | | "isatom p = False" | |
| 29789 | 304 | |
| 305 | lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p" | |
| 306 | by (induct p, simp_all) | |
| 307 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 308 | definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm" where
 | 
| 36853 | 309 | "djf f p q = (if q=T then T else if q=F then f p else | 
| 29789 | 310 | (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 311 | definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm" where
 | 
| 36853 | 312 | "evaldjf f ps = foldr (djf f) ps F" | 
| 29789 | 313 | |
| 314 | lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)" | |
| 315 | by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def) | |
| 316 | (cases "f p", simp_all add: Let_def djf_def) | |
| 317 | ||
| 318 | ||
| 319 | lemma djf_simps: | |
| 320 | "djf f p T = T" | |
| 321 | "djf f p F = f p" | |
| 322 | "q\<noteq>T \<Longrightarrow> q\<noteq>F \<Longrightarrow> djf f p q = (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)" | |
| 323 | by (simp_all add: djf_def) | |
| 324 | ||
| 325 | lemma evaldjf_ex: "Ifm bs (evaldjf f ps) = (\<exists> p \<in> set ps. Ifm bs (f p))" | |
| 326 | by(induct ps, simp_all add: evaldjf_def djf_Or) | |
| 327 | ||
| 328 | lemma evaldjf_bound0: | |
| 329 | assumes nb: "\<forall> x\<in> set xs. bound0 (f x)" | |
| 330 | shows "bound0 (evaldjf f xs)" | |
| 55422 | 331 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | 
| 29789 | 332 | |
| 333 | lemma evaldjf_qf: | |
| 334 | assumes nb: "\<forall> x\<in> set xs. qfree (f x)" | |
| 335 | shows "qfree (evaldjf f xs)" | |
| 55422 | 336 | using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) | 
| 29789 | 337 | |
| 36853 | 338 | fun disjuncts :: "fm \<Rightarrow> fm list" where | 
| 339 | "disjuncts (Or p q) = disjuncts p @ disjuncts q" | |
| 340 | | "disjuncts F = []" | |
| 341 | | "disjuncts p = [p]" | |
| 29789 | 342 | |
| 343 | lemma disjuncts: "(\<exists> q\<in> set (disjuncts p). Ifm bs q) = Ifm bs p" | |
| 344 | by(induct p rule: disjuncts.induct, auto) | |
| 345 | ||
| 346 | lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). bound0 q" | |
| 347 | proof- | |
| 348 | assume nb: "bound0 p" | |
| 349 | hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto) | |
| 350 | thus ?thesis by (simp only: list_all_iff) | |
| 351 | qed | |
| 352 | ||
| 353 | lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall> q\<in> set (disjuncts p). qfree q" | |
| 354 | proof- | |
| 355 | assume qf: "qfree p" | |
| 356 | hence "list_all qfree (disjuncts p)" | |
| 357 | by (induct p rule: disjuncts.induct, auto) | |
| 358 | thus ?thesis by (simp only: list_all_iff) | |
| 359 | qed | |
| 360 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 361 | definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm" where | 
| 36853 | 362 | "DJ f p = evaldjf f (disjuncts p)" | 
| 29789 | 363 | |
| 364 | lemma DJ: assumes fdj: "\<forall> p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))" | |
| 365 | and fF: "f F = F" | |
| 366 | shows "Ifm bs (DJ f p) = Ifm bs (f p)" | |
| 367 | proof- | |
| 368 | have "Ifm bs (DJ f p) = (\<exists> q \<in> set (disjuncts p). Ifm bs (f q))" | |
| 369 | by (simp add: DJ_def evaldjf_ex) | |
| 370 | also have "\<dots> = Ifm bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto) | |
| 371 | finally show ?thesis . | |
| 372 | qed | |
| 373 | ||
| 374 | lemma DJ_qf: assumes | |
| 375 | fqf: "\<forall> p. qfree p \<longrightarrow> qfree (f p)" | |
| 376 | shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) " | |
| 377 | proof(clarify) | |
| 378 | fix p assume qf: "qfree p" | |
| 379 | have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def) | |
| 380 | from disjuncts_qf[OF qf] have "\<forall> q\<in> set (disjuncts p). qfree q" . | |
| 381 | with fqf have th':"\<forall> q\<in> set (disjuncts p). qfree (f q)" by blast | |
| 382 | ||
| 383 | from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp | |
| 384 | qed | |
| 385 | ||
| 386 | lemma DJ_qe: assumes qe: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 387 | shows "\<forall> bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))" | |
| 388 | proof(clarify) | |
| 389 | fix p::fm and bs | |
| 390 | assume qf: "qfree p" | |
| 391 | from qe have qth: "\<forall> p. qfree p \<longrightarrow> qfree (qe p)" by blast | |
| 392 | from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto | |
| 393 | have "Ifm bs (DJ qe p) = (\<exists> q\<in> set (disjuncts p). Ifm bs (qe q))" | |
| 394 | by (simp add: DJ_def evaldjf_ex) | |
| 395 | also have "\<dots> = (\<exists> q \<in> set(disjuncts p). Ifm bs (E q))" using qe disjuncts_qf[OF qf] by auto | |
| 396 | also have "\<dots> = Ifm bs (E p)" by (induct p rule: disjuncts.induct, auto) | |
| 397 | finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)" using qfth by blast | |
| 398 | qed | |
| 399 | (* Simplification *) | |
| 36853 | 400 | |
| 401 | fun maxcoeff:: "num \<Rightarrow> int" where | |
| 29789 | 402 | "maxcoeff (C i) = abs i" | 
| 36853 | 403 | | "maxcoeff (CN n c t) = max (abs c) (maxcoeff t)" | 
| 404 | | "maxcoeff t = 1" | |
| 29789 | 405 | |
| 406 | lemma maxcoeff_pos: "maxcoeff t \<ge> 0" | |
| 407 | by (induct t rule: maxcoeff.induct, auto) | |
| 408 | ||
| 36853 | 409 | fun numgcdh:: "num \<Rightarrow> int \<Rightarrow> int" where | 
| 31706 | 410 | "numgcdh (C i) = (\<lambda>g. gcd i g)" | 
| 36853 | 411 | | "numgcdh (CN n c t) = (\<lambda>g. gcd c (numgcdh t g))" | 
| 412 | | "numgcdh t = (\<lambda>g. 1)" | |
| 413 | ||
| 414 | definition numgcd :: "num \<Rightarrow> int" where | |
| 415 | "numgcd t = numgcdh t (maxcoeff t)" | |
| 29789 | 416 | |
| 36853 | 417 | fun reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num" where | 
| 29789 | 418 | "reducecoeffh (C i) = (\<lambda> g. C (i div g))" | 
| 36853 | 419 | | "reducecoeffh (CN n c t) = (\<lambda> g. CN n (c div g) (reducecoeffh t g))" | 
| 420 | | "reducecoeffh t = (\<lambda>g. t)" | |
| 29789 | 421 | |
| 36853 | 422 | definition reducecoeff :: "num \<Rightarrow> num" where | 
| 423 | "reducecoeff t = | |
| 29789 | 424 | (let g = numgcd t in | 
| 425 | if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)" | |
| 426 | ||
| 36853 | 427 | fun dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where | 
| 29789 | 428 | "dvdnumcoeff (C i) = (\<lambda> g. g dvd i)" | 
| 36853 | 429 | | "dvdnumcoeff (CN n c t) = (\<lambda> g. g dvd c \<and> (dvdnumcoeff t g))" | 
| 430 | | "dvdnumcoeff t = (\<lambda>g. False)" | |
| 29789 | 431 | |
| 432 | lemma dvdnumcoeff_trans: | |
| 433 | assumes gdg: "g dvd g'" and dgt':"dvdnumcoeff t g'" | |
| 434 | shows "dvdnumcoeff t g" | |
| 435 | using dgt' gdg | |
| 30042 | 436 | by (induct t rule: dvdnumcoeff.induct, simp_all add: gdg dvd_trans[OF gdg]) | 
| 29789 | 437 | |
| 30042 | 438 | declare dvd_trans [trans add] | 
| 29789 | 439 | |
| 440 | lemma natabs0: "(nat (abs x) = 0) = (x = 0)" | |
| 441 | by arith | |
| 442 | ||
| 443 | lemma numgcd0: | |
| 444 | assumes g0: "numgcd t = 0" | |
| 445 | shows "Inum bs t = 0" | |
| 446 | using g0[simplified numgcd_def] | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53168diff
changeset | 447 | by (induct t rule: numgcdh.induct, auto simp add: natabs0 maxcoeff_pos max.absorb2) | 
| 29789 | 448 | |
| 449 | lemma numgcdh_pos: assumes gp: "g \<ge> 0" shows "numgcdh t g \<ge> 0" | |
| 450 | using gp | |
| 31706 | 451 | by (induct t rule: numgcdh.induct, auto) | 
| 29789 | 452 | |
| 453 | lemma numgcd_pos: "numgcd t \<ge>0" | |
| 454 | by (simp add: numgcd_def numgcdh_pos maxcoeff_pos) | |
| 455 | ||
| 456 | lemma reducecoeffh: | |
| 457 | assumes gt: "dvdnumcoeff t g" and gp: "g > 0" | |
| 458 | shows "real g *(Inum bs (reducecoeffh t g)) = Inum bs t" | |
| 459 | using gt | |
| 41807 | 460 | proof (induct t rule: reducecoeffh.induct) | 
| 461 | case (1 i) | |
| 462 | hence gd: "g dvd i" by simp | |
| 46670 | 463 | with assms show ?case by (simp add: real_of_int_div[OF gd]) | 
| 29789 | 464 | next | 
| 41807 | 465 | case (2 n c t) | 
| 466 | hence gd: "g dvd c" by simp | |
| 46670 | 467 | from assms 2 show ?case by (simp add: real_of_int_div[OF gd] algebra_simps) | 
| 29789 | 468 | qed (auto simp add: numgcd_def gp) | 
| 36853 | 469 | |
| 470 | fun ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool" where | |
| 29789 | 471 | "ismaxcoeff (C i) = (\<lambda> x. abs i \<le> x)" | 
| 36853 | 472 | | "ismaxcoeff (CN n c t) = (\<lambda>x. abs c \<le> x \<and> (ismaxcoeff t x))" | 
| 473 | | "ismaxcoeff t = (\<lambda>x. True)" | |
| 29789 | 474 | |
| 475 | lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'" | |
| 41807 | 476 | by (induct t rule: ismaxcoeff.induct) auto | 
| 29789 | 477 | |
| 478 | lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)" | |
| 479 | proof (induct t rule: maxcoeff.induct) | |
| 480 | case (2 n c t) | |
| 481 | hence H:"ismaxcoeff t (maxcoeff t)" . | |
| 41807 | 482 | have thh: "maxcoeff t \<le> max (abs c) (maxcoeff t)" by simp | 
| 483 | from ismaxcoeff_mono[OF H thh] show ?case by simp | |
| 29789 | 484 | qed simp_all | 
| 485 | ||
| 31706 | 486 | lemma zgcd_gt1: "gcd i j > (1::int) \<Longrightarrow> ((abs i > 1 \<and> abs j > 1) \<or> (abs i = 0 \<and> abs j > 1) \<or> (abs i > 1 \<and> abs j = 0))" | 
| 487 | apply (cases "abs i = 0", simp_all add: gcd_int_def) | |
| 29789 | 488 | apply (cases "abs j = 0", simp_all) | 
| 489 | apply (cases "abs i = 1", simp_all) | |
| 490 | apply (cases "abs j = 1", simp_all) | |
| 491 | apply auto | |
| 492 | done | |
| 493 | lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow> m =0" | |
| 31706 | 494 | by (induct t rule: numgcdh.induct, auto) | 
| 29789 | 495 | |
| 496 | lemma dvdnumcoeff_aux: | |
| 497 | assumes "ismaxcoeff t m" and mp:"m \<ge> 0" and "numgcdh t m > 1" | |
| 498 | shows "dvdnumcoeff t (numgcdh t m)" | |
| 41807 | 499 | using assms | 
| 29789 | 500 | proof(induct t rule: numgcdh.induct) | 
| 501 | case (2 n c t) | |
| 502 | let ?g = "numgcdh t m" | |
| 41807 | 503 | from 2 have th:"gcd c ?g > 1" by simp | 
| 29789 | 504 | from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"] | 
| 505 | have "(abs c > 1 \<and> ?g > 1) \<or> (abs c = 0 \<and> ?g > 1) \<or> (abs c > 1 \<and> ?g = 0)" by simp | |
| 41807 | 506 |   moreover {assume "abs c > 1" and gp: "?g > 1" with 2
 | 
| 29789 | 507 | have th: "dvdnumcoeff t ?g" by simp | 
| 31706 | 508 | have th': "gcd c ?g dvd ?g" by simp | 
| 509 | from dvdnumcoeff_trans[OF th' th] have ?case by simp } | |
| 29789 | 510 |   moreover {assume "abs c = 0 \<and> ?g > 1"
 | 
| 41807 | 511 | with 2 have th: "dvdnumcoeff t ?g" by simp | 
| 31706 | 512 | have th': "gcd c ?g dvd ?g" by simp | 
| 513 | from dvdnumcoeff_trans[OF th' th] have ?case by simp | |
| 29789 | 514 | hence ?case by simp } | 
| 515 |   moreover {assume "abs c > 1" and g0:"?g = 0" 
 | |
| 41807 | 516 | from numgcdh0[OF g0] have "m=0". with 2 g0 have ?case by simp } | 
| 29789 | 517 | ultimately show ?case by blast | 
| 31706 | 518 | qed auto | 
| 29789 | 519 | |
| 520 | lemma dvdnumcoeff_aux2: | |
| 41807 | 521 | assumes "numgcd t > 1" | 
| 522 | shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0" | |
| 523 | using assms | |
| 29789 | 524 | proof (simp add: numgcd_def) | 
| 525 | let ?mc = "maxcoeff t" | |
| 526 | let ?g = "numgcdh t ?mc" | |
| 527 | have th1: "ismaxcoeff t ?mc" by (rule maxcoeff_ismaxcoeff) | |
| 528 | have th2: "?mc \<ge> 0" by (rule maxcoeff_pos) | |
| 529 | assume H: "numgcdh t ?mc > 1" | |
| 530 | from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" . | |
| 531 | qed | |
| 532 | ||
| 533 | lemma reducecoeff: "real (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t" | |
| 534 | proof- | |
| 535 | let ?g = "numgcd t" | |
| 536 | have "?g \<ge> 0" by (simp add: numgcd_pos) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 537 | hence "?g = 0 \<or> ?g = 1 \<or> ?g > 1" by auto | 
| 29789 | 538 |   moreover {assume "?g = 0" hence ?thesis by (simp add: numgcd0)} 
 | 
| 539 |   moreover {assume "?g = 1" hence ?thesis by (simp add: reducecoeff_def)} 
 | |
| 540 |   moreover { assume g1:"?g > 1"
 | |
| 541 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff t ?g" and g0: "?g > 0" by blast+ | |
| 542 | from reducecoeffh[OF th1 g0, where bs="bs"] g1 have ?thesis | |
