author | nipkow |
Wed, 11 Jul 2018 09:43:48 +0200 | |
changeset 68752 | f221bc388ad0 |
parent 68721 | 53ad5c01be3f |
child 69173 | 38beaaebe736 |
permissions | -rw-r--r-- |
63627 | 1 |
(* Title: HOL/Analysis/Set_Integral.thy |
63329 | 2 |
Author: Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU) |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
3 |
Author: Sébastien Gouëzel sebastien.gouezel@univ-rennes1.fr |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
4 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
5 |
Notation and useful facts for working with integrals over a set. |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
6 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
7 |
TODO: keep all these? Need unicode translations as well. |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
8 |
*) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
9 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
10 |
theory Set_Integral |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
11 |
imports Radon_Nikodym |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
12 |
begin |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
13 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
14 |
(* |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
15 |
Notation |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
16 |
*) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
17 |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
18 |
definition "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
19 |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
20 |
definition "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
21 |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
22 |
definition "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
23 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
24 |
syntax |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
25 |
"_ascii_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
26 |
("(4LINT (_):(_)/|(_)./ _)" [0,60,110,61] 60) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
27 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
28 |
translations |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
29 |
"LINT x:A|M. f" == "CONST set_lebesgue_integral M A (\<lambda>x. f)" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
30 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
31 |
(* |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
32 |
Notation for integration wrt lebesgue measure on the reals: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
33 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
34 |
LBINT x. f |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
35 |
LBINT x : A. f |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
36 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
37 |
TODO: keep all these? Need unicode. |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
38 |
*) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
39 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
40 |
syntax |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
41 |
"_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
42 |
("(2LBINT _./ _)" [0,60] 60) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
43 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
44 |
syntax |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
45 |
"_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
46 |
("(3LBINT _:_./ _)" [0,60,61] 60) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
47 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
48 |
(* |
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
49 |
Basic properties |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
50 |
*) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
51 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
52 |
(* |
61945 | 53 |
lemma indicator_abs_eq: "\<And>A x. \<bar>indicator A x\<bar> = ((indicator A x) :: real)" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
54 |
by (auto simp add: indicator_def) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
55 |
*) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
56 |
|
68721 | 57 |
lemma set_integrable_cong: |
58 |
assumes "M = M'" "A = A'" "\<And>x. x \<in> A \<Longrightarrow> f x = f' x" |
|
59 |
shows "set_integrable M A f = set_integrable M' A' f'" |
|
60 |
proof - |
|
61 |
have "(\<lambda>x. indicator A x *\<^sub>R f x) = (\<lambda>x. indicator A' x *\<^sub>R f' x)" |
|
62 |
using assms by (auto simp: indicator_def) |
|
63 |
thus ?thesis by (simp add: set_integrable_def assms) |
|
64 |
qed |
|
65 |
||
62083 | 66 |
lemma set_borel_measurable_sets: |
67 |
fixes f :: "_ \<Rightarrow> _::real_normed_vector" |
|
68 |
assumes "set_borel_measurable M X f" "B \<in> sets borel" "X \<in> sets M" |
|
69 |
shows "f -` B \<inter> X \<in> sets M" |
|
70 |
proof - |
|
71 |
have "f \<in> borel_measurable (restrict_space M X)" |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
72 |
using assms unfolding set_borel_measurable_def by (subst borel_measurable_restrict_space_iff) auto |
62083 | 73 |
then have "f -` B \<inter> space (restrict_space M X) \<in> sets (restrict_space M X)" |
74 |
by (rule measurable_sets) fact |
|
75 |
with \<open>X \<in> sets M\<close> show ?thesis |
|
76 |
by (subst (asm) sets_restrict_space_iff) (auto simp: space_restrict_space) |
|
77 |
qed |
|
78 |
||
67977
557ea2740125
Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents:
67974
diff
changeset
|
79 |
lemma set_lebesgue_integral_zero [simp]: "set_lebesgue_integral M A (\<lambda>x. 0) = 0" |
557ea2740125
Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents:
67974
diff
changeset
|
80 |
by (auto simp: set_lebesgue_integral_def) |
557ea2740125
Probability builds with new definitions
paulson <lp15@cam.ac.uk>
parents:
67974
diff
changeset
|
81 |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
82 |
lemma set_lebesgue_integral_cong: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
83 |
assumes "A \<in> sets M" and "\<forall>x. x \<in> A \<longrightarrow> f x = g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
84 |
shows "(LINT x:A|M. f x) = (LINT x:A|M. g x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
85 |
unfolding set_lebesgue_integral_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
86 |
using assms |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
87 |
by (metis indicator_simps(2) real_vector.scale_zero_left) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
88 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
89 |
lemma set_lebesgue_integral_cong_AE: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
90 |
assumes [measurable]: "A \<in> sets M" "f \<in> borel_measurable M" "g \<in> borel_measurable M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
91 |
assumes "AE x \<in> A in M. f x = g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
92 |
shows "LINT x:A|M. f x = LINT x:A|M. g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
93 |
proof- |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
94 |
have "AE x in M. indicator A x *\<^sub>R f x = indicator A x *\<^sub>R g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
95 |
using assms by auto |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
96 |
thus ?thesis |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
97 |
unfolding set_lebesgue_integral_def by (intro integral_cong_AE) auto |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
98 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
99 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
100 |
lemma set_integrable_cong_AE: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
101 |
"f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
102 |
AE x \<in> A in M. f x = g x \<Longrightarrow> A \<in> sets M \<Longrightarrow> |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
103 |
set_integrable M A f = set_integrable M A g" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
104 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
105 |
by (rule integrable_cong_AE) auto |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
106 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
107 |
lemma set_integrable_subset: |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
108 |
fixes M A B and f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
