| 47654 |      1 | (*  Title:      HOL/ex/Transfer_Int_Nat.thy
 | 
|  |      2 |     Author:     Brian Huffman, TU Muenchen
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header {* Using the transfer method between nat and int *}
 | 
|  |      6 | 
 | 
|  |      7 | theory Transfer_Int_Nat
 | 
|  |      8 | imports GCD "~~/src/HOL/Library/Quotient_List"
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | subsection {* Correspondence relation *}
 | 
|  |     12 | 
 | 
|  |     13 | definition ZN :: "int \<Rightarrow> nat \<Rightarrow> bool"
 | 
|  |     14 |   where "ZN = (\<lambda>z n. z = of_nat n)"
 | 
|  |     15 | 
 | 
|  |     16 | subsection {* Transfer rules *}
 | 
|  |     17 | 
 | 
|  |     18 | lemma bi_unique_ZN [transfer_rule]: "bi_unique ZN"
 | 
|  |     19 |   unfolding ZN_def bi_unique_def by simp
 | 
|  |     20 | 
 | 
|  |     21 | lemma right_total_ZN [transfer_rule]: "right_total ZN"
 | 
|  |     22 |   unfolding ZN_def right_total_def by simp
 | 
|  |     23 | 
 | 
|  |     24 | lemma ZN_0 [transfer_rule]: "ZN 0 0"
 | 
|  |     25 |   unfolding ZN_def by simp
 | 
|  |     26 | 
 | 
|  |     27 | lemma ZN_1 [transfer_rule]: "ZN 1 1"
 | 
|  |     28 |   unfolding ZN_def by simp
 | 
|  |     29 | 
 | 
|  |     30 | lemma ZN_add [transfer_rule]: "(ZN ===> ZN ===> ZN) (op +) (op +)"
 | 
|  |     31 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     32 | 
 | 
|  |     33 | lemma ZN_mult [transfer_rule]: "(ZN ===> ZN ===> ZN) (op *) (op *)"
 | 
|  |     34 |   unfolding fun_rel_def ZN_def by (simp add: int_mult)
 | 
|  |     35 | 
 | 
|  |     36 | lemma ZN_diff [transfer_rule]: "(ZN ===> ZN ===> ZN) tsub (op -)"
 | 
|  |     37 |   unfolding fun_rel_def ZN_def tsub_def by (simp add: zdiff_int)
 | 
|  |     38 | 
 | 
|  |     39 | lemma ZN_power [transfer_rule]: "(ZN ===> op = ===> ZN) (op ^) (op ^)"
 | 
|  |     40 |   unfolding fun_rel_def ZN_def by (simp add: int_power)
 | 
|  |     41 | 
 | 
|  |     42 | lemma ZN_nat_id [transfer_rule]: "(ZN ===> op =) nat id"
 | 
|  |     43 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     44 | 
 | 
|  |     45 | lemma ZN_id_int [transfer_rule]: "(ZN ===> op =) id int"
 | 
|  |     46 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     47 | 
 | 
|  |     48 | lemma ZN_All [transfer_rule]:
 | 
|  |     49 |   "((ZN ===> op =) ===> op =) (Ball {0..}) All"
 | 
|  |     50 |   unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
 | 
|  |     51 | 
 | 
|  |     52 | lemma ZN_transfer_forall [transfer_rule]:
 | 
|  |     53 |   "((ZN ===> op =) ===> op =) (transfer_bforall (\<lambda>x. 0 \<le> x)) transfer_forall"
 | 
|  |     54 |   unfolding transfer_forall_def transfer_bforall_def
 | 
|  |     55 |   unfolding fun_rel_def ZN_def by (auto dest: zero_le_imp_eq_int)
 | 
|  |     56 | 
 | 
|  |     57 | lemma ZN_Ex [transfer_rule]: "((ZN ===> op =) ===> op =) (Bex {0..}) Ex"
 | 
|  |     58 |   unfolding fun_rel_def ZN_def Bex_def atLeast_iff
 | 
|  |     59 |   by (metis zero_le_imp_eq_int zero_zle_int)