| 543 | by (simp add: reducecoeff_def Let_def)} | |
| 544 | ultimately show ?thesis by blast | |
| 545 | qed | |
| 546 | ||
| 547 | lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)" | |
| 548 | by (induct t rule: reducecoeffh.induct, auto) | |
| 549 | ||
| 550 | lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)" | |
| 551 | using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def) | |
| 552 | ||
| 553 | consts | |
| 554 | numadd:: "num \<times> num \<Rightarrow> num" | |
| 36853 | 555 | |
| 29789 | 556 | recdef numadd "measure (\<lambda> (t,s). size t + size s)" | 
| 557 | "numadd (CN n1 c1 r1,CN n2 c2 r2) = | |
| 558 | (if n1=n2 then | |
| 559 | (let c = c1 + c2 | |
| 560 | in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2)))) | |
| 561 | else if n1 \<le> n2 then (CN n1 c1 (numadd (r1,CN n2 c2 r2))) | |
| 562 | else (CN n2 c2 (numadd (CN n1 c1 r1,r2))))" | |
| 563 | "numadd (CN n1 c1 r1,t) = CN n1 c1 (numadd (r1, t))" | |
| 564 | "numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))" | |
| 565 | "numadd (C b1, C b2) = C (b1+b2)" | |
| 566 | "numadd (a,b) = Add a b" | |
| 567 | ||
| 568 | lemma numadd[simp]: "Inum bs (numadd (t,s)) = Inum bs (Add t s)" | |
| 569 | apply (induct t s rule: numadd.induct, simp_all add: Let_def) | |
| 570 | apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all) | |
| 571 | apply (case_tac "n1 = n2", simp_all add: algebra_simps) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49070diff
changeset | 572 | by (simp only: distrib_right[symmetric],simp) | 
| 29789 | 573 | |
| 574 | lemma numadd_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numadd (t,s))" | |
| 575 | by (induct t s rule: numadd.induct, auto simp add: Let_def) | |
| 576 | ||
| 36853 | 577 | fun nummul:: "num \<Rightarrow> int \<Rightarrow> num" where | 
| 29789 | 578 | "nummul (C j) = (\<lambda> i. C (i*j))" | 
| 36853 | 579 | | "nummul (CN n c a) = (\<lambda> i. CN n (i*c) (nummul a i))" | 
| 580 | | "nummul t = (\<lambda> i. Mul i t)" | |
| 29789 | 581 | |
| 582 | lemma nummul[simp]: "\<And> i. Inum bs (nummul t i) = Inum bs (Mul i t)" | |
| 583 | by (induct t rule: nummul.induct, auto simp add: algebra_simps) | |
| 584 | ||
| 585 | lemma nummul_nb[simp]: "\<And> i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)" | |
| 586 | by (induct t rule: nummul.induct, auto ) | |
| 587 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 588 | definition numneg :: "num \<Rightarrow> num" where | 
| 36853 | 589 | "numneg t = nummul t (- 1)" | 
| 29789 | 590 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 591 | definition numsub :: "num \<Rightarrow> num \<Rightarrow> num" where | 
| 36853 | 592 | "numsub s t = (if s = t then C 0 else numadd (s,numneg t))" | 
| 29789 | 593 | |
| 594 | lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)" | |
| 595 | using numneg_def by simp | |
| 596 | ||
| 597 | lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)" | |
| 598 | using numneg_def by simp | |
| 599 | ||
| 600 | lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)" | |
| 601 | using numsub_def by simp | |
| 602 | ||
| 603 | lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)" | |
| 604 | using numsub_def by simp | |
| 605 | ||
| 36853 | 606 | primrec simpnum:: "num \<Rightarrow> num" where | 
| 29789 | 607 | "simpnum (C j) = C j" | 
| 36853 | 608 | | "simpnum (Bound n) = CN n 1 (C 0)" | 
| 609 | | "simpnum (Neg t) = numneg (simpnum t)" | |
| 610 | | "simpnum (Add t s) = numadd (simpnum t,simpnum s)" | |
| 611 | | "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)" | |
| 612 | | "simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)" | |
| 613 | | "simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C 0),simpnum t))" | |
| 29789 | 614 | |
| 615 | lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t" | |
| 36853 | 616 | by (induct t) simp_all | 
| 29789 | 617 | |
| 618 | lemma simpnum_numbound0[simp]: | |
| 619 | "numbound0 t \<Longrightarrow> numbound0 (simpnum t)" | |
| 36853 | 620 | by (induct t) simp_all | 
| 29789 | 621 | |
| 36853 | 622 | fun nozerocoeff:: "num \<Rightarrow> bool" where | 
| 29789 | 623 | "nozerocoeff (C c) = True" | 
| 36853 | 624 | | "nozerocoeff (CN n c t) = (c\<noteq>0 \<and> nozerocoeff t)" | 
| 625 | | "nozerocoeff t = True" | |
| 29789 | 626 | |
| 627 | lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd (a,b))" | |
| 628 | by (induct a b rule: numadd.induct,auto simp add: Let_def) | |
| 629 | ||
| 630 | lemma nummul_nz : "\<And> i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)" | |
| 631 | by (induct a rule: nummul.induct,auto simp add: Let_def numadd_nz) | |
| 632 | ||
| 633 | lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)" | |
| 634 | by (simp add: numneg_def nummul_nz) | |
| 635 | ||
| 636 | lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)" | |
| 637 | by (simp add: numsub_def numneg_nz numadd_nz) | |
| 638 | ||
| 639 | lemma simpnum_nz: "nozerocoeff (simpnum t)" | |
| 36853 | 640 | by(induct t) (simp_all add: numadd_nz numneg_nz numsub_nz nummul_nz) | 
| 29789 | 641 | |
| 642 | lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0" | |
| 643 | proof (induct t rule: maxcoeff.induct) | |
| 644 | case (2 n c t) | |
| 41807 | 645 | hence cnz: "c \<noteq>0" and mx: "max (abs c) (maxcoeff t) = 0" by simp_all | 
| 646 | have "max (abs c) (maxcoeff t) \<ge> abs c" by simp | |
| 29789 | 647 | with cnz have "max (abs c) (maxcoeff t) > 0" by arith | 
| 41807 | 648 | with 2 show ?case by simp | 
| 29789 | 649 | qed auto | 
| 650 | ||
| 651 | lemma numgcd_nz: assumes nz: "nozerocoeff t" and g0: "numgcd t = 0" shows "t = C 0" | |
| 652 | proof- | |
| 653 | from g0 have th:"numgcdh t (maxcoeff t) = 0" by (simp add: numgcd_def) | |
| 654 | from numgcdh0[OF th] have th:"maxcoeff t = 0" . | |
| 655 | from maxcoeff_nz[OF nz th] show ?thesis . | |
| 656 | qed | |
| 657 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 658 | definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int" where | 
| 36853 | 659 | "simp_num_pair = (\<lambda> (t,n). (if n = 0 then (C 0, 0) else | 
| 29789 | 660 | (let t' = simpnum t ; g = numgcd t' in | 
| 31706 | 661 | if g > 1 then (let g' = gcd n g in | 
| 29789 | 662 | if g' = 1 then (t',n) | 
| 663 | else (reducecoeffh t' g', n div g')) | |
| 664 | else (t',n))))" | |
| 665 | ||
| 666 | lemma simp_num_pair_ci: | |
| 667 | shows "((\<lambda> (t,n). Inum bs t / real n) (simp_num_pair (t,n))) = ((\<lambda> (t,n). Inum bs t / real n) (t,n))" | |
| 668 | (is "?lhs = ?rhs") | |
| 669 | proof- | |
| 670 | let ?t' = "simpnum t" | |
| 671 | let ?g = "numgcd ?t'" | |
| 31706 | 672 | let ?g' = "gcd n ?g" | 
| 29789 | 673 |   {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
 | 
| 674 | moreover | |
| 675 |   { assume nnz: "n \<noteq> 0"
 | |
| 44779 | 676 |     {assume "\<not> ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def) }
 | 
| 29789 | 677 | moreover | 
| 678 |     {assume g1:"?g>1" hence g0: "?g > 0" by simp
 | |
| 31706 | 679 | from g1 nnz have gp0: "?g' \<noteq> 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 680 | hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith | 
| 29789 | 681 | hence "?g'= 1 \<or> ?g' > 1" by arith | 
| 44779 | 682 |       moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def)}
 | 
| 29789 | 683 |       moreover {assume g'1:"?g'>1"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 684 | from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" .. | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 685 | let ?tt = "reducecoeffh ?t' ?g'" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 686 | let ?t = "Inum bs ?tt" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 687 | have gpdg: "?g' dvd ?g" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 688 | have gpdd: "?g' dvd n" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 689 | have gpdgp: "?g' dvd ?g'" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 690 | from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 691 | have th2:"real ?g' * ?t = Inum bs ?t'" by simp | 
| 41807 | 692 | from g1 g'1 have "?lhs = ?t / real (n div ?g')" by (simp add: simp_num_pair_def Let_def) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 693 | also have "\<dots> = (real ?g' * ?t) / (real ?g' * (real (n div ?g')))" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 694 | also have "\<dots> = (Inum bs ?t' / real n)" | 
| 46670 | 695 | using real_of_int_div[OF gpdd] th2 gp0 by simp | 
| 41807 | 696 | finally have "?lhs = Inum bs t / real n" by simp | 
| 697 | then have ?thesis by (simp add: simp_num_pair_def) } | |
| 698 | ultimately have ?thesis by blast } | |
| 699 | ultimately have ?thesis by blast } | |
| 29789 | 700 | ultimately show ?thesis by blast | 
| 701 | qed | |
| 702 | ||
| 703 | lemma simp_num_pair_l: assumes tnb: "numbound0 t" and np: "n >0" and tn: "simp_num_pair (t,n) = (t',n')" | |
| 704 | shows "numbound0 t' \<and> n' >0" | |
| 705 | proof- | |
| 41807 | 706 | let ?t' = "simpnum t" | 
| 29789 | 707 | let ?g = "numgcd ?t'" | 
| 31706 | 708 | let ?g' = "gcd n ?g" | 
| 41807 | 709 |   { assume nz: "n = 0" hence ?thesis using assms by (simp add: Let_def simp_num_pair_def) }
 | 
| 29789 | 710 | moreover | 
| 711 |   { assume nnz: "n \<noteq> 0"
 | |
| 41807 | 712 |     { assume "\<not> ?g > 1" hence ?thesis using assms
 | 
| 713 | by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0) } | |
| 29789 | 714 | moreover | 
| 41807 | 715 |     { assume g1:"?g>1" hence g0: "?g > 0" by simp
 | 
| 31706 | 716 | from g1 nnz have gp0: "?g' \<noteq> 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31706diff
changeset | 717 | hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith | 
| 29789 | 718 | hence "?g'= 1 \<or> ?g' > 1" by arith | 
| 41807 | 719 |       moreover {
 | 
| 720 | assume "?g' = 1" hence ?thesis using assms g1 | |
| 721 | by (auto simp add: Let_def simp_num_pair_def simpnum_numbound0) } | |
| 722 |       moreover {
 | |
| 723 | assume g'1: "?g' > 1" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 724 | have gpdg: "?g' dvd ?g" by simp | 
| 41807 | 725 | have gpdd: "?g' dvd n" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 726 | have gpdgp: "?g' dvd ?g'" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 727 | from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" . | 
| 47142 | 728 | from zdiv_mono1[OF g'n g'p, simplified div_self[OF gp0]] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 729 | have "n div ?g' >0" by simp | 
| 41807 | 730 | hence ?thesis using assms g1 g'1 | 
| 731 | by(auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0 simpnum_numbound0) } | |
| 732 | ultimately have ?thesis by blast } | |
| 733 | ultimately have ?thesis by blast } | |
| 29789 | 734 | ultimately show ?thesis by blast | 
| 735 | qed | |
| 736 | ||
| 36853 | 737 | fun simpfm :: "fm \<Rightarrow> fm" where | 
| 29789 | 738 | "simpfm (And p q) = conj (simpfm p) (simpfm q)" | 
| 36853 | 739 | | "simpfm (Or p q) = disj (simpfm p) (simpfm q)" | 
| 740 | | "simpfm (Imp p q) = imp (simpfm p) (simpfm q)" | |
| 741 | | "simpfm (Iff p q) = iff (simpfm p) (simpfm q)" | |
| 742 | | "simpfm (NOT p) = not (simpfm p)" | |
| 743 | | "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F | |
| 29789 | 744 | | _ \<Rightarrow> Lt a')" | 
| 36853 | 745 | | "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')" | 
| 746 | | "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')" | |
| 747 | | "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')" | |
| 748 | | "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')" | |
| 749 | | "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')" | |
| 750 | | "simpfm p = p" | |
| 29789 | 751 | lemma simpfm: "Ifm bs (simpfm p) = Ifm bs p" | 
| 752 | proof(induct p rule: simpfm.induct) | |
| 753 | case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 754 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 755 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 756 | by (cases ?sa, simp_all add: Let_def)} | |
| 757 | ultimately show ?case by blast | |
| 758 | next | |
| 759 | case (7 a) let ?sa = "simpnum a" | |