109 |
assumes "set_integrable M A f" "B \<in> sets M" "B \<subseteq> A" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
110 |
shows "set_integrable M B f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
111 |
proof - |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
112 |
have "set_integrable M B (\<lambda>x. indicator A x *\<^sub>R f x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
113 |
using assms integrable_mult_indicator set_integrable_def by blast |
61808 | 114 |
with \<open>B \<subseteq> A\<close> show ?thesis |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
115 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
116 |
by (simp add: indicator_inter_arith[symmetric] Int_absorb2) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
117 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
118 |
|
67339 | 119 |
lemma set_integrable_restrict_space: |
120 |
fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" |
|
121 |
assumes f: "set_integrable M S f" and T: "T \<in> sets (restrict_space M S)" |
|
122 |
shows "set_integrable M T f" |
|
123 |
proof - |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
124 |
obtain T' where T_eq: "T = S \<inter> T'" and "T' \<in> sets M" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
125 |
using T by (auto simp: sets_restrict_space) |
67339 | 126 |
have \<open>integrable M (\<lambda>x. indicator T' x *\<^sub>R (indicator S x *\<^sub>R f x))\<close> |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
127 |
using \<open>T' \<in> sets M\<close> f integrable_mult_indicator set_integrable_def by blast |
67339 | 128 |
then show ?thesis |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
129 |
unfolding set_integrable_def |
67339 | 130 |
unfolding T_eq indicator_inter_arith by (simp add: ac_simps) |
131 |
qed |
|
132 |
||
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
133 |
(* TODO: integral_cmul_indicator should be named set_integral_const *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
134 |
(* TODO: borel_integrable_atLeastAtMost should be named something like set_integrable_Icc_isCont *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
135 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
136 |
lemma set_integral_scaleR_right [simp]: "LINT t:A|M. a *\<^sub>R f t = a *\<^sub>R (LINT t:A|M. f t)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
137 |
unfolding set_lebesgue_integral_def |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
138 |
by (subst integral_scaleR_right[symmetric]) (auto intro!: Bochner_Integration.integral_cong) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
139 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
140 |
lemma set_integral_mult_right [simp]: |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
141 |
fixes a :: "'a::{real_normed_field, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
142 |
shows "LINT t:A|M. a * f t = a * (LINT t:A|M. f t)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
143 |
unfolding set_lebesgue_integral_def |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
144 |
by (subst integral_mult_right_zero[symmetric]) auto |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
145 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
146 |
lemma set_integral_mult_left [simp]: |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
147 |
fixes a :: "'a::{real_normed_field, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
148 |
shows "LINT t:A|M. f t * a = (LINT t:A|M. f t) * a" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
149 |
unfolding set_lebesgue_integral_def |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
150 |
by (subst integral_mult_left_zero[symmetric]) auto |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
151 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
152 |
lemma set_integral_divide_zero [simp]: |
59867
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
haftmann
parents:
59358
diff
changeset
|
153 |
fixes a :: "'a::{real_normed_field, field, second_countable_topology}" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
154 |
shows "LINT t:A|M. f t / a = (LINT t:A|M. f t) / a" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
155 |
unfolding set_lebesgue_integral_def |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
156 |
by (subst integral_divide_zero[symmetric], intro Bochner_Integration.integral_cong) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
157 |
(auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
158 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
159 |
lemma set_integrable_scaleR_right [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
160 |
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a *\<^sub>R f t)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
161 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
162 |
unfolding scaleR_left_commute by (rule integrable_scaleR_right) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
163 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
164 |
lemma set_integrable_scaleR_left [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
165 |
fixes a :: "_ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
166 |
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t *\<^sub>R a)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
167 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
168 |
using integrable_scaleR_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
169 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
170 |
lemma set_integrable_mult_right [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
171 |
fixes a :: "'a::{real_normed_field, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
172 |
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a * f t)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
173 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
174 |
using integrable_mult_right[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
175 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
176 |
lemma set_integrable_mult_left [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
177 |
fixes a :: "'a::{real_normed_field, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
178 |
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t * a)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
179 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
180 |
using integrable_mult_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
181 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
182 |
lemma set_integrable_divide [simp, intro]: |
59867
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
haftmann
parents:
59358
diff
changeset
|
183 |
fixes a :: "'a::{real_normed_field, field, second_countable_topology}" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
184 |
assumes "a \<noteq> 0 \<Longrightarrow> set_integrable M A f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
185 |
shows "set_integrable M A (\<lambda>t. f t / a)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
186 |
proof - |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
187 |
have "integrable M (\<lambda>x. indicator A x *\<^sub>R f x / a)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
188 |
using assms unfolding set_integrable_def by (rule integrable_divide_zero) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
189 |
also have "(\<lambda>x. indicator A x *\<^sub>R f x / a) = (\<lambda>x. indicator A x *\<^sub>R (f x / a))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
190 |
by (auto split: split_indicator) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
191 |
finally show ?thesis |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
192 |
unfolding set_integrable_def . |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
193 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
194 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
195 |
lemma set_integral_add [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
196 |
fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
197 |
assumes "set_integrable M A f" "set_integrable M A g" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
198 |
shows "set_integrable M A (\<lambda>x. f x + g x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
199 |
and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
200 |