 | 
|  |     60 | 
 | 
|  |     61 | lemma ZN_le [transfer_rule]: "(ZN ===> ZN ===> op =) (op \<le>) (op \<le>)"
 | 
|  |     62 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     63 | 
 | 
|  |     64 | lemma ZN_less [transfer_rule]: "(ZN ===> ZN ===> op =) (op <) (op <)"
 | 
|  |     65 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     66 | 
 | 
|  |     67 | lemma ZN_eq [transfer_rule]: "(ZN ===> ZN ===> op =) (op =) (op =)"
 | 
|  |     68 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     69 | 
 | 
|  |     70 | lemma ZN_Suc [transfer_rule]: "(ZN ===> ZN) (\<lambda>x. x + 1) Suc"
 | 
|  |     71 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     72 | 
 | 
|  |     73 | lemma ZN_numeral [transfer_rule]:
 | 
|  |     74 |   "(op = ===> ZN) numeral numeral"
 | 
|  |     75 |   unfolding fun_rel_def ZN_def by simp
 | 
|  |     76 | 
 | 
|  |     77 | lemma ZN_dvd [transfer_rule]: "(ZN ===> ZN ===> op =) (op dvd) (op dvd)"
 | 
|  |     78 |   unfolding fun_rel_def ZN_def by (simp add: zdvd_int)
 | 
|  |     79 | 
 | 
|  |     80 | lemma ZN_div [transfer_rule]: "(ZN ===> ZN ===> ZN) (op div) (op div)"
 | 
|  |     81 |   unfolding fun_rel_def ZN_def by (simp add: zdiv_int)
 | 
|  |     82 | 
 | 
|  |     83 | lemma ZN_mod [transfer_rule]: "(ZN ===> ZN ===> ZN) (op mod) (op mod)"
 | 
|  |     84 |   unfolding fun_rel_def ZN_def by (simp add: zmod_int)
 | 
|  |     85 | 
 | 
|  |     86 | lemma ZN_gcd [transfer_rule]: "(ZN ===> ZN ===> ZN) gcd gcd"
 | 
|  |     87 |   unfolding fun_rel_def ZN_def by (simp add: transfer_int_nat_gcd)
 | 
|  |     88 | 
 | 
|  |     89 | text {* For derived operations, we can use the @{text "transfer_prover"}
 | 
|  |     90 |   method to help generate transfer rules. *}
 | 
|  |     91 | 
 | 
|  |     92 | lemma ZN_listsum [transfer_rule]: "(list_all2 ZN ===> ZN) listsum listsum"
 | 
|  |     93 |   unfolding listsum_def [abs_def] by transfer_prover
 | 
|  |     94 | 
 | 
|  |     95 | subsection {* Transfer examples *}
 | 
|  |     96 | 
 | 
|  |     97 | lemma
 | 
|  |     98 |   assumes "\<And>i::int. 0 \<le> i \<Longrightarrow> i + 0 = i"
 | 
|  |     99 |   shows "\<And>i::nat. i + 0 = i"
 | 
|  |    100 | apply transfer
 | 
|  |    101 | apply fact
 | 
|  |    102 | done
 | 
|  |    103 | 
 | 
|  |    104 | lemma
 | 
|  |    105 |   assumes "\<And>i k::int. \<lbrakk>0 \<le> i; 0 \<le> k; i < k\<rbrakk> \<Longrightarrow> \<exists>j\<in>{0..}. i + j = k"
 | 
|  |    106 |   shows "\<And>i k::nat. i < k \<Longrightarrow> \<exists>j. i + j = k"
 | 
|  |    107 | apply transfer
 | 
|  |    108 | apply fact
 | 
|  |    109 | done
 | 
|  |    110 | 
 | 
|  |    111 | lemma
 | 
|  |    112 |   assumes "\<forall>x\<in>{0::int..}. \<forall>y\<in>{0..}. x * y div y = x"
 | 
|  |    113 |   shows "\<forall>x y :: nat. x * y div y = x"
 | 
|  |    114 | apply transfer
 | 
|  |    115 | apply fact
 | 
|  |    116 | done
 | 
|  |    117 | 
 | 
|  |    118 | lemma
 | 