| 760 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 761 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 762 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 763 | by (cases ?sa, simp_all add: Let_def)} | |
| 764 | ultimately show ?case by blast | |
| 765 | next | |
| 766 | case (8 a) let ?sa = "simpnum a" | |
| 767 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 768 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 769 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 770 | by (cases ?sa, simp_all add: Let_def)} | |
| 771 | ultimately show ?case by blast | |
| 772 | next | |
| 773 | case (9 a) let ?sa = "simpnum a" | |
| 774 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 775 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 776 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 777 | by (cases ?sa, simp_all add: Let_def)} | |
| 778 | ultimately show ?case by blast | |
| 779 | next | |
| 780 | case (10 a) let ?sa = "simpnum a" | |
| 781 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 782 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 783 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 784 | by (cases ?sa, simp_all add: Let_def)} | |
| 785 | ultimately show ?case by blast | |
| 786 | next | |
| 787 | case (11 a) let ?sa = "simpnum a" | |
| 788 | from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp | |
| 789 |   {fix v assume "?sa = C v" hence ?case using sa by simp }
 | |
| 790 |   moreover {assume "\<not> (\<exists> v. ?sa = C v)" hence ?case using sa 
 | |
| 791 | by (cases ?sa, simp_all add: Let_def)} | |
| 792 | ultimately show ?case by blast | |
| 793 | qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not) | |
| 794 | ||
| 795 | ||
| 796 | lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)" | |
| 797 | proof(induct p rule: simpfm.induct) | |
| 798 | case (6 a) hence nb: "numbound0 a" by simp | |
| 799 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 800 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 801 | next | 
| 802 | case (7 a) hence nb: "numbound0 a" by simp | |
| 803 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 804 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 805 | next | 
| 806 | case (8 a) hence nb: "numbound0 a" by simp | |
| 807 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 808 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 809 | next | 
| 810 | case (9 a) hence nb: "numbound0 a" by simp | |
| 811 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 812 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 813 | next | 
| 814 | case (10 a) hence nb: "numbound0 a" by simp | |
| 815 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 816 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 817 | next | 
| 818 | case (11 a) hence nb: "numbound0 a" by simp | |
| 819 | hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) | |
| 44779 | 820 | thus ?case by (cases "simpnum a") (auto simp add: Let_def) | 
| 29789 | 821 | qed(auto simp add: disj_def imp_def iff_def conj_def not_bn) | 
| 822 | ||
| 823 | lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)" | |
| 44779 | 824 | apply (induct p rule: simpfm.induct) | 
| 825 | apply (auto simp add: Let_def) | |
| 826 | apply (case_tac "simpnum a", auto)+ | |
| 827 | done | |
| 29789 | 828 | |
| 829 | consts prep :: "fm \<Rightarrow> fm" | |
| 830 | recdef prep "measure fmsize" | |
| 831 | "prep (E T) = T" | |
| 832 | "prep (E F) = F" | |
| 833 | "prep (E (Or p q)) = disj (prep (E p)) (prep (E q))" | |
| 834 | "prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))" | |
| 835 | "prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))" | |
| 836 | "prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E(NOT q)))" | |
| 837 | "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))" | |
| 838 | "prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))" | |
| 839 | "prep (E p) = E (prep p)" | |
| 840 | "prep (A (And p q)) = conj (prep (A p)) (prep (A q))" | |
| 841 | "prep (A p) = prep (NOT (E (NOT p)))" | |
| 842 | "prep (NOT (NOT p)) = prep p" | |
| 843 | "prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))" | |
| 844 | "prep (NOT (A p)) = prep (E (NOT p))" | |
| 845 | "prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))" | |
| 846 | "prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))" | |
| 847 | "prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))" | |
| 848 | "prep (NOT p) = not (prep p)" | |
| 849 | "prep (Or p q) = disj (prep p) (prep q)" | |
| 850 | "prep (And p q) = conj (prep p) (prep q)" | |
| 851 | "prep (Imp p q) = prep (Or (NOT p) q)" | |
| 852 | "prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))" | |
| 853 | "prep p = p" | |
| 854 | (hints simp add: fmsize_pos) | |
| 855 | lemma prep: "\<And> bs. Ifm bs (prep p) = Ifm bs p" | |
| 44779 | 856 | by (induct p rule: prep.induct) auto | 
| 29789 | 857 | |
| 858 | (* Generic quantifier elimination *) | |
| 36853 | 859 | function (sequential) qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm" where | 
| 29789 | 860 | "qelim (E p) = (\<lambda> qe. DJ qe (qelim p qe))" | 
| 36853 | 861 | | "qelim (A p) = (\<lambda> qe. not (qe ((qelim (NOT p) qe))))" | 
| 862 | | "qelim (NOT p) = (\<lambda> qe. not (qelim p qe))" | |
| 863 | | "qelim (And p q) = (\<lambda> qe. conj (qelim p qe) (qelim q qe))" | |
| 864 | | "qelim (Or p q) = (\<lambda> qe. disj (qelim p qe) (qelim q qe))" | |
| 865 | | "qelim (Imp p q) = (\<lambda> qe. imp (qelim p qe) (qelim q qe))" | |
| 866 | | "qelim (Iff p q) = (\<lambda> qe. iff (qelim p qe) (qelim q qe))" | |
| 867 | | "qelim p = (\<lambda> y. simpfm p)" | |
| 868 | by pat_completeness auto | |
| 869 | termination qelim by (relation "measure fmsize") simp_all | |
| 29789 | 870 | |
| 871 | lemma qelim_ci: | |
| 872 | assumes qe_inv: "\<forall> bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))" | |
| 873 | shows "\<And> bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)" | |
| 874 | using qe_inv DJ_qe[OF qe_inv] | |
| 875 | by(induct p rule: qelim.induct) | |
| 876 | (auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf | |
| 877 | simpfm simpfm_qf simp del: simpfm.simps) | |
| 878 | ||
| 36853 | 879 | fun minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*) where | 
| 29789 | 880 | "minusinf (And p q) = conj (minusinf p) (minusinf q)" | 
| 36853 | 881 | | "minusinf (Or p q) = disj (minusinf p) (minusinf q)" | 
| 882 | | "minusinf (Eq (CN 0 c e)) = F" | |
| 883 | | "minusinf (NEq (CN 0 c e)) = T" | |
| 884 | | "minusinf (Lt (CN 0 c e)) = T" | |
| 885 | | "minusinf (Le (CN 0 c e)) = T" | |
| 886 | | "minusinf (Gt (CN 0 c e)) = F" | |
| 887 | | "minusinf (Ge (CN 0 c e)) = F" | |
| 888 | | "minusinf p = p" | |
| 29789 | 889 | |
| 36853 | 890 | fun plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*) where | 
| 29789 | 891 | "plusinf (And p q) = conj (plusinf p) (plusinf q)" | 
| 36853 | 892 | | "plusinf (Or p q) = disj (plusinf p) (plusinf q)" | 
| 893 | | "plusinf (Eq (CN 0 c e)) = F" | |
| 894 | | "plusinf (NEq (CN 0 c e)) = T" | |
| 895 | | "plusinf (Lt (CN 0 c e)) = F" | |
| 896 | | "plusinf (Le (CN 0 c e)) = F" | |
| 897 | | "plusinf (Gt (CN 0 c e)) = T" | |
| 898 | | "plusinf (Ge (CN 0 c e)) = T" | |
| 899 | | "plusinf p = p" | |
| 29789 | 900 | |
| 36853 | 901 | fun isrlfm :: "fm \<Rightarrow> bool" (* Linearity test for fm *) where | 
| 29789 | 902 | "isrlfm (And p q) = (isrlfm p \<and> isrlfm q)" | 
| 36853 | 903 | | "isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)" | 
| 904 | | "isrlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 905 | | "isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 906 | | "isrlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 907 | | "isrlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 908 | | "isrlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 909 | | "isrlfm (Ge (CN 0 c e)) = (c>0 \<and> numbound0 e)" | |
| 910 | | "isrlfm p = (isatom p \<and> (bound0 p))" | |
| 29789 | 911 | |
| 912 | (* splits the bounded from the unbounded part*) | |
| 36853 | 913 | function (sequential) rsplit0 :: "num \<Rightarrow> int \<times> num" where | 
| 29789 | 914 | "rsplit0 (Bound 0) = (1,C 0)" | 
| 36853 | 915 | | "rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a ; (cb,tb) = rsplit0 b | 
| 29789 | 916 | in (ca+cb, Add ta tb))" | 
| 36853 | 917 | | "rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))" | 
| 918 | | "rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (-c,Neg t))" | |
| 919 | | "rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c*ca,Mul c ta))" | |
| 920 | | "rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c+ca,ta))" | |
| 921 | | "rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca,CN n c ta))" | |
| 922 | | "rsplit0 t = (0,t)" | |
| 923 | by pat_completeness auto | |
| 924 | termination rsplit0 by (relation "measure num_size") simp_all | |
| 925 | ||
| 29789 | 926 | lemma rsplit0: | 
| 927 | shows "Inum bs ((split (CN 0)) (rsplit0 t)) = Inum bs t \<and> numbound0 (snd (rsplit0 t))" | |
| 928 | proof (induct t rule: rsplit0.induct) | |
| 929 | case (2 a b) | |
| 930 | let ?sa = "rsplit0 a" let ?sb = "rsplit0 b" | |
| 931 | let ?ca = "fst ?sa" let ?cb = "fst ?sb" | |
| 932 | let ?ta = "snd ?sa" let ?tb = "snd ?sb" | |
| 41807 | 933 | from 2 have nb: "numbound0 (snd(rsplit0 (Add a b)))" | 
| 36853 | 934 | by (cases "rsplit0 a") (auto simp add: Let_def split_def) | 
| 29789 | 935 | have "Inum bs ((split (CN 0)) (rsplit0 (Add a b))) = | 
| 936 | Inum bs ((split (CN 0)) ?sa)+Inum bs ((split (CN 0)) ?sb)" | |
| 937 | by (simp add: Let_def split_def algebra_simps) | |
| 41807 | 938 | also have "\<dots> = Inum bs a + Inum bs b" using 2 by (cases "rsplit0 a") auto | 
| 29789 | 939 | finally show ?case using nb by simp | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49070diff
changeset | 940 | qed (auto simp add: Let_def split_def algebra_simps, simp add: distrib_left[symmetric]) | 
| 29789 | 941 | |
| 942 | (* Linearize a formula*) | |
| 943 | definition | |
| 944 | lt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 945 | where | |
| 946 | "lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t)) | |
| 947 | else (Gt (CN 0 (-c) (Neg t))))" | |
| 948 | ||
| 949 | definition | |
| 950 | le :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 951 | where | |
| 952 | "le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t)) | |
| 953 | else (Ge (CN 0 (-c) (Neg t))))" | |
| 954 | ||
| 955 | definition | |
| 956 | gt :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 957 | where | |
| 958 | "gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t)) | |
| 959 | else (Lt (CN 0 (-c) (Neg t))))" | |
| 960 | ||
| 961 | definition | |
| 962 | ge :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 963 | where | |
| 964 | "ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t)) | |
| 965 | else (Le (CN 0 (-c) (Neg t))))" | |
| 966 | ||
| 967 | definition | |
| 968 | eq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 969 | where | |
| 970 | "eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t)) | |
| 971 | else (Eq (CN 0 (-c) (Neg t))))" | |
| 972 | ||
| 973 | definition | |
| 974 | neq :: "int \<Rightarrow> num \<Rightarrow> fm" | |
| 975 | where | |
| 976 | "neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t)) | |
| 977 | else (NEq (CN 0 (-c) (Neg t))))" | |
| 978 | ||
| 979 | lemma lt: "numnoabs t \<Longrightarrow> Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) \<and> isrlfm (split lt (rsplit0 t))" | |
| 980 | using rsplit0[where bs = "bs" and t="t"] | |
| 981 | by (auto simp add: lt_def split_def,cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 982 | ||
| 983 | lemma le: "numnoabs t \<Longrightarrow> Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) \<and> isrlfm (split le (rsplit0 t))" | |
| 984 | using rsplit0[where bs = "bs" and t="t"] | |
| 985 | by (auto simp add: le_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 986 | ||
| 987 | lemma gt: "numnoabs t \<Longrightarrow> Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) \<and> isrlfm (split gt (rsplit0 t))" | |
| 988 | using rsplit0[where bs = "bs" and t="t"] | |
| 989 | by (auto simp add: gt_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 990 | ||