using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_add_right) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
201 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
202 |
lemma set_integral_diff [simp, intro]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
203 |
assumes "set_integrable M A f" "set_integrable M A g" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
204 |
shows "set_integrable M A (\<lambda>x. f x - g x)" and "LINT x:A|M. f x - g x = |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
205 |
(LINT x:A|M. f x) - (LINT x:A|M. g x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
206 |
using assms unfolding set_integrable_def set_lebesgue_integral_def by (simp_all add: scaleR_diff_right) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
207 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
208 |
(* question: why do we have this for negation, but multiplication by a constant |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
209 |
requires an integrability assumption? *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
210 |
lemma set_integral_uminus: "set_integrable M A f \<Longrightarrow> LINT x:A|M. - f x = - (LINT x:A|M. f x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
211 |
unfolding set_integrable_def set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
212 |
by (subst integral_minus[symmetric]) simp_all |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
213 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
214 |
lemma set_integral_complex_of_real: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
215 |
"LINT x:A|M. complex_of_real (f x) = of_real (LINT x:A|M. f x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
216 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
217 |
by (subst integral_complex_of_real[symmetric]) |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
218 |
(auto intro!: Bochner_Integration.integral_cong split: split_indicator) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
219 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
220 |
lemma set_integral_mono: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
221 |
fixes f g :: "_ \<Rightarrow> real" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
222 |
assumes "set_integrable M A f" "set_integrable M A g" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
223 |
"\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
224 |
shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
225 |
using assms unfolding set_integrable_def set_lebesgue_integral_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
226 |
by (auto intro: integral_mono split: split_indicator) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
227 |
|
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
228 |
lemma set_integral_mono_AE: |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
229 |
fixes f g :: "_ \<Rightarrow> real" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
230 |
assumes "set_integrable M A f" "set_integrable M A g" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
231 |
"AE x \<in> A in M. f x \<le> g x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
232 |
shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
233 |
using assms unfolding set_integrable_def set_lebesgue_integral_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
234 |
by (auto intro: integral_mono_AE split: split_indicator) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
235 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
236 |
lemma set_integrable_abs: "set_integrable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar> :: real)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
237 |
using integrable_abs[of M "\<lambda>x. f x * indicator A x"]unfolding set_integrable_def by (simp add: abs_mult ac_simps) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
238 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
239 |
lemma set_integrable_abs_iff: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
240 |
fixes f :: "_ \<Rightarrow> real" |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
241 |
shows "set_borel_measurable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
242 |
unfolding set_integrable_def set_borel_measurable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
243 |
by (subst (2) integrable_abs_iff[symmetric]) (simp_all add: abs_mult ac_simps) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
244 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
245 |
lemma set_integrable_abs_iff': |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
246 |
fixes f :: "_ \<Rightarrow> real" |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
247 |
shows "f \<in> borel_measurable M \<Longrightarrow> A \<in> sets M \<Longrightarrow> |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
248 |
set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
249 |
by (simp add: set_borel_measurable_def set_integrable_abs_iff) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
250 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
251 |
lemma set_integrable_discrete_difference: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
252 |
fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
253 |
assumes "countable X" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
254 |
assumes diff: "(A - B) \<union> (B - A) \<subseteq> X" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
255 |
assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
256 |
shows "set_integrable M A f \<longleftrightarrow> set_integrable M B f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
257 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
258 |
proof (rule integrable_discrete_difference[where X=X]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
259 |
show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
260 |
using diff by (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
261 |
qed fact+ |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
262 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
263 |
lemma set_integral_discrete_difference: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
264 |
fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
265 |
assumes "countable X" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
266 |
assumes diff: "(A - B) \<union> (B - A) \<subseteq> X" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
267 |
assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
268 |
shows "set_lebesgue_integral M A f = set_lebesgue_integral M B f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
269 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
270 |
proof (rule integral_discrete_difference[where X=X]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
271 |
show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
272 |
using diff by (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
273 |
qed fact+ |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
274 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
275 |
lemma set_integrable_Un: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
276 |
fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
277 |
assumes f_A: "set_integrable M A f" and f_B: "set_integrable M B f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
278 |
and [measurable]: "A \<in> sets M" "B \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
279 |
shows "set_integrable M (A \<union> B) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
280 |
proof - |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
281 |
have "set_integrable M (A - B) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
282 |
using f_A by (rule set_integrable_subset) auto |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
283 |
with f_B have "integrable M (\<lambda>x. indicator (A - B) x *\<^sub>R f x + indicator B x *\<^sub>R f x)" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
284 |
unfolding set_integrable_def using integrable_add by blast |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
285 |
then show ?thesis |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
286 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
287 |
by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
288 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
289 |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
290 |