|  |    119 |   assumes "\<And>m n::int. \<lbrakk>0 \<le> m; 0 \<le> n; m * n = 0\<rbrakk> \<Longrightarrow> m = 0 \<or> n = 0"
 | 
|  |    120 |   shows "m * n = (0::nat) \<Longrightarrow> m = 0 \<or> n = 0"
 | 
|  |    121 | apply transfer
 | 
|  |    122 | apply fact
 | 
|  |    123 | done
 | 
|  |    124 | 
 | 
|  |    125 | lemma
 | 
|  |    126 |   assumes "\<forall>x\<in>{0::int..}. \<exists>y\<in>{0..}. \<exists>z\<in>{0..}. x + 3 * y = 5 * z"
 | 
|  |    127 |   shows "\<forall>x::nat. \<exists>y z. x + 3 * y = 5 * z"
 | 
|  |    128 | apply transfer
 | 
|  |    129 | apply fact
 | 
|  |    130 | done
 | 
|  |    131 | 
 | 
|  |    132 | text {* The @{text "fixing"} option prevents generalization over the free
 | 
|  |    133 |   variable @{text "n"}, allowing the local transfer rule to be used. *}
 | 
|  |    134 | 
 | 
|  |    135 | lemma
 | 
|  |    136 |   assumes [transfer_rule]: "ZN x n"
 | 
|  |    137 |   assumes "\<forall>i\<in>{0..}. i < x \<longrightarrow> 2 * i < 3 * x"
 | 
|  |    138 |   shows "\<forall>i. i < n \<longrightarrow> 2 * i < 3 * n"
 | 
|  |    139 | apply (transfer fixing: n)
 | 
|  |    140 | apply fact
 | 
|  |    141 | done
 | 
|  |    142 | 
 | 
|  |    143 | lemma
 | 
|  |    144 |   assumes "gcd (2^i) (3^j) = (1::int)"
 | 
|  |    145 |   shows "gcd (2^i) (3^j) = (1::nat)"
 | 
|  |    146 | apply (transfer fixing: i j)
 | 
|  |    147 | apply fact
 | 
|  |    148 | done
 | 
|  |    149 | 
 | 
|  |    150 | lemma
 | 
|  |    151 |   assumes "\<And>x y z::int. \<lbrakk>0 \<le> x; 0 \<le> y; 0 \<le> z\<rbrakk> \<Longrightarrow> 
 | 
|  |    152 |     listsum [x, y, z] = 0 \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
 | 
|  |    153 |   shows "listsum [x, y, z] = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
 | 
|  |    154 | apply transfer
 | 
|  |    155 | apply fact
 | 
|  |    156 | done
 | 
|  |    157 | 
 | 
|  |    158 | text {* Quantifiers over higher types (e.g. @{text "nat list"}) may
 | 
|  |    159 |   generate @{text "Domainp"} assumptions when transferred. *}
 | 
|  |    160 | 
 | 
|  |    161 | lemma
 | 
|  |    162 |   assumes "\<And>xs::int list. Domainp (list_all2 ZN) xs \<Longrightarrow>
 | 
|  |    163 |     (listsum xs = 0) = list_all (\<lambda>x. x = 0) xs"
 | 
|  |    164 |   shows "listsum xs = (0::nat) \<longleftrightarrow> list_all (\<lambda>x. x = 0) xs"
 | 
|  |    165 | apply transfer
 | 
|  |    166 | apply fact
 | 
|  |    167 | done
 | 
|  |    168 | 
 | 
|  |    169 | text {* Equality on a higher type can be transferred if the relations
 | 
|  |    170 |   involved are bi-unique. *}
 | 
|  |    171 | 
 | 
|  |    172 | lemma
 | 
|  |    173 |   assumes "\<And>xs\<Colon>int list. \<lbrakk>Domainp (list_all2 ZN) xs; xs \<noteq> []\<rbrakk> \<Longrightarrow>
 | 
|  |    174 |     listsum xs < listsum (map (\<lambda>x. x + 1) xs)"
 | 
|  |    175 |   shows "xs \<noteq> [] \<Longrightarrow> listsum xs < listsum (map Suc xs)"
 | 
|  |    176 | apply transfer
 | 
|  |    177 | apply fact
 | 
|  |    178 | done
 | 
|  |    179 | 
 | 
|  |    180 | end
 |