| 991 | lemma ge: "numnoabs t \<Longrightarrow> Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) \<and> isrlfm (split ge (rsplit0 t))" | |
| 992 | using rsplit0[where bs = "bs" and t="t"] | |
| 993 | by (auto simp add: ge_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 994 | ||
| 995 | lemma eq: "numnoabs t \<Longrightarrow> Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) \<and> isrlfm (split eq (rsplit0 t))" | |
| 996 | using rsplit0[where bs = "bs" and t="t"] | |
| 997 | by (auto simp add: eq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 998 | ||
| 999 | lemma neq: "numnoabs t \<Longrightarrow> Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) \<and> isrlfm (split neq (rsplit0 t))" | |
| 1000 | using rsplit0[where bs = "bs" and t="t"] | |
| 1001 | by (auto simp add: neq_def split_def) (cases "snd(rsplit0 t)",auto,case_tac "nat",auto) | |
| 1002 | ||
| 1003 | lemma conj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)" | |
| 1004 | by (auto simp add: conj_def) | |
| 1005 | lemma disj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)" | |
| 1006 | by (auto simp add: disj_def) | |
| 1007 | ||
| 1008 | consts rlfm :: "fm \<Rightarrow> fm" | |
| 1009 | recdef rlfm "measure fmsize" | |
| 1010 | "rlfm (And p q) = conj (rlfm p) (rlfm q)" | |
| 1011 | "rlfm (Or p q) = disj (rlfm p) (rlfm q)" | |
| 1012 | "rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)" | |
| 1013 | "rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT q)))" | |
| 1014 | "rlfm (Lt a) = split lt (rsplit0 a)" | |
| 1015 | "rlfm (Le a) = split le (rsplit0 a)" | |
| 1016 | "rlfm (Gt a) = split gt (rsplit0 a)" | |
| 1017 | "rlfm (Ge a) = split ge (rsplit0 a)" | |
| 1018 | "rlfm (Eq a) = split eq (rsplit0 a)" | |
| 1019 | "rlfm (NEq a) = split neq (rsplit0 a)" | |
| 1020 | "rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1021 | "rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))" | |
| 1022 | "rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))" | |
| 1023 | "rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))" | |
| 1024 | "rlfm (NOT (NOT p)) = rlfm p" | |
| 1025 | "rlfm (NOT T) = F" | |
| 1026 | "rlfm (NOT F) = T" | |
| 1027 | "rlfm (NOT (Lt a)) = rlfm (Ge a)" | |
| 1028 | "rlfm (NOT (Le a)) = rlfm (Gt a)" | |
| 1029 | "rlfm (NOT (Gt a)) = rlfm (Le a)" | |
| 1030 | "rlfm (NOT (Ge a)) = rlfm (Lt a)" | |
| 1031 | "rlfm (NOT (Eq a)) = rlfm (NEq a)" | |
| 1032 | "rlfm (NOT (NEq a)) = rlfm (Eq a)" | |
| 1033 | "rlfm p = p" (hints simp add: fmsize_pos) | |
| 1034 | ||
| 1035 | lemma rlfm_I: | |
| 1036 | assumes qfp: "qfree p" | |
| 1037 | shows "(Ifm bs (rlfm p) = Ifm bs p) \<and> isrlfm (rlfm p)" | |
| 1038 | using qfp | |
| 44779 | 1039 | by (induct p rule: rlfm.induct) (auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin) | 
| 29789 | 1040 | |
| 1041 | (* Operations needed for Ferrante and Rackoff *) | |
| 1042 | lemma rminusinf_inf: | |
| 1043 | assumes lp: "isrlfm p" | |
| 1044 | shows "\<exists> z. \<forall> x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1045 | using lp | |
| 1046 | proof (induct p rule: minusinf.induct) | |
| 44779 | 1047 | case (1 p q) | 
| 1048 | thus ?case apply auto apply (rule_tac x= "min z za" in exI) apply auto done | |
| 29789 | 1049 | next | 
| 44779 | 1050 | case (2 p q) | 
| 1051 | thus ?case apply auto apply (rule_tac x= "min z za" in exI) apply auto done | |
| 29789 | 1052 | next | 
| 1053 | case (3 c e) | |
| 41807 | 1054 | from 3 have nb: "numbound0 e" by simp | 
| 1055 | from 3 have cp: "real c > 0" by simp | |
| 29789 | 1056 | fix a | 
| 1057 | let ?e="Inum (a#bs) e" | |
| 1058 | let ?z = "(- ?e) / real c" | |
| 1059 |   {fix x
 | |
| 1060 | assume xz: "x < ?z" | |
| 1061 | hence "(real c * x < - ?e)" | |
| 1062 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1063 | hence "real c * x + ?e < 0" by arith | |
| 1064 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1065 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1066 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1067 | hence "\<forall> x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1068 | thus ?case by blast | |
| 1069 | next | |
| 1070 | case (4 c e) | |
| 41807 | 1071 | from 4 have nb: "numbound0 e" by simp | 
| 1072 | from 4 have cp: "real c > 0" by simp | |
| 29789 | 1073 | fix a | 
| 1074 | let ?e="Inum (a#bs) e" | |
| 1075 | let ?z = "(- ?e) / real c" | |
| 1076 |   {fix x
 | |
| 1077 | assume xz: "x < ?z" | |
| 1078 | hence "(real c * x < - ?e)" | |
| 1079 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1080 | hence "real c * x + ?e < 0" by arith | |
| 1081 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1082 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1083 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1084 | hence "\<forall> x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1085 | thus ?case by blast | |
| 1086 | next | |
| 1087 | case (5 c e) | |
| 41807 | 1088 | from 5 have nb: "numbound0 e" by simp | 
| 1089 | from 5 have cp: "real c > 0" by simp | |
| 29789 | 1090 | fix a | 
| 1091 | let ?e="Inum (a#bs) e" | |
| 1092 | let ?z = "(- ?e) / real c" | |
| 1093 |   {fix x
 | |
| 1094 | assume xz: "x < ?z" | |
| 1095 | hence "(real c * x < - ?e)" | |
| 1096 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1097 | hence "real c * x + ?e < 0" by arith | |
| 1098 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1099 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1100 | hence "\<forall> x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1101 | thus ?case by blast | |
| 1102 | next | |
| 1103 | case (6 c e) | |
| 41807 | 1104 | from 6 have nb: "numbound0 e" by simp | 
| 1105 | from lp 6 have cp: "real c > 0" by simp | |
| 29789 | 1106 | fix a | 
| 1107 | let ?e="Inum (a#bs) e" | |
| 1108 | let ?z = "(- ?e) / real c" | |
| 1109 |   {fix x
 | |
| 1110 | assume xz: "x < ?z" | |
| 1111 | hence "(real c * x < - ?e)" | |
| 1112 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1113 | hence "real c * x + ?e < 0" by arith | |
| 1114 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1115 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1116 | hence "\<forall> x < ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1117 | thus ?case by blast | |
| 1118 | next | |
| 1119 | case (7 c e) | |
| 41807 | 1120 | from 7 have nb: "numbound0 e" by simp | 
| 1121 | from 7 have cp: "real c > 0" by simp | |
| 29789 | 1122 | fix a | 
| 1123 | let ?e="Inum (a#bs) e" | |
| 1124 | let ?z = "(- ?e) / real c" | |
| 1125 |   {fix x
 | |
| 1126 | assume xz: "x < ?z" | |
| 1127 | hence "(real c * x < - ?e)" | |
| 1128 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1129 | hence "real c * x + ?e < 0" by arith | |
| 1130 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1131 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1132 | hence "\<forall> x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1133 | thus ?case by blast | |
| 1134 | next | |
| 1135 | case (8 c e) | |
| 41807 | 1136 | from 8 have nb: "numbound0 e" by simp | 
| 1137 | from 8 have cp: "real c > 0" by simp | |
| 29789 | 1138 | fix a | 
| 1139 | let ?e="Inum (a#bs) e" | |
| 1140 | let ?z = "(- ?e) / real c" | |
| 1141 |   {fix x
 | |
| 1142 | assume xz: "x < ?z" | |
| 1143 | hence "(real c * x < - ?e)" | |
| 1144 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] mult_ac) | |
| 1145 | hence "real c * x + ?e < 0" by arith | |
| 1146 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1147 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1148 | hence "\<forall> x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1149 | thus ?case by blast | |
| 1150 | qed simp_all | |
| 1151 | ||
| 1152 | lemma rplusinf_inf: | |
| 1153 | assumes lp: "isrlfm p" | |
| 1154 | shows "\<exists> z. \<forall> x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists> z. \<forall> x. ?P z x p") | |
| 1155 | using lp | |
| 1156 | proof (induct p rule: isrlfm.induct) | |
| 1157 | case (1 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1158 | next | |
| 1159 | case (2 p q) thus ?case by (auto,rule_tac x= "max z za" in exI) auto | |
| 1160 | next | |
| 1161 | case (3 c e) | |
| 41807 | 1162 | from 3 have nb: "numbound0 e" by simp | 
| 1163 | from 3 have cp: "real c > 0" by simp | |
| 29789 | 1164 | fix a | 
| 1165 | let ?e="Inum (a#bs) e" | |
| 1166 | let ?z = "(- ?e) / real c" | |
| 1167 |   {fix x
 | |
| 1168 | assume xz: "x > ?z" | |
| 1169 | with mult_strict_right_mono [OF xz cp] cp | |
| 1170 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1171 | hence "real c * x + ?e > 0" by arith | |
| 1172 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1173 | with xz have "?P ?z x (Eq (CN 0 c e))" | |
| 1174 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1175 | hence "\<forall> x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp | |
| 1176 | thus ?case by blast | |
| 1177 | next | |
| 1178 | case (4 c e) | |
| 41807 | 1179 | from 4 have nb: "numbound0 e" by simp | 
| 1180 | from 4 have cp: "real c > 0" by simp | |
| 29789 | 1181 | fix a | 
| 1182 | let ?e="Inum (a#bs) e" | |
| 1183 | let ?z = "(- ?e) / real c" | |
| 1184 |   {fix x
 | |
| 1185 | assume xz: "x > ?z" | |
| 1186 | with mult_strict_right_mono [OF xz cp] cp | |
| 1187 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1188 | hence "real c * x + ?e > 0" by arith | |
| 1189 | hence "real c * x + ?e \<noteq> 0" by simp | |
| 1190 | with xz have "?P ?z x (NEq (CN 0 c e))" | |
| 1191 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1192 | hence "\<forall> x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp | |
| 1193 | thus ?case by blast | |
| 1194 | next | |
| 1195 | case (5 c e) | |
| 41807 | 1196 | from 5 have nb: "numbound0 e" by simp | 
| 1197 | from 5 have cp: "real c > 0" by simp | |
| 29789 | 1198 | fix a | 
| 1199 | let ?e="Inum (a#bs) e" | |
| 1200 | let ?z = "(- ?e) / real c" | |
| 1201 |   {fix x
 | |
| 1202 | assume xz: "x > ?z" | |
| 1203 | with mult_strict_right_mono [OF xz cp] cp | |
| 1204 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1205 | hence "real c * x + ?e > 0" by arith | |
| 1206 | with xz have "?P ?z x (Lt (CN 0 c e))" | |
| 1207 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1208 | hence "\<forall> x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp | |
| 1209 | thus ?case by blast | |
| 1210 | next | |
| 1211 | case (6 c e) | |
| 41807 | 1212 | from 6 have nb: "numbound0 e" by simp | 
| 1213 | from 6 have cp: "real c > 0" by simp | |
| 29789 | 1214 | fix a | 
| 1215 | let ?e="Inum (a#bs) e" | |
| 1216 | let ?z = "(- ?e) / real c" | |
| 1217 |   {fix x
 | |
| 1218 | assume xz: "x > ?z" | |
| 1219 | with mult_strict_right_mono [OF xz cp] cp | |
| 1220 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1221 | hence "real c * x + ?e > 0" by arith | |
| 1222 | with xz have "?P ?z x (Le (CN 0 c e))" | |
| 1223 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1224 | hence "\<forall> x > ?z. ?P ?z x (Le (CN 0 c e))" by simp | |
| 1225 | thus ?case by blast | |
| 1226 | next | |
| 1227 | case (7 c e) | |
| 41807 | 1228 | from 7 have nb: "numbound0 e" by simp | 
| 1229 | from 7 have cp: "real c > 0" by simp | |
| 29789 | 1230 | fix a | 
| 1231 | let ?e="Inum (a#bs) e" | |
| 1232 | let ?z = "(- ?e) / real c" | |
| 1233 |   {fix x
 | |
| 1234 | assume xz: "x > ?z" | |
| 1235 | with mult_strict_right_mono [OF xz cp] cp | |
| 1236 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1237 | hence "real c * x + ?e > 0" by arith | |
| 1238 | with xz have "?P ?z x (Gt (CN 0 c e))" | |
| 1239 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1240 | hence "\<forall> x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp | |
| 1241 | thus ?case by blast | |
| 1242 | next | |
| 1243 | case (8 c e) | |
| 41807 | 1244 | from 8 have nb: "numbound0 e" by simp | 
| 1245 | from 8 have cp: "real c > 0" by simp | |
| 29789 | 1246 | fix a | 
| 1247 | let ?e="Inum (a#bs) e" | |
| 1248 | let ?z = "(- ?e) / real c" | |
| 1249 |   {fix x
 | |
| 1250 | assume xz: "x > ?z" | |
| 1251 | with mult_strict_right_mono [OF xz cp] cp | |
| 1252 | have "(real c * x > - ?e)" by (simp add: mult_ac) | |
| 1253 | hence "real c * x + ?e > 0" by arith | |
| 1254 | with xz have "?P ?z x (Ge (CN 0 c e))" | |