lemma set_integrable_empty [simp]: "set_integrable M {} f" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
291 |
by (auto simp: set_integrable_def) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
292 |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
293 |
lemma set_integrable_UN: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
294 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
295 |
assumes "finite I" "\<And>i. i\<in>I \<Longrightarrow> set_integrable M (A i) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
296 |
"\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
297 |
shows "set_integrable M (\<Union>i\<in>I. A i) f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
298 |
using assms |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
299 |
by (induct I) (auto simp: set_integrable_Un sets.finite_UN) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
300 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
301 |
lemma set_integral_Un: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
302 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
303 |
assumes "A \<inter> B = {}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
304 |
and "set_integrable M A f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
305 |
and "set_integrable M B f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
306 |
shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
307 |
using assms |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
308 |
unfolding set_integrable_def set_lebesgue_integral_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
309 |
by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric] scaleR_add_left) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
310 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
311 |
lemma set_integral_cong_set: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
312 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
313 |
assumes "set_borel_measurable M A f" "set_borel_measurable M B f" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
314 |
and ae: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
315 |
shows "LINT x:B|M. f x = LINT x:A|M. f x" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
316 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
317 |
proof (rule integral_cong_AE) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
318 |
show "AE x in M. indicator B x *\<^sub>R f x = indicator A x *\<^sub>R f x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
319 |
using ae by (auto simp: subset_eq split: split_indicator) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
320 |
qed (use assms in \<open>auto simp: set_borel_measurable_def\<close>) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
321 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
322 |
lemma set_borel_measurable_subset: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
323 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
324 |
assumes [measurable]: "set_borel_measurable M A f" "B \<in> sets M" and "B \<subseteq> A" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
325 |
shows "set_borel_measurable M B f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
326 |
proof - |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
327 |
have "set_borel_measurable M B (\<lambda>x. indicator A x *\<^sub>R f x)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
328 |
using assms unfolding set_borel_measurable_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
329 |
using borel_measurable_indicator borel_measurable_scaleR by blast |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
330 |
moreover have "(\<lambda>x. indicator B x *\<^sub>R indicator A x *\<^sub>R f x) = (\<lambda>x. indicator B x *\<^sub>R f x)" |
61808 | 331 |
using \<open>B \<subseteq> A\<close> by (auto simp: fun_eq_iff split: split_indicator) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
332 |
ultimately show ?thesis |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
333 |
unfolding set_borel_measurable_def by simp |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
334 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
335 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
336 |
lemma set_integral_Un_AE: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
337 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
338 |
assumes ae: "AE x in M. \<not> (x \<in> A \<and> x \<in> B)" and [measurable]: "A \<in> sets M" "B \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
339 |
and "set_integrable M A f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
340 |
and "set_integrable M B f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
341 |
shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
342 |
proof - |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
343 |
have f: "set_integrable M (A \<union> B) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
344 |
by (intro set_integrable_Un assms) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
345 |
then have f': "set_borel_measurable M (A \<union> B) f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
346 |
using integrable_iff_bounded set_borel_measurable_def set_integrable_def by blast |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
347 |
have "LINT x:A\<union>B|M. f x = LINT x:(A - A \<inter> B) \<union> (B - A \<inter> B)|M. f x" |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
348 |
proof (rule set_integral_cong_set) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
349 |
show "AE x in M. (x \<in> A - A \<inter> B \<union> (B - A \<inter> B)) = (x \<in> A \<union> B)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
350 |
using ae by auto |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
351 |
show "set_borel_measurable M (A - A \<inter> B \<union> (B - A \<inter> B)) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
352 |
using f' by (rule set_borel_measurable_subset) auto |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
353 |
qed fact |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
354 |
also have "\<dots> = (LINT x:(A - A \<inter> B)|M. f x) + (LINT x:(B - A \<inter> B)|M. f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
355 |
by (auto intro!: set_integral_Un set_integrable_subset[OF f]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
356 |
also have "\<dots> = (LINT x:A|M. f x) + (LINT x:B|M. f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
357 |
using ae |
67399 | 358 |
by (intro arg_cong2[where f="(+)"] set_integral_cong_set) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
359 |
(auto intro!: set_borel_measurable_subset[OF f']) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
360 |
finally show ?thesis . |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
361 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
362 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
363 |
lemma set_integral_finite_Union: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
364 |
fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
365 |
assumes "finite I" "disjoint_family_on A I" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
366 |
and "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
367 |
shows "(LINT x:(\<Union>i\<in>I. A i)|M. f x) = (\<Sum>i\<in>I. LINT x:A i|M. f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
368 |
using assms |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
369 |
proof induction |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
370 |
case (insert x F) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
371 |
then have "A x \<inter> UNION F A = {}" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
372 |
by (meson disjoint_family_on_insert) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
373 |
with insert show ?case |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
374 |
by (simp add: set_integral_Un set_integrable_Un set_integrable_UN disjoint_family_on_insert) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
375 |
qed (simp add: set_lebesgue_integral_def) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
376 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
377 |
(* TODO: find a better name? *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
378 |
lemma pos_integrable_to_top: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
379 |
fixes l::real |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
380 |