| 1255 | using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } | |
| 1256 | hence "\<forall> x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp | |
| 1257 | thus ?case by blast | |
| 1258 | qed simp_all | |
| 1259 | ||
| 1260 | lemma rminusinf_bound0: | |
| 1261 | assumes lp: "isrlfm p" | |
| 1262 | shows "bound0 (minusinf p)" | |
| 1263 | using lp | |
| 1264 | by (induct p rule: minusinf.induct) simp_all | |
| 1265 | ||
| 1266 | lemma rplusinf_bound0: | |
| 1267 | assumes lp: "isrlfm p" | |
| 1268 | shows "bound0 (plusinf p)" | |
| 1269 | using lp | |
| 1270 | by (induct p rule: plusinf.induct) simp_all | |
| 1271 | ||
| 1272 | lemma rminusinf_ex: | |
| 1273 | assumes lp: "isrlfm p" | |
| 1274 | and ex: "Ifm (a#bs) (minusinf p)" | |
| 1275 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1276 | proof- | |
| 1277 | from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1278 | have th: "\<forall> x. Ifm (x#bs) (minusinf p)" by auto | |
| 1279 | from rminusinf_inf[OF lp, where bs="bs"] | |
| 1280 | obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast | |
| 1281 | from th have "Ifm ((z - 1)#bs) (minusinf p)" by simp | |
| 1282 | moreover have "z - 1 < z" by simp | |
| 1283 | ultimately show ?thesis using z_def by auto | |
| 1284 | qed | |
| 1285 | ||
| 1286 | lemma rplusinf_ex: | |
| 1287 | assumes lp: "isrlfm p" | |
| 1288 | and ex: "Ifm (a#bs) (plusinf p)" | |
| 1289 | shows "\<exists> x. Ifm (x#bs) p" | |
| 1290 | proof- | |
| 1291 | from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex | |
| 1292 | have th: "\<forall> x. Ifm (x#bs) (plusinf p)" by auto | |
| 1293 | from rplusinf_inf[OF lp, where bs="bs"] | |
| 1294 | obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast | |
| 1295 | from th have "Ifm ((z + 1)#bs) (plusinf p)" by simp | |
| 1296 | moreover have "z + 1 > z" by simp | |
| 1297 | ultimately show ?thesis using z_def by auto | |
| 1298 | qed | |
| 1299 | ||
| 1300 | consts | |
| 1301 | uset:: "fm \<Rightarrow> (num \<times> int) list" | |
| 1302 | usubst :: "fm \<Rightarrow> (num \<times> int) \<Rightarrow> fm " | |
| 1303 | recdef uset "measure size" | |
| 1304 | "uset (And p q) = (uset p @ uset q)" | |
| 1305 | "uset (Or p q) = (uset p @ uset q)" | |
| 1306 | "uset (Eq (CN 0 c e)) = [(Neg e,c)]" | |
| 1307 | "uset (NEq (CN 0 c e)) = [(Neg e,c)]" | |
| 1308 | "uset (Lt (CN 0 c e)) = [(Neg e,c)]" | |
| 1309 | "uset (Le (CN 0 c e)) = [(Neg e,c)]" | |
| 1310 | "uset (Gt (CN 0 c e)) = [(Neg e,c)]" | |
| 1311 | "uset (Ge (CN 0 c e)) = [(Neg e,c)]" | |
| 1312 | "uset p = []" | |
| 1313 | recdef usubst "measure size" | |
| 1314 | "usubst (And p q) = (\<lambda> (t,n). And (usubst p (t,n)) (usubst q (t,n)))" | |
| 1315 | "usubst (Or p q) = (\<lambda> (t,n). Or (usubst p (t,n)) (usubst q (t,n)))" | |
| 1316 | "usubst (Eq (CN 0 c e)) = (\<lambda> (t,n). Eq (Add (Mul c t) (Mul n e)))" | |
| 1317 | "usubst (NEq (CN 0 c e)) = (\<lambda> (t,n). NEq (Add (Mul c t) (Mul n e)))" | |
| 1318 | "usubst (Lt (CN 0 c e)) = (\<lambda> (t,n). Lt (Add (Mul c t) (Mul n e)))" | |
| 1319 | "usubst (Le (CN 0 c e)) = (\<lambda> (t,n). Le (Add (Mul c t) (Mul n e)))" | |
| 1320 | "usubst (Gt (CN 0 c e)) = (\<lambda> (t,n). Gt (Add (Mul c t) (Mul n e)))" | |
| 1321 | "usubst (Ge (CN 0 c e)) = (\<lambda> (t,n). Ge (Add (Mul c t) (Mul n e)))" | |
| 1322 | "usubst p = (\<lambda> (t,n). p)" | |
| 1323 | ||
| 1324 | lemma usubst_I: assumes lp: "isrlfm p" | |
| 1325 | and np: "real n > 0" and nbt: "numbound0 t" | |
| 1326 | shows "(Ifm (x#bs) (usubst p (t,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p) \<and> bound0 (usubst p (t,n))" (is "(?I x (usubst p (t,n)) = ?I ?u p) \<and> ?B p" is "(_ = ?I (?t/?n) p) \<and> _" is "(_ = ?I (?N x t /_) p) \<and> _") | |
| 1327 | using lp | |
| 1328 | proof(induct p rule: usubst.induct) | |
| 41807 | 1329 | case (5 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1330 | have "?I ?u (Lt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) < 0)" | 
| 1331 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1332 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) < 0)" | |
| 1333 | by (simp only: pos_less_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1334 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1335 | also have "\<dots> = (real c *?t + ?n* (?N x e) < 0)" | |
| 1336 | using np by simp | |
| 1337 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1338 | next | |
| 41807 | 1339 | case (6 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1340 | have "?I ?u (Le (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<le> 0)" | 
| 1341 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1342 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<le> 0)" | |
| 1343 | by (simp only: pos_le_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1344 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1345 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<le> 0)" | |
| 1346 | using np by simp | |
| 1347 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1348 | next | |
| 41807 | 1349 | case (7 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1350 | have "?I ?u (Gt (CN 0 c e)) = (real c *(?t/?n) + (?N x e) > 0)" | 
| 1351 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1352 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) > 0)" | |
| 1353 | by (simp only: pos_divide_less_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1354 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1355 | also have "\<dots> = (real c *?t + ?n* (?N x e) > 0)" | |
| 1356 | using np by simp | |
| 1357 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1358 | next | |
| 41807 | 1359 | case (8 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1360 | have "?I ?u (Ge (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<ge> 0)" | 
| 1361 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1362 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<ge> 0)" | |
| 1363 | by (simp only: pos_divide_le_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1364 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1365 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<ge> 0)" | |
| 1366 | using np by simp | |
| 1367 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1368 | next | |
| 41807 | 1369 | case (3 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1370 | from np have np: "real n \<noteq> 0" by simp | 
| 1371 | have "?I ?u (Eq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) = 0)" | |
| 1372 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1373 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) = 0)" | |
| 1374 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1375 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1376 | also have "\<dots> = (real c *?t + ?n* (?N x e) = 0)" | |
| 1377 | using np by simp | |
| 1378 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 1379 | next | |
| 41807 | 1380 | case (4 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all | 
| 29789 | 1381 | from np have np: "real n \<noteq> 0" by simp | 
| 1382 | have "?I ?u (NEq (CN 0 c e)) = (real c *(?t/?n) + (?N x e) \<noteq> 0)" | |
| 1383 | using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp | |
| 1384 | also have "\<dots> = (?n*(real c *(?t/?n)) + ?n*(?N x e) \<noteq> 0)" | |
| 1385 | by (simp only: nonzero_eq_divide_eq[OF np, where a="real c *(?t/?n) + (?N x e)" | |
| 1386 | and b="0", simplified divide_zero_left]) (simp only: algebra_simps) | |
| 1387 | also have "\<dots> = (real c *?t + ?n* (?N x e) \<noteq> 0)" | |
| 1388 | using np by simp | |
| 1389 | finally show ?case using nbt nb by (simp add: algebra_simps) | |
| 41842 | 1390 | qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real n" and b'="x"]) | 
| 29789 | 1391 | |
| 1392 | lemma uset_l: | |
| 1393 | assumes lp: "isrlfm p" | |
| 1394 | shows "\<forall> (t,k) \<in> set (uset p). numbound0 t \<and> k >0" | |
| 1395 | using lp | |
| 1396 | by(induct p rule: uset.induct,auto) | |
| 1397 | ||
| 1398 | lemma rminusinf_uset: | |
| 1399 | assumes lp: "isrlfm p" | |
| 1400 | and nmi: "\<not> (Ifm (a#bs) (minusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1401 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1402 | shows "\<exists> (s,m) \<in> set (uset p). x \<ge> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<ge> ?N a s / real m") | |
| 1403 | proof- | |
| 1404 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<ge> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<ge> ?N a s") | |
| 1405 | using lp nmi ex | |
| 41842 | 1406 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"]) | 
| 29789 | 1407 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<ge> ?N a s" by blast | 
| 1408 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1409 | from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real m" | |
| 1410 | by (auto simp add: mult_commute) | |
| 1411 | thus ?thesis using smU by auto | |
| 1412 | qed | |
| 1413 | ||
| 1414 | lemma rplusinf_uset: | |
| 1415 | assumes lp: "isrlfm p" | |
| 1416 | and nmi: "\<not> (Ifm (a#bs) (plusinf p))" (is "\<not> (Ifm (a#bs) (?M p))") | |
| 1417 | and ex: "Ifm (x#bs) p" (is "?I x p") | |
| 1418 | shows "\<exists> (s,m) \<in> set (uset p). x \<le> Inum (a#bs) s / real m" (is "\<exists> (s,m) \<in> ?U p. x \<le> ?N a s / real m") | |
| 1419 | proof- | |
| 1420 | have "\<exists> (s,m) \<in> set (uset p). real m * x \<le> Inum (a#bs) s " (is "\<exists> (s,m) \<in> ?U p. real m *x \<le> ?N a s") | |
| 1421 | using lp nmi ex | |
| 41842 | 1422 | by (induct p rule: minusinf.induct, auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"]) | 
| 29789 | 1423 | then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real m * x \<le> ?N a s" by blast | 
| 1424 | from uset_l[OF lp] smU have mp: "real m > 0" by auto | |
| 1425 | from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real m" | |
| 1426 | by (auto simp add: mult_commute) | |
| 1427 | thus ?thesis using smU by auto | |
| 1428 | qed | |
| 1429 | ||
| 1430 | lemma lin_dense: | |
| 1431 | assumes lp: "isrlfm p" | |
| 1432 | and noS: "\<forall> t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda> (t,n). Inum (x#bs) t / real n) ` set (uset p)" | |
| 1433 | (is "\<forall> t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda> (t,n). ?N x t / real n ) ` (?U p)") | |
| 1434 | and lx: "l < x" and xu:"x < u" and px:" Ifm (x#bs) p" | |
| 1435 | and ly: "l < y" and yu: "y < u" | |
| 1436 | shows "Ifm (y#bs) p" | |
| 1437 | using lp px noS | |
| 1438 | proof (induct p rule: isrlfm.induct) | |
| 1439 | case (5 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1440 | from 5 have "x * real c + ?N x e < 0" by (simp add: algebra_simps) | 
| 1441 | hence pxc: "x < (- ?N x e) / real c" | |
| 1442 | by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1443 | from 5 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1444 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1445 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1446 |   moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1447 | hence "y * real c < - ?N x e" | |
| 1448 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1449 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1450 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1451 |   moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1452 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1453 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1454 | with lx pxc have "False" by auto | |
| 1455 | hence ?case by simp } | |
| 1456 | ultimately show ?case by blast | |
| 29789 | 1457 | next | 
| 1458 | case (6 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp + | |
| 41807 | 1459 | from 6 have "x * real c + ?N x e \<le> 0" by (simp add: algebra_simps) | 
| 1460 | hence pxc: "x \<le> (- ?N x e) / real c" | |
| 1461 | by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1462 | from 6 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1463 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1464 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1465 |   moreover {assume y: "y < (-?N x e)/ real c"
 | |
| 1466 | hence "y * real c < - ?N x e" | |
| 1467 | by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1468 | hence "real c * y + ?N x e < 0" by (simp add: algebra_simps) | |
| 1469 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1470 |   moreover {assume y: "y > (- ?N x e) / real c" 
 | |
| 1471 | with yu have eu: "u > (- ?N x e) / real c" by auto | |
| 1472 | with noSc ly yu have "(- ?N x e) / real c \<le> l" by (cases "(- ?N x e) / real c > l", auto) | |
| 1473 | with lx pxc have "False" by auto | |
| 1474 | hence ?case by simp } | |
| 1475 | ultimately show ?case by blast | |
| 29789 | 1476 | next | 
| 1477 | case (7 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1478 | from 7 have "x * real c + ?N x e > 0" by (simp add: algebra_simps) | 
| 1479 | hence pxc: "x > (- ?N x e) / real c" | |
| 1480 | by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1481 | from 7 have noSc: "\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1482 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1483 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1484 |   moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1485 | hence "y * real c > - ?N x e" | |
| 1486 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1487 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1488 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1489 |   moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1490 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1491 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1492 | with xu pxc have "False" by auto | |
| 1493 | hence ?case by simp } | |
| 1494 | ultimately show ?case by blast | |
| 29789 | 1495 | next | 
| 1496 | case (8 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1497 | from 8 have "x * real c + ?N x e \<ge> 0" by (simp add: algebra_simps) | 
| 1498 | hence pxc: "x \<ge> (- ?N x e) / real c" | |
| 1499 | by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"]) | |
| 1500 | from 8 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1501 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1502 | hence "y < (- ?N x e) / real c \<or> y > (-?N x e) / real c" by auto | |
| 1503 |   moreover {assume y: "y > (-?N x e)/ real c"
 | |
| 1504 | hence "y * real c > - ?N x e" | |
| 1505 | by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric]) | |
| 1506 | hence "real c * y + ?N x e > 0" by (simp add: algebra_simps) | |
| 1507 | hence ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp} | |
| 1508 |   moreover {assume y: "y < (- ?N x e) / real c" 
 | |
| 1509 | with ly have eu: "l < (- ?N x e) / real c" by auto | |
| 1510 | with noSc ly yu have "(- ?N x e) / real c \<ge> u" by (cases "(- ?N x e) / real c > l", auto) | |
| 1511 | with xu pxc have "False" by auto | |
| 1512 | hence ?case by simp } | |
| 1513 | ultimately show ?case by blast | |
| 29789 | 1514 | next | 
| 1515 | case (3 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1516 | from cp have cnz: "real c \<noteq> 0" by simp | 
| 1517 | from 3 have "x * real c + ?N x e = 0" by (simp add: algebra_simps) | |
| 1518 | hence pxc: "x = (- ?N x e) / real c" | |
| 1519 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"]) | |
| 1520 | from 3 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1521 | with lx xu have yne: "x \<noteq> - ?N x e / real c" by auto | |
| 1522 | with pxc show ?case by simp | |
| 29789 | 1523 | next | 
| 1524 | case (4 c e) hence cp: "real c > 0" and nb: "numbound0 e" by simp+ | |
| 41807 | 1525 | from cp have cnz: "real c \<noteq> 0" by simp | 
| 1526 | from 4 have noSc:"\<forall> t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real c" by auto | |
| 1527 | with ly yu have yne: "y \<noteq> - ?N x e / real c" by auto | |
| 1528 | hence "y* real c \<noteq> -?N x e" | |
| 1529 | by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp | |
| 1530 | hence "y* real c + ?N x e \<noteq> 0" by (simp add: algebra_simps) | |
| 1531 | thus ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] | |
| 1532 | by (simp add: algebra_simps) | |
| 41842 | 1533 | qed (auto simp add: numbound0_I[where bs="bs" and b="y" and b'="x"]) | 
| 29789 | 1534 | |
| 1535 | lemma finite_set_intervals: | |
| 1536 | assumes px: "P (x::real)" | |
| 1537 | and lx: "l \<le> x" and xu: "x \<le> u" | |
| 1538 | and linS: "l\<in> S" and uinS: "u \<in> S" | |
| 1539 | and fS:"finite S" and lS: "\<forall> x\<in> S. l \<le> x" and Su: "\<forall> x\<in> S. x \<le> u" | |
| 1540 | shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x" | |
| 1541 | proof- | |
| 1542 |   let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
 | |
| 1543 |   let ?xM = "{y. y\<in> S \<and> x \<le> y}"
 | |
| 1544 | let ?a = "Max ?Mx" | |
| 1545 | let ?b = "Min ?xM" | |
| 1546 | have MxS: "?Mx \<subseteq> S" by blast | |
| 1547 | hence fMx: "finite ?Mx" using fS finite_subset by auto | |
| 1548 | from lx linS have linMx: "l \<in> ?Mx" by blast | |
| 1549 |   hence Mxne: "?Mx \<noteq> {}" by blast
 | |
| 1550 | have xMS: "?xM \<subseteq> S" by blast | |
| 1551 | hence fxM: "finite ?xM" using fS finite_subset by auto | |
| 1552 | from xu uinS have linxM: "u \<in> ?xM" by blast | |
| 1553 |   hence xMne: "?xM \<noteq> {}" by blast
 | |
| 1554 | have ax:"?a \<le> x" using Mxne fMx by auto | |
| 1555 | have xb:"x \<le> ?b" using xMne fxM by auto | |
| 1556 | have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast | |
| 1557 | have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast | |
| 1558 | have noy:"\<forall> y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S" | |
| 1559 | proof(clarsimp) | |
| 1560 | fix y | |
| 1561 | assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S" | |
| 1562 | from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by auto | |
| 1563 |     moreover {assume "y \<in> ?Mx" hence "y \<le> ?a" using Mxne fMx by auto with ay have "False" by simp}
 | |
| 1564 |     moreover {assume "y \<in> ?xM" hence "y \<ge> ?b" using xMne fxM by auto with yb have "False" by simp}
 | |
| 1565 | ultimately show "False" by blast | |
| 1566 | qed | |
| 1567 | from ainS binS noy ax xb px show ?thesis by blast | |
| 1568 | qed | |
| 1569 | ||
| 1570 | lemma rinf_uset: | |
| 1571 | assumes lp: "isrlfm p" | |
| 1572 | and nmi: "\<not> (Ifm (x#bs) (minusinf p))" (is "\<not> (Ifm (x#bs) (?M p))") | |
| 1573 | and npi: "\<not> (Ifm (x#bs) (plusinf p))" (is "\<not> (Ifm (x#bs) (?P p))") | |
| 1574 | and ex: "\<exists> x. Ifm (x#bs) p" (is "\<exists> x. ?I x p") | |
| 1575 | shows "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((Inum (x#bs) l / real n + Inum (x#bs) s / real m) / 2) p" | |
| 1576 | proof- | |
| 1577 | let ?N = "\<lambda> x t. Inum (x#bs) t" | |
| 1578 | let ?U = "set (uset p)" | |
| 1579 | from ex obtain a where pa: "?I a p" by blast | |
| 1580 | from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi | |
| 1581 | have nmi': "\<not> (?I a (?M p))" by simp | |
| 1582 | from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi | |
| 1583 | have npi': "\<not> (?I a (?P p))" by simp | |
| 1584 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). ?I ((?N a l/real n + ?N a s /real m) / 2) p" | |
| 1585 | proof- | |
| 1586 | let ?M = "(\<lambda> (t,c). ?N a t / real c) ` ?U" | |
| 1587 | have fM: "finite ?M" by auto | |
| 1588 | from rminusinf_uset[OF lp nmi pa] rplusinf_uset[OF lp npi pa] | |
| 1589 | have "\<exists> (l,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). a \<le> ?N x l / real n \<and> a \<ge> ?N x s / real m" by blast | |
| 1590 | then obtain "t" "n" "s" "m" where | |
| 1591 | tnU: "(t,n) \<in> ?U" and smU: "(s,m) \<in> ?U" | |
| 1592 | and xs1: "a \<le> ?N x s / real m" and tx1: "a \<ge> ?N x t / real n" by blast | |
| 1593 | from uset_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1 have xs: "a \<le> ?N a s / real m" and tx: "a \<ge> ?N a t / real n" by auto | |
| 1594 |     from tnU have Mne: "?M \<noteq> {}" by auto
 | |
| 1595 |     hence Une: "?U \<noteq> {}" by simp
 | |
| 1596 | let ?l = "Min ?M" | |
| 1597 | let ?u = "Max ?M" | |
| 1598 | have linM: "?l \<in> ?M" using fM Mne by simp | |
| 1599 | have uinM: "?u \<in> ?M" using fM Mne by simp | |
| 1600 | have tnM: "?N a t / real n \<in> ?M" using tnU by auto | |
| 1601 | have smM: "?N a s / real m \<in> ?M" using smU by auto | |
| 1602 | have lM: "\<forall> t\<in> ?M. ?l \<le> t" using Mne fM by auto | |
| 1603 | have Mu: "\<forall> t\<in> ?M. t \<le> ?u" using Mne fM by auto | |
| 1604 | have "?l \<le> ?N a t / real n" using tnM Mne by simp hence lx: "?l \<le> a" using tx by simp | |
| 1605 | have "?N a s / real m \<le> ?u" using smM Mne by simp hence xu: "a \<le> ?u" using xs by simp | |
| 1606 | from finite_set_intervals2[where P="\<lambda> x. ?I x p",OF pa lx xu linM uinM fM lM Mu] | |
| 1607 | have "(\<exists> s\<in> ?M. ?I s p) \<or> | |
| 1608 | (\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p)" . | |
| 1609 |     moreover { fix u assume um: "u\<in> ?M" and pu: "?I u p"
 | |
| 1610 | hence "\<exists> (tu,nu) \<in> ?U. u = ?N a tu / real nu" by auto | |
| 1611 | then obtain "tu" "nu" where tuU: "(tu,nu) \<in> ?U" and tuu:"u= ?N a tu / real nu" by blast | |
| 1612 | have "(u + u) / 2 = u" by auto with pu tuu | |
| 1613 | have "?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p" by simp | |
| 1614 | with tuU have ?thesis by blast} | |
| 1615 |     moreover{
 | |
| 1616 | assume "\<exists> t1\<in> ?M. \<exists> t2 \<in> ?M. (\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M) \<and> t1 < a \<and> a < t2 \<and> ?I a p" | |
| 1617 | then obtain t1 and t2 where t1M: "t1 \<in> ?M" and t2M: "t2\<in> ?M" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1618 | and noM: "\<forall> y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" and t1x: "t1 < a" and xt2: "a < t2" and px: "?I a p" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1619 | by blast | 
| 29789 | 1620 | from t1M have "\<exists> (t1u,t1n) \<in> ?U. t1 = ?N a t1u / real t1n" by auto | 
| 1621 | then obtain "t1u" "t1n" where t1uU: "(t1u,t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real t1n" by blast | |
| 1622 | from t2M have "\<exists> (t2u,t2n) \<in> ?U. t2 = ?N a t2u / real t2n" by auto | |
| 1623 | then obtain "t2u" "t2n" where t2uU: "(t2u,t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real t2n" by blast | |
| 1624 | from t1x xt2 have t1t2: "t1 < t2" by simp | |
| 1625 | let ?u = "(t1 + t2) / 2" | |
| 1626 | from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2" by auto | |
| 1627 | from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" . | |
| 1628 | with t1uU t2uU t1u t2u have ?thesis by blast} | |
| 1629 | ultimately show ?thesis by blast | |
| 1630 | qed | |
| 1631 | then obtain "l" "n" "s" "m" where lnU: "(l,n) \<in> ?U" and smU:"(s,m) \<in> ?U" | |
| 1632 | and pu: "?I ((?N a l / real n + ?N a s / real m) / 2) p" by blast | |
| 1633 | from lnU smU uset_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s" by auto | |
| 1634 | from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"] | |
| 1635 | numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu | |
| 1636 | have "?I ((?N x l / real n + ?N x s / real m) / 2) p" by simp | |
| 1637 | with lnU smU | |
| 1638 | show ?thesis by auto | |
| 1639 | qed | |
| 1640 | (* The Ferrante - Rackoff Theorem *) | |
| 1641 | ||
| 1642 | theorem fr_eq: | |
| 1643 | assumes lp: "isrlfm p" | |
| 1644 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,n) \<in> set (uset p). \<exists> (s,m) \<in> set (uset p). Ifm ((((Inum (x#bs) t)/ real n + (Inum (x#bs) s) / real m) /2)#bs) p))" | |
| 1645 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1646 | proof | |
| 1647 | assume px: "\<exists> x. ?I x p" | |
| 1648 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1649 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1650 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1651 | from rinf_uset[OF lp nmi npi] have "?F" using px by blast hence "?D" by blast} | |
| 1652 | ultimately show "?D" by blast | |
| 1653 | next | |
| 1654 | assume "?D" | |
| 1655 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1656 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1657 |   moreover {assume f:"?F" hence "?E" by blast}
 | |
| 1658 | ultimately show "?E" by blast | |
| 1659 | qed | |
| 1660 | ||
| 1661 | ||
| 1662 | lemma fr_equsubst: | |
| 1663 | assumes lp: "isrlfm p" | |