assumes "\<And>i. A i \<in> sets M" "mono A" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
381 |
assumes nneg: "\<And>x i. x \<in> A i \<Longrightarrow> 0 \<le> f x" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
382 |
and intgbl: "\<And>i::nat. set_integrable M (A i) f" |
61969 | 383 |
and lim: "(\<lambda>i::nat. LINT x:A i|M. f x) \<longlonglongrightarrow> l" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
384 |
shows "set_integrable M (\<Union>i. A i) f" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
385 |
unfolding set_integrable_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
386 |
apply (rule integrable_monotone_convergence[where f = "\<lambda>i::nat. \<lambda>x. indicator (A i) x *\<^sub>R f x" and x = l]) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
387 |
apply (rule intgbl [unfolded set_integrable_def]) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
388 |
prefer 3 apply (rule lim [unfolded set_lebesgue_integral_def]) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
389 |
apply (rule AE_I2) |
61808 | 390 |
using \<open>mono A\<close> apply (auto simp: mono_def nneg split: split_indicator) [] |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
391 |
proof (rule AE_I2) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
392 |
{ fix x assume "x \<in> space M" |
61969 | 393 |
show "(\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
394 |
proof cases |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
395 |
assume "\<exists>i. x \<in> A i" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
396 |
then guess i .. |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
397 |
then have *: "eventually (\<lambda>i. x \<in> A i) sequentially" |
61808 | 398 |
using \<open>x \<in> A i\<close> \<open>mono A\<close> by (auto simp: eventually_sequentially mono_def) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
399 |
show ?thesis |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
400 |
apply (intro Lim_eventually) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
401 |
using * |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
402 |
apply eventually_elim |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
403 |
apply (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
404 |
done |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
405 |
qed auto } |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
406 |
then show "(\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R f x) \<in> borel_measurable M" |
62624
59ceeb6f3079
generalized some Borel measurable statements to support ennreal
hoelzl
parents:
62083
diff
changeset
|
407 |
apply (rule borel_measurable_LIMSEQ_real) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
408 |
apply assumption |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
409 |
using intgbl set_integrable_def by blast |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
410 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
411 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
412 |
(* Proof from Royden Real Analysis, p. 91. *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
413 |
lemma lebesgue_integral_countable_add: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
414 |
fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
415 |
assumes meas[intro]: "\<And>i::nat. A i \<in> sets M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
416 |
and disj: "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
417 |
and intgbl: "set_integrable M (\<Union>i. A i) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
418 |
shows "LINT x:(\<Union>i. A i)|M. f x = (\<Sum>i. (LINT x:(A i)|M. f x))" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
419 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
420 |
proof (subst integral_suminf[symmetric]) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
421 |
show int_A: "integrable M (\<lambda>x. indicat_real (A i) x *\<^sub>R f x)" for i |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
422 |
using intgbl unfolding set_integrable_def [symmetric] |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
423 |
by (rule set_integrable_subset) auto |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
424 |
{ fix x assume "x \<in> space M" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
425 |
have "(\<lambda>i. indicator (A i) x *\<^sub>R f x) sums (indicator (\<Union>i. A i) x *\<^sub>R f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
426 |
by (intro sums_scaleR_left indicator_sums) fact } |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
427 |
note sums = this |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
428 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
429 |
have norm_f: "\<And>i. set_integrable M (A i) (\<lambda>x. norm (f x))" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
430 |
using int_A[THEN integrable_norm] unfolding set_integrable_def by auto |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
431 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
432 |
show "AE x in M. summable (\<lambda>i. norm (indicator (A i) x *\<^sub>R f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
433 |
using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
434 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
435 |
show "summable (\<lambda>i. LINT x|M. norm (indicator (A i) x *\<^sub>R f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
436 |
proof (rule summableI_nonneg_bounded) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
437 |
fix n |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
438 |
show "0 \<le> LINT x|M. norm (indicator (A n) x *\<^sub>R f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
439 |
using norm_f by (auto intro!: integral_nonneg_AE) |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
440 |
|
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
441 |
have "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) = (\<Sum>i<n. LINT x:A i|M. norm (f x))" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
442 |
by (simp add: abs_mult set_lebesgue_integral_def) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
443 |
also have "\<dots> = set_lebesgue_integral M (\<Union>i<n. A i) (\<lambda>x. norm (f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
444 |
using norm_f |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
445 |
by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
446 |
also have "\<dots> \<le> set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
447 |
using intgbl[unfolded set_integrable_def, THEN integrable_norm] norm_f |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
448 |
unfolding set_lebesgue_integral_def set_integrable_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
449 |
apply (intro integral_mono set_integrable_UN[of "{..<n}", unfolded set_integrable_def]) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
450 |
apply (auto split: split_indicator) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
451 |
done |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
452 |
finally show "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) \<le> |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
453 |
set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
454 |
by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
455 |
qed |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
456 |
show "LINT x|M. indicator (UNION UNIV A) x *\<^sub>R f x = LINT x|M. (\<Sum>i. indicator (A i) x *\<^sub>R f x)" |
63886
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
hoelzl
parents:
63627
diff
changeset
|
457 |
apply (rule Bochner_Integration.integral_cong[OF refl]) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
458 |
apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
459 |
using sums_unique[OF indicator_sums[OF disj]] |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
460 |
apply auto |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
461 |
done |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
462 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
463 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
464 |
lemma set_integral_cont_up: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
465 |
fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
466 |
assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "incseq A" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