| 1664 | shows "(\<exists> x. Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) \<or> (Ifm (x#bs) (plusinf p)) \<or> (\<exists> (t,k) \<in> set (uset p). \<exists> (s,l) \<in> set (uset p). Ifm (x#bs) (usubst p (Add(Mul l t) (Mul k s) , 2*k*l))))" | |
| 1665 | (is "(\<exists> x. ?I x p) = (?M \<or> ?P \<or> ?F)" is "?E = ?D") | |
| 1666 | proof | |
| 1667 | assume px: "\<exists> x. ?I x p" | |
| 1668 | have "?M \<or> ?P \<or> (\<not> ?M \<and> \<not> ?P)" by blast | |
| 1669 |   moreover {assume "?M \<or> ?P" hence "?D" by blast}
 | |
| 1670 |   moreover {assume nmi: "\<not> ?M" and npi: "\<not> ?P"
 | |
| 1671 | let ?f ="\<lambda> (t,n). Inum (x#bs) t / real n" | |
| 1672 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1673 |     {fix t n s m assume "(t,n)\<in> set (uset p)" and "(s,m) \<in> set (uset p)"
 | |
| 1674 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real n > 0" and snb: "numbound0 s" and mp:"real m > 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1675 | by auto | 
| 29789 | 1676 | let ?st = "Add (Mul m t) (Mul n s)" | 
| 1677 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1678 | by (simp add: mult_commute) | 
| 29789 | 1679 | from tnb snb have st_nb: "numbound0 ?st" by simp | 
| 1680 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32642diff
changeset | 1681 | using mnp mp np by (simp add: algebra_simps add_divide_distrib) | 
| 29789 | 1682 | from usubst_I[OF lp mnp st_nb, where x="x" and bs="bs"] | 
| 1683 | have "?I x (usubst p (?st,2*n*m)) = ?I ((?N t / real n + ?N s / real m) /2) p" by (simp only: st[symmetric])} | |
| 1684 | with rinf_uset[OF lp nmi npi px] have "?F" by blast hence "?D" by blast} | |
| 1685 | ultimately show "?D" by blast | |
| 1686 | next | |
| 1687 | assume "?D" | |
| 1688 |   moreover {assume m:"?M" from rminusinf_ex[OF lp m] have "?E" .}
 | |
| 1689 |   moreover {assume p: "?P" from rplusinf_ex[OF lp p] have "?E" . }
 | |
| 1690 |   moreover {fix t k s l assume "(t,k) \<in> set (uset p)" and "(s,l) \<in> set (uset p)" 
 | |
| 1691 | and px:"?I x (usubst p (Add (Mul l t) (Mul k s), 2*k*l))" | |
| 1692 | with uset_l[OF lp] have tnb: "numbound0 t" and np:"real k > 0" and snb: "numbound0 s" and mp:"real l > 0" by auto | |
| 1693 | let ?st = "Add (Mul l t) (Mul k s)" | |
| 1694 | from mult_pos_pos[OF np mp] have mnp: "real (2*k*l) > 0" | |
| 1695 | by (simp add: mult_commute) | |
| 1696 | from tnb snb have st_nb: "numbound0 ?st" by simp | |
| 1697 | from usubst_I[OF lp mnp st_nb, where bs="bs"] px have "?E" by auto} | |
| 1698 | ultimately show "?E" by blast | |
| 1699 | qed | |
| 1700 | ||
| 1701 | ||
| 1702 | (* Implement the right hand side of Ferrante and Rackoff's Theorem. *) | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
33639diff
changeset | 1703 | definition ferrack :: "fm \<Rightarrow> fm" where | 
| 36853 | 1704 | "ferrack p = (let p' = rlfm (simpfm p); mp = minusinf p'; pp = plusinf p' | 
| 29789 | 1705 | in if (mp = T \<or> pp = T) then T else | 
| 36853 | 1706 | (let U = remdups(map simp_num_pair | 
| 29789 | 1707 | (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) | 
| 1708 | (alluopairs (uset p')))) | |
| 1709 | in decr (disj mp (disj pp (evaldjf (simpfm o (usubst p')) U)))))" | |
| 1710 | ||
| 1711 | lemma uset_cong_aux: | |
| 1712 | assumes Ul: "\<forall> (t,n) \<in> set U. numbound0 t \<and> n >0" | |
| 1713 | shows "((\<lambda> (t,n). Inum (x#bs) t /real n) ` (set (map (\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)) (alluopairs U)))) = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (set U \<times> set U))" | |
| 1714 | (is "?lhs = ?rhs") | |
| 1715 | proof(auto) | |
| 1716 | fix t n s m | |
| 1717 | assume "((t,n),(s,m)) \<in> set (alluopairs U)" | |
| 1718 | hence th: "((t,n),(s,m)) \<in> (set U \<times> set U)" | |
| 1719 | using alluopairs_set1[where xs="U"] by blast | |
| 1720 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1721 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1722 | from Ul th have mnz: "m \<noteq> 0" by auto | |
| 1723 | from Ul th have nnz: "n \<noteq> 0" by auto | |
| 1724 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1725 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1726 | ||
| 1727 | thus "(real m * Inum (x # bs) t + real n * Inum (x # bs) s) / | |
| 1728 | (2 * real n * real m) | |
| 1729 | \<in> (\<lambda>((t, n), s, m). | |
| 1730 | (Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) ` | |
| 1731 | (set U \<times> set U)"using mnz nnz th | |
| 1732 | apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def) | |
| 1733 | by (rule_tac x="(s,m)" in bexI,simp_all) | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 1734 | (rule_tac x="(t,n)" in bexI,simp_all add: mult_commute) | 
| 29789 | 1735 | next | 
| 1736 | fix t n s m | |
| 1737 | assume tnU: "(t,n) \<in> set U" and smU:"(s,m) \<in> set U" | |
| 1738 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1739 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1740 | from Ul smU have mnz: "m \<noteq> 0" by auto | |
| 1741 | from Ul tnU have nnz: "n \<noteq> 0" by auto | |
| 1742 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1743 | using mnz nnz by (simp add: algebra_simps add_divide_distrib) | |
| 1744 | let ?P = "\<lambda> (t',n') (s',m'). (Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" | |
| 1745 | have Pc:"\<forall> a b. ?P a b = ?P b a" | |
| 1746 | by auto | |
| 1747 | from Ul alluopairs_set1 have Up:"\<forall> ((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0" by blast | |
| 1748 | from alluopairs_ex[OF Pc, where xs="U"] tnU smU | |
| 1749 | have th':"\<exists> ((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')" | |
| 1750 | by blast | |
| 1751 | then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)" | |
| 1752 | and Pts': "?P (t',n') (s',m')" by blast | |
| 1753 | from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0" by auto | |
| 1754 | let ?st' = "Add (Mul m' t') (Mul n' s')" | |
| 1755 | have st': "(?N t' / real n' + ?N s' / real m')/2 = ?N ?st' / real (2*n'*m')" | |
| 1756 | using mnz' nnz' by (simp add: algebra_simps add_divide_distrib) | |
| 1757 | from Pts' have | |
| 1758 | "(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs) t' / real n' + Inum (x # bs) s' / real m')/2" by simp | |
| 1759 | also have "\<dots> = ((\<lambda>(t, n). Inum (x # bs) t / real n) ((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t',n'),(s',m'))))" by (simp add: st') | |
| 1760 | finally show "(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2 | |
| 1761 | \<in> (\<lambda>(t, n). Inum (x # bs) t / real n) ` | |
| 1762 | (\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ` | |
| 1763 | set (alluopairs U)" | |
| 1764 | using ts'_U by blast | |
| 1765 | qed | |
| 1766 | ||
| 1767 | lemma uset_cong: | |
| 1768 | assumes lp: "isrlfm p" | |
| 1769 | and UU': "((\<lambda> (t,n). Inum (x#bs) t /real n) ` U') = ((\<lambda> ((t,n),(s,m)). (Inum (x#bs) t /real n + Inum (x#bs) s /real m)/2) ` (U \<times> U))" (is "?f ` U' = ?g ` (U\<times>U)") | |
| 1770 | and U: "\<forall> (t,n) \<in> U. numbound0 t \<and> n > 0" | |
| 1771 | and U': "\<forall> (t,n) \<in> U'. numbound0 t \<and> n > 0" | |
| 1772 | shows "(\<exists> (t,n) \<in> U. \<exists> (s,m) \<in> U. Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))) = (\<exists> (t,n) \<in> U'. Ifm (x#bs) (usubst p (t,n)))" | |
| 1773 | (is "?lhs = ?rhs") | |
| 1774 | proof | |
| 1775 | assume ?lhs | |
| 1776 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1777 | Pst: "Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2*n*m))" by blast | |
| 1778 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1779 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1780 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1781 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1782 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1783 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1784 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1785 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1786 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1787 | from tnU smU UU' have "?g ((t,n),(s,m)) \<in> ?f ` U'" by blast | |
| 1788 | hence "\<exists> (t',n') \<in> U'. ?g ((t,n),(s,m)) = ?f (t',n')" | |
| 1789 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1790 | then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t,n),(s,m)) = ?f (t',n')" by blast | |
| 1791 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1792 | from usubst_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst | |
| 1793 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1794 | from conjunct1[OF usubst_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric] th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]] | |
| 1795 | have "Ifm (x # bs) (usubst p (t', n')) " by (simp only: st) | |
| 1796 | then show ?rhs using tnU' by auto | |
| 1797 | next | |
| 1798 | assume ?rhs | |
| 1799 | then obtain t' n' where tnU': "(t',n') \<in> U'" and Pt': "Ifm (x # bs) (usubst p (t', n'))" | |
| 1800 | by blast | |
| 1801 | from tnU' UU' have "?f (t',n') \<in> ?g ` (U\<times>U)" by blast | |
| 1802 | hence "\<exists> ((t,n),(s,m)) \<in> (U\<times>U). ?f (t',n') = ?g ((t,n),(s,m))" | |
| 1803 | by auto (rule_tac x="(a,b)" in bexI, auto) | |
| 1804 | then obtain t n s m where tnU: "(t,n) \<in> U" and smU:"(s,m) \<in> U" and | |
| 1805 | th: "?f (t',n') = ?g((t,n),(s,m)) "by blast | |
| 1806 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1807 | from tnU smU U have tnb: "numbound0 t" and np: "n > 0" | |
| 1808 | and snb: "numbound0 s" and mp:"m > 0" by auto | |
| 1809 | let ?st= "Add (Mul m t) (Mul n s)" | |
| 1810 | from mult_pos_pos[OF np mp] have mnp: "real (2*n*m) > 0" | |
| 1811 | by (simp add: mult_commute real_of_int_mult[symmetric] del: real_of_int_mult) | |
| 1812 | from tnb snb have stnb: "numbound0 ?st" by simp | |
| 1813 | have st: "(?N t / real n + ?N s / real m)/2 = ?N ?st / real (2*n*m)" | |
| 1814 | using mp np by (simp add: algebra_simps add_divide_distrib) | |
| 1815 | from U' tnU' have tnb': "numbound0 t'" and np': "real n' > 0" by auto | |
| 1816 | from usubst_I[OF lp np' tnb', where bs="bs" and x="x",simplified th[simplified split_def fst_conv snd_conv] st] Pt' | |
| 1817 | have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 * n * m) # bs) p" by simp | |
| 1818 | with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU show ?lhs by blast | |
| 1819 | qed | |
| 1820 | ||
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1821 | lemma ferrack: | 
| 29789 | 1822 | assumes qf: "qfree p" | 
| 1823 | shows "qfree (ferrack p) \<and> ((Ifm bs (ferrack p)) = (\<exists> x. Ifm (x#bs) p))" | |
| 1824 | (is "_ \<and> (?rhs = ?lhs)") | |
| 1825 | proof- | |
| 1826 | let ?I = "\<lambda> x p. Ifm (x#bs) p" | |
| 1827 | fix x | |
| 1828 | let ?N = "\<lambda> t. Inum (x#bs) t" | |
| 1829 | let ?q = "rlfm (simpfm p)" | |
| 1830 | let ?U = "uset ?q" | |
| 1831 | let ?Up = "alluopairs ?U" | |
| 1832 | let ?g = "\<lambda> ((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2*n*m)" | |
| 1833 | let ?S = "map ?g ?Up" | |
| 1834 | let ?SS = "map simp_num_pair ?S" | |
| 36853 | 1835 | let ?Y = "remdups ?SS" | 
| 29789 | 1836 | let ?f= "(\<lambda> (t,n). ?N t / real n)" | 
| 1837 | let ?h = "\<lambda> ((t,n),(s,m)). (?N t/real n + ?N s/ real m) /2" | |
| 1838 | let ?F = "\<lambda> p. \<exists> a \<in> set (uset p). \<exists> b \<in> set (uset p). ?I x (usubst p (?g(a,b)))" | |
| 1839 | let ?ep = "evaldjf (simpfm o (usubst ?q)) ?Y" | |
| 1840 | from rlfm_I[OF simpfm_qf[OF qf]] have lq: "isrlfm ?q" by blast | |
| 1841 | from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<le> (set ?U \<times> set ?U)" by simp | |
| 1842 | from uset_l[OF lq] have U_l: "\<forall> (t,n) \<in> set ?U. numbound0 t \<and> n > 0" . | |
| 1843 | from U_l UpU | |
| 1844 | have "\<forall> ((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0" by auto | |
| 1845 | hence Snb: "\<forall> (t,n) \<in> set ?S. numbound0 t \<and> n > 0 " | |
| 1846 | by (auto simp add: mult_pos_pos) | |
| 1847 | have Y_l: "\<forall> (t,n) \<in> set ?Y. numbound0 t \<and> n > 0" | |
| 1848 | proof- | |
| 1849 |     { fix t n assume tnY: "(t,n) \<in> set ?Y" 