467 |
and intgbl: "set_integrable M (\<Union>i. A i) f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
468 |
shows "(\<lambda>i. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Union>i. A i)|M. f x" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
469 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
470 |
proof (intro integral_dominated_convergence[where w="\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x)"]) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
471 |
have int_A: "\<And>i. set_integrable M (A i) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
472 |
using intgbl by (rule set_integrable_subset) auto |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
473 |
show "\<And>i. (\<lambda>x. indicator (A i) x *\<^sub>R f x) \<in> borel_measurable M" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
474 |
using int_A integrable_iff_bounded set_integrable_def by blast |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
475 |
show "(\<lambda>x. indicator (UNION UNIV A) x *\<^sub>R f x) \<in> borel_measurable M" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
476 |
using integrable_iff_bounded intgbl set_integrable_def by blast |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
477 |
show "integrable M (\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x))" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
478 |
using int_A intgbl integrable_norm unfolding set_integrable_def |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
479 |
by fastforce |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
480 |
{ fix x i assume "x \<in> A i" |
61969 | 481 |
with A have "(\<lambda>xa. indicator (A xa) x::real) \<longlonglongrightarrow> 1 \<longleftrightarrow> (\<lambda>xa. 1::real) \<longlonglongrightarrow> 1" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
482 |
by (intro filterlim_cong refl) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
483 |
(fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) } |
61969 | 484 |
then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Union>i. A i) x *\<^sub>R f x" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
485 |
by (intro AE_I2 tendsto_intros) (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
486 |
qed (auto split: split_indicator) |
60615
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
paulson <lp15@cam.ac.uk>
parents:
59867
diff
changeset
|
487 |
|
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
488 |
(* Can the int0 hypothesis be dropped? *) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
489 |
lemma set_integral_cont_down: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
490 |
fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
491 |
assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "decseq A" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
492 |
and int0: "set_integrable M (A 0) f" |
61969 | 493 |
shows "(\<lambda>i::nat. LINT x:(A i)|M. f x) \<longlonglongrightarrow> LINT x:(\<Inter>i. A i)|M. f x" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
494 |
unfolding set_lebesgue_integral_def |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
495 |
proof (rule integral_dominated_convergence) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
496 |
have int_A: "\<And>i. set_integrable M (A i) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
497 |
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
498 |
have "integrable M (\<lambda>c. norm (indicat_real (A 0) c *\<^sub>R f c))" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
499 |
by (metis (no_types) int0 integrable_norm set_integrable_def) |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
500 |
then show "integrable M (\<lambda>x. indicator (A 0) x *\<^sub>R norm (f x))" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
501 |
by force |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
502 |
have "set_integrable M (\<Inter>i. A i) f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
503 |
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
504 |
with int_A show "(\<lambda>x. indicat_real (INTER UNIV A) x *\<^sub>R f x) \<in> borel_measurable M" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
505 |
"\<And>i. (\<lambda>x. indicat_real (A i) x *\<^sub>R f x) \<in> borel_measurable M" |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
506 |
by (auto simp: set_integrable_def) |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
507 |
show "\<And>i. AE x in M. norm (indicator (A i) x *\<^sub>R f x) \<le> indicator (A 0) x *\<^sub>R norm (f x)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
508 |
using A by (auto split: split_indicator simp: decseq_def) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
509 |
{ fix x i assume "x \<in> space M" "x \<notin> A i" |
61969 | 510 |
with A have "(\<lambda>i. indicator (A i) x::real) \<longlonglongrightarrow> 0 \<longleftrightarrow> (\<lambda>i. 0::real) \<longlonglongrightarrow> 0" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
511 |
by (intro filterlim_cong refl) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
512 |
(auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) } |
61969 | 513 |
then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) \<longlonglongrightarrow> indicator (\<Inter>i. A i) x *\<^sub>R f x" |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
514 |
by (intro AE_I2 tendsto_intros) (auto split: split_indicator) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
515 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
516 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
517 |
lemma set_integral_at_point: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
518 |
fixes a :: real |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
519 |
assumes "set_integrable M {a} f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
520 |
and [simp]: "{a} \<in> sets M" and "(emeasure M) {a} \<noteq> \<infinity>" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
521 |
shows "(LINT x:{a} | M. f x) = f a * measure M {a}" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
522 |
proof- |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
523 |
have "set_lebesgue_integral M {a} f = set_lebesgue_integral M {a} (%x. f a)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
524 |
by (intro set_lebesgue_integral_cong) simp_all |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
525 |
then show ?thesis using assms |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
526 |
unfolding set_lebesgue_integral_def by simp |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
527 |
qed |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
528 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
529 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
530 |
abbreviation complex_integrable :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
531 |
"complex_integrable M f \<equiv> integrable M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
532 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
533 |
abbreviation complex_lebesgue_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" ("integral\<^sup>C") where |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
534 |
"integral\<^sup>C M f == integral\<^sup>L M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
535 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
536 |
syntax |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
537 |
"_complex_lebesgue_integral" :: "pttrn \<Rightarrow> complex \<Rightarrow> 'a measure \<Rightarrow> complex" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
538 |
("\<integral>\<^sup>C _. _ \<partial>_" [60,61] 110) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
539 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
540 |
translations |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
541 |
"\<integral>\<^sup>Cx. f \<partial>M" == "CONST complex_lebesgue_integral M (\<lambda>x. f)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
542 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
543 |
syntax |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
544 |
"_ascii_complex_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
545 |
("(3CLINT _|_. _)" [0,110,60] 60) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
546 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
547 |