 | |
| 1850 | hence "(t,n) \<in> set ?SS" by simp | |
| 1851 | hence "\<exists> (t',n') \<in> set ?S. simp_num_pair (t',n') = (t,n)" | |
| 33639 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33063diff
changeset | 1852 | by (auto simp add: split_def simp del: map_map) | 
| 
603320b93668
New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
 hoelzl parents: 
33063diff
changeset | 1853 | (rule_tac x="((aa,ba),(ab,bb))" in bexI, simp_all) | 
| 29789 | 1854 | then obtain t' n' where tn'S: "(t',n') \<in> set ?S" and tns: "simp_num_pair (t',n') = (t,n)" by blast | 
| 1855 | from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0" by auto | |
| 1856 | from simp_num_pair_l[OF tnb np tns] | |
| 1857 | have "numbound0 t \<and> n > 0" . } | |
| 1858 | thus ?thesis by blast | |
| 1859 | qed | |
| 1860 | ||
| 1861 | have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))" | |
| 1862 | proof- | |
| 1863 | from simp_num_pair_ci[where bs="x#bs"] have | |
| 1864 | "\<forall>x. (?f o simp_num_pair) x = ?f x" by auto | |
| 1865 | hence th: "?f o simp_num_pair = ?f" using ext by blast | |
| 1866 | have "(?f ` set ?Y) = ((?f o simp_num_pair) ` set ?S)" by (simp add: image_compose) | |
| 1867 | also have "\<dots> = (?f ` set ?S)" by (simp add: th) | |
| 1868 | also have "\<dots> = ((?f o ?g) ` set ?Up)" | |
| 1869 | by (simp only: set_map o_def image_compose[symmetric]) | |
| 1870 | also have "\<dots> = (?h ` (set ?U \<times> set ?U))" | |
| 1871 | using uset_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_compose[symmetric]] by blast | |
| 1872 | finally show ?thesis . | |
| 1873 | qed | |
| 1874 | have "\<forall> (t,n) \<in> set ?Y. bound0 (simpfm (usubst ?q (t,n)))" | |
| 1875 | proof- | |
| 1876 |     { fix t n assume tnY: "(t,n) \<in> set ?Y"
 | |
| 1877 | with Y_l have tnb: "numbound0 t" and np: "real n > 0" by auto | |
| 1878 | from usubst_I[OF lq np tnb] | |
| 1879 | have "bound0 (usubst ?q (t,n))" by simp hence "bound0 (simpfm (usubst ?q (t,n)))" | |
| 1880 | using simpfm_bound0 by simp} | |
| 1881 | thus ?thesis by blast | |
| 1882 | qed | |
| 1883 | hence ep_nb: "bound0 ?ep" using evaldjf_bound0[where xs="?Y" and f="simpfm o (usubst ?q)"] by auto | |
| 1884 | let ?mp = "minusinf ?q" | |
| 1885 | let ?pp = "plusinf ?q" | |
| 1886 | let ?M = "?I x ?mp" | |
| 1887 | let ?P = "?I x ?pp" | |
| 1888 | let ?res = "disj ?mp (disj ?pp ?ep)" | |
| 1889 | from rminusinf_bound0[OF lq] rplusinf_bound0[OF lq] ep_nb | |
| 1890 | have nbth: "bound0 ?res" by auto | |
| 1891 | ||
| 1892 | from conjunct1[OF rlfm_I[OF simpfm_qf[OF qf]]] simpfm | |
| 1893 | ||
| 1894 | have th: "?lhs = (\<exists> x. ?I x ?q)" by auto | |
| 1895 | from th fr_equsubst[OF lq, where bs="bs" and x="x"] have lhfr: "?lhs = (?M \<or> ?P \<or> ?F ?q)" | |
| 1896 | by (simp only: split_def fst_conv snd_conv) | |
| 1897 | also have "\<dots> = (?M \<or> ?P \<or> (\<exists> (t,n) \<in> set ?Y. ?I x (simpfm (usubst ?q (t,n)))))" | |
| 1898 | using uset_cong[OF lq YU U_l Y_l] by (simp only: split_def fst_conv snd_conv simpfm) | |
| 1899 | also have "\<dots> = (Ifm (x#bs) ?res)" | |
| 1900 | using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="simpfm o (usubst ?q)",symmetric] | |
| 1901 | by (simp add: split_def pair_collapse) | |
| 1902 | finally have lheq: "?lhs = (Ifm bs (decr ?res))" using decr[OF nbth] by blast | |
| 1903 | hence lr: "?lhs = ?rhs" apply (unfold ferrack_def Let_def) | |
| 1904 | by (cases "?mp = T \<or> ?pp = T", auto) (simp add: disj_def)+ | |
| 1905 | from decr_qf[OF nbth] have "qfree (ferrack p)" by (auto simp add: Let_def ferrack_def) | |
| 1906 | with lr show ?thesis by blast | |
| 1907 | qed | |
| 1908 | ||
| 1909 | definition linrqe:: "fm \<Rightarrow> fm" where | |
| 1910 | "linrqe p = qelim (prep p) ferrack" | |
| 1911 | ||
| 1912 | theorem linrqe: "Ifm bs (linrqe p) = Ifm bs p \<and> qfree (linrqe p)" | |
| 1913 | using ferrack qelim_ci prep | |
| 1914 | unfolding linrqe_def by auto | |
| 1915 | ||
| 1916 | definition ferrack_test :: "unit \<Rightarrow> fm" where | |
| 1917 | "ferrack_test u = linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0))) | |
| 1918 | (E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))" | |
| 1919 | ||
| 51272 | 1920 | ML_val {* @{code ferrack_test} () *}
 | 
| 29789 | 1921 | |
| 1922 | oracle linr_oracle = {*
 | |
| 1923 | let | |
| 1924 | ||
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1925 | val mk_C = @{code C} o @{code int_of_integer};
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1926 | val mk_Bound = @{code Bound} o @{code nat_of_integer};
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1927 | |
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1928 | fun num_of_term vs (Free vT) = mk_Bound (find_index (fn vT' => vT = vT') vs) | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1929 |   | num_of_term vs @{term "real (0::int)"} = mk_C 0
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1930 |   | num_of_term vs @{term "real (1::int)"} = mk_C 1
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1931 |   | num_of_term vs @{term "0::real"} = mk_C 0
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1932 |   | num_of_term vs @{term "1::real"} = mk_C 1
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1933 | | num_of_term vs (Bound i) = mk_Bound i | 
| 29789 | 1934 |   | num_of_term vs (@{term "uminus :: real \<Rightarrow> real"} $ t') = @{code Neg} (num_of_term vs t')
 | 
| 36853 | 1935 |   | num_of_term vs (@{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
 | 
| 1936 |      @{code Add} (num_of_term vs t1, num_of_term vs t2)
 | |
| 1937 |   | num_of_term vs (@{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) =
 | |
| 1938 |      @{code Sub} (num_of_term vs t1, num_of_term vs t2)
 | |
| 1939 |   | num_of_term vs (@{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $ t1 $ t2) = (case num_of_term vs t1
 | |
| 29789 | 1940 |      of @{code C} i => @{code Mul} (i, num_of_term vs t2)
 | 
| 36853 | 1941 | | _ => error "num_of_term: unsupported multiplication") | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 1942 |   | num_of_term vs (@{term "real :: int \<Rightarrow> real"} $ t') =
 | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1943 | (mk_C (snd (HOLogic.dest_number t')) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 1944 |        handle TERM _ => error ("num_of_term: unknown term"))
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 1945 | | num_of_term vs t' = | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1946 | (mk_C (snd (HOLogic.dest_number t')) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 1947 |        handle TERM _ => error ("num_of_term: unknown term"));
 | 
| 29789 | 1948 | |
| 1949 | fun fm_of_term vs @{term True} = @{code T}
 | |
| 1950 |   | fm_of_term vs @{term False} = @{code F}
 | |
| 36853 | 1951 |   | fm_of_term vs (@{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | 
| 1952 |       @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 1953 |   | fm_of_term vs (@{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1954 |       @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
 | |
| 1955 |   | fm_of_term vs (@{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1956 |       @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) 
 | |
| 1957 |   | fm_of_term vs (@{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $ t1 $ t2) =
 | |
| 1958 |       @{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 1959 |   | fm_of_term vs (@{term HOL.conj} $ t1 $ t2) = @{code And} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 1960 |   | fm_of_term vs (@{term HOL.disj} $ t1 $ t2) = @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38558diff
changeset | 1961 |   | fm_of_term vs (@{term HOL.implies} $ t1 $ t2) = @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
 | 
| 29789 | 1962 |   | fm_of_term vs (@{term "Not"} $ t') = @{code NOT} (fm_of_term vs t')
 | 
| 38558 | 1963 |   | fm_of_term vs (Const (@{const_name Ex}, _) $ Abs (xn, xT, p)) =
 | 
| 36853 | 1964 |       @{code E} (fm_of_term (("", dummyT) :: vs) p)
 | 
| 38558 | 1965 |   | fm_of_term vs (Const (@{const_name All}, _) $ Abs (xn, xT, p)) =
 | 
| 36853 | 1966 |       @{code A} (fm_of_term (("", dummyT) ::  vs) p)
 | 
| 29789 | 1967 |   | fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);
 | 
| 1968 | ||
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1969 | fun term_of_num vs (@{code C} i) = @{term "real :: int \<Rightarrow> real"} $
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1970 |       HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i)
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 1971 |   | term_of_num vs (@{code Bound} n) = Free (nth vs (@{code integer_of_nat} n))
 | 
| 29789 | 1972 |   | term_of_num vs (@{code Neg} t') = @{term "uminus :: real \<Rightarrow> real"} $ term_of_num vs t'
 | 
| 1973 |   | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1974 | term_of_num vs t1 $ term_of_num vs t2 | |
| 1975 |   | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1976 | term_of_num vs t1 $ term_of_num vs t2 | |
| 1977 |   | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: real \<Rightarrow> real \<Rightarrow> real"} $
 | |
| 1978 |       term_of_num vs (@{code C} i) $ term_of_num vs t2
 | |
| 1979 |   | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
 | |
| 1980 | ||
| 45740 | 1981 | fun term_of_fm vs @{code T} = @{term True} 
 | 
| 1982 |   | term_of_fm vs @{code F} = @{term False}
 | |
| 29789 | 1983 |   | term_of_fm vs (@{code Lt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | 
| 1984 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1985 |   | term_of_fm vs (@{code Le} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1986 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1987 |   | term_of_fm vs (@{code Gt} t) = @{term "op < :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1988 |       @{term "0::real"} $ term_of_num vs t
 | |
| 1989 |   | term_of_fm vs (@{code Ge} t) = @{term "op \<le> :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1990 |       @{term "0::real"} $ term_of_num vs t
 | |
| 1991 |   | term_of_fm vs (@{code Eq} t) = @{term "op = :: real \<Rightarrow> real \<Rightarrow> bool"} $
 | |
| 1992 |       term_of_num vs t $ @{term "0::real"}
 | |
| 1993 |   | term_of_fm vs (@{code NEq} t) = term_of_fm vs (@{code NOT} (@{code Eq} t))
 | |
| 1994 |   | term_of_fm vs (@{code NOT} t') = HOLogic.Not $ term_of_fm vs t'
 | |
| 1995 |   | term_of_fm vs (@{code And} (t1, t2)) = HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1996 |   | term_of_fm vs (@{code Or} (t1, t2)) = HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1997 |   | term_of_fm vs (@{code Imp}  (t1, t2)) = HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
 | |
| 1998 |   | term_of_fm vs (@{code Iff} (t1, t2)) = @{term "op \<longleftrightarrow> :: bool \<Rightarrow> bool \<Rightarrow> bool"} $
 | |
| 36853 | 1999 | term_of_fm vs t1 $ term_of_fm vs t2; | 
| 29789 | 2000 | |
| 36853 | 2001 | in fn (ctxt, t) => | 
| 29789 | 2002 | let | 
| 36853 | 2003 | val vs = Term.add_frees t []; | 
| 2004 |     val t' = (term_of_fm vs o @{code linrqe} o fm_of_term vs) t;
 | |
| 42361 | 2005 | in (Thm.cterm_of (Proof_Context.theory_of ctxt) o HOLogic.mk_Trueprop o HOLogic.mk_eq) (t, t') end | 
| 29789 | 2006 | end; | 
| 2007 | *} | |
| 2008 | ||
| 48891 | 2009 | ML_file "ferrack_tac.ML" | 
| 47432 | 2010 | |
| 2011 | method_setup rferrack = {*
 | |
| 53168 | 2012 | Scan.lift (Args.mode "no_quantify") >> | 
| 47432 | 2013 | (fn q => fn ctxt => SIMPLE_METHOD' (Ferrack_Tac.linr_tac ctxt (not q))) | 
| 2014 | *} "decision procedure for linear real arithmetic" | |
| 2015 | ||
| 29789 | 2016 | |
| 2017 | lemma | |
| 2018 | fixes x :: real | |
| 2019 | shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1" | |
| 49070 | 2020 | by rferrack | 
| 29789 | 2021 | |
| 2022 | lemma | |
| 2023 | fixes x :: real | |
| 2024 | shows "\<exists>y \<le> x. x = y + 1" | |
| 49070 | 2025 | by rferrack | 
| 29789 | 2026 | |
| 2027 | lemma | |
| 2028 | fixes x :: real | |
| 2029 | shows "\<not> (\<exists>z. x + z = x + z + 1)" | |
| 49070 | 2030 | by rferrack | 
| 29789 | 2031 | |
| 2032 | end |