translations |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
548 |
"CLINT x|M. f" == "CONST complex_lebesgue_integral M (\<lambda>x. f)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
549 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
550 |
lemma complex_integrable_cnj [simp]: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
551 |
"complex_integrable M (\<lambda>x. cnj (f x)) \<longleftrightarrow> complex_integrable M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
552 |
proof |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
553 |
assume "complex_integrable M (\<lambda>x. cnj (f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
554 |
then have "complex_integrable M (\<lambda>x. cnj (cnj (f x)))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
555 |
by (rule integrable_cnj) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
556 |
then show "complex_integrable M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
557 |
by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
558 |
qed simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
559 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
560 |
lemma complex_of_real_integrable_eq: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
561 |
"complex_integrable M (\<lambda>x. complex_of_real (f x)) \<longleftrightarrow> integrable M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
562 |
proof |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
563 |
assume "complex_integrable M (\<lambda>x. complex_of_real (f x))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
564 |
then have "integrable M (\<lambda>x. Re (complex_of_real (f x)))" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
565 |
by (rule integrable_Re) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
566 |
then show "integrable M f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
567 |
by simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
568 |
qed simp |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
569 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
570 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
571 |
abbreviation complex_set_integrable :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
572 |
"complex_set_integrable M A f \<equiv> set_integrable M A f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
573 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
574 |
abbreviation complex_set_lebesgue_integral :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" where |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
575 |
"complex_set_lebesgue_integral M A f \<equiv> set_lebesgue_integral M A f" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
576 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
577 |
syntax |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
578 |
"_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
579 |
("(4CLINT _:_|_. _)" [0,60,110,61] 60) |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
580 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
581 |
translations |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
582 |
"CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
583 |
|
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
584 |
lemma set_measurable_continuous_on_ivl: |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
585 |
assumes "continuous_on {a..b} (f :: real \<Rightarrow> real)" |
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
586 |
shows "set_borel_measurable borel {a..b} f" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
587 |
unfolding set_borel_measurable_def |
66164
2d79288b042c
New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents:
64911
diff
changeset
|
588 |
by (rule borel_measurable_continuous_on_indicator[OF _ assms]) simp |
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
589 |
|
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
590 |
|
64911 | 591 |
text\<open>This notation is from Sébastien Gouëzel: His use is not directly in line with the |
592 |
notations in this file, they are more in line with sum, and more readable he thinks.\<close> |
|
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
593 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
594 |
abbreviation "set_nn_integral M A f \<equiv> nn_integral M (\<lambda>x. f x * indicator A x)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
595 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
596 |
syntax |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
597 |
"_set_nn_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
598 |
("(\<integral>\<^sup>+((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
599 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
600 |
"_set_lebesgue_integral" :: "pttrn => 'a set => 'a measure => ereal => ereal" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
601 |
("(\<integral>((_)\<in>(_)./ _)/\<partial>_)" [0,60,110,61] 60) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
602 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
603 |
translations |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
604 |
"\<integral>\<^sup>+x \<in> A. f \<partial>M" == "CONST set_nn_integral M A (\<lambda>x. f)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
605 |
"\<integral>x \<in> A. f \<partial>M" == "CONST set_lebesgue_integral M A (\<lambda>x. f)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
606 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
607 |
lemma nn_integral_disjoint_pair: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
608 |
assumes [measurable]: "f \<in> borel_measurable M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
609 |
"B \<in> sets M" "C \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
610 |
"B \<inter> C = {}" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
611 |
shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M) + (\<integral>\<^sup>+x \<in> C. f x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
612 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
613 |
have mes: "\<And>D. D \<in> sets M \<Longrightarrow> (\<lambda>x. f x * indicator D x) \<in> borel_measurable M" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
614 |
have pos: "\<And>D. AE x in M. f x * indicator D x \<ge> 0" using assms(2) by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
615 |
have "\<And>x. f x * indicator (B \<union> C) x = f x * indicator B x + f x * indicator C x" using assms(4) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
616 |
by (auto split: split_indicator) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
617 |
then have "(\<integral>\<^sup>+x. f x * indicator (B \<union> C) x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator B x + f x * indicator C x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
618 |
by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
619 |
also have "... = (\<integral>\<^sup>+x. f x * indicator B x \<partial>M) + (\<integral>\<^sup>+x. f x * indicator C x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
620 |
by (rule nn_integral_add) (auto simp add: assms mes pos) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
621 |
finally show ?thesis by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
622 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
623 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
624 |
lemma nn_integral_disjoint_pair_countspace: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
625 |
assumes "B \<inter> C = {}" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
626 |
shows "(\<integral>\<^sup>+x \<in> B \<union> C. f x \<partial>count_space UNIV) = (\<integral>\<^sup>+x \<in> B. f x \<partial>count_space UNIV) + (\<integral>\<^sup>+x \<in> C. f x \<partial>count_space UNIV)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
627 |
by (rule nn_integral_disjoint_pair) (simp_all add: assms) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
628 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
629 |
lemma nn_integral_null_delta: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
630 |
assumes "A \<in> sets M" "B \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
631 |
"(A - B) \<union> (B - A) \<in> null_sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
632 |
shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> B. f x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
633 |
proof (rule nn_integral_cong_AE, auto simp add: indicator_def) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
634 |
have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
635 |
using assms(3) AE_not_in by blast |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
636 |
then show "AE a in M. a \<notin> A \<longrightarrow> a \<in> B \<longrightarrow> f a = 0" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
637 |
by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
638 |
show "AE x\<in>A in M. x \<notin> B \<longrightarrow> f x = 0" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
639 |
using * by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
640 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
641 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
642 |
lemma nn_integral_disjoint_family: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
643 |
assumes [measurable]: "f \<in> borel_measurable M" "\<And>(n::nat). B n \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
644 |
and "disjoint_family B" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
645 |
shows "(\<integral>\<^sup>+x \<in> (\<Union>n. B n). f x \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+x \<in> B n. f x \<partial>M))" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
646 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
647 |
have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (B n) x) \<partial>M) = (\<Sum>n. (\<integral>\<^sup>+ x. f x * indicator (B n) x \<partial>M))" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
648 |
by (rule nn_integral_suminf) simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
649 |
moreover have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (\<Union>n. B n) x" for x |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
650 |
proof (cases) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
651 |
assume "x \<in> (\<Union>n. B n)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
652 |
then obtain n where "x \<in> B n" by blast |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
653 |
have a: "finite {n}" by simp |
64911 | 654 |
have "\<And>i. i \<noteq> n \<Longrightarrow> x \<notin> B i" using \<open>x \<in> B n\<close> assms(3) disjoint_family_on_def |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
655 |
by (metis IntI UNIV_I empty_iff) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
656 |
then have "\<And>i. i \<notin> {n} \<Longrightarrow> indicator (B i) x = (0::ennreal)" using indicator_def by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
657 |
then have b: "\<And>i. i \<notin> {n} \<Longrightarrow> f x * indicator (B i) x = (0::ennreal)" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
658 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
659 |
define h where "h = (\<lambda>i. f x * indicator (B i) x)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
660 |
then have "\<And>i. i \<notin> {n} \<Longrightarrow> h i = 0" using b by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
661 |
then have "(\<Sum>i. h i) = (\<Sum>i\<in>{n}. h i)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
662 |
by (metis sums_unique[OF sums_finite[OF a]]) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
663 |
then have "(\<Sum>i. h i) = h n" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
664 |
then have "(\<Sum>n. f x * indicator (B n) x) = f x * indicator (B n) x" using h_def by simp |
64911 | 665 |
then have "(\<Sum>n. f x * indicator (B n) x) = f x" using \<open>x \<in> B n\<close> indicator_def by simp |
666 |
then show ?thesis using \<open>x \<in> (\<Union>n. B n)\<close> by auto |
|
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
667 |
next |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
668 |
assume "x \<notin> (\<Union>n. B n)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
669 |
then have "\<And>n. f x * indicator (B n) x = 0" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
670 |
have "(\<Sum>n. f x * indicator (B n) x) = 0" |
64911 | 671 |
by (simp add: \<open>\<And>n. f x * indicator (B n) x = 0\<close>) |
672 |
then show ?thesis using \<open>x \<notin> (\<Union>n. B n)\<close> by auto |
|
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
673 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
674 |
ultimately show ?thesis by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
675 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
676 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
677 |
lemma nn_set_integral_add: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
678 |
assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
679 |
"A \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
680 |
shows "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x \<in> A. f x \<partial>M) + (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
681 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
682 |
have "(\<integral>\<^sup>+x \<in> A. (f x + g x) \<partial>M) = (\<integral>\<^sup>+x. (f x * indicator A x + g x * indicator A x) \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
683 |
by (auto simp add: indicator_def intro!: nn_integral_cong) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
684 |
also have "... = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M) + (\<integral>\<^sup>+x. g x * indicator A x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
685 |
apply (rule nn_integral_add) using assms(1) assms(2) by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
686 |
finally show ?thesis by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
687 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
688 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
689 |
lemma nn_set_integral_cong: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
690 |
assumes "AE x in M. f x = g x" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
691 |
shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
692 |
apply (rule nn_integral_cong_AE) using assms(1) by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
693 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
694 |
lemma nn_set_integral_set_mono: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
695 |
"A \<subseteq> B \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+ x \<in> B. f x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
696 |
by (auto intro!: nn_integral_mono split: split_indicator) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
697 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
698 |
lemma nn_set_integral_mono: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
699 |
assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
700 |
"A \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
701 |
and "AE x\<in>A in M. f x \<le> g x" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
702 |
shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) \<le> (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
703 |
by (auto intro!: nn_integral_mono_AE split: split_indicator simp: assms) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
704 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
705 |
lemma nn_set_integral_space [simp]: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
706 |
shows "(\<integral>\<^sup>+ x \<in> space M. f x \<partial>M) = (\<integral>\<^sup>+x. f x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
707 |
by (metis (mono_tags, lifting) indicator_simps(1) mult.right_neutral nn_integral_cong) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
708 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
709 |
lemma nn_integral_count_compose_inj: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
710 |
assumes "inj_on g A" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
711 |
shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
712 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
713 |
have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+x. f (g x) \<partial>count_space A)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
714 |
by (auto simp add: nn_integral_count_space_indicator[symmetric]) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
715 |
also have "... = (\<integral>\<^sup>+y. f y \<partial>count_space (g`A))" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
716 |
by (simp add: assms nn_integral_bij_count_space inj_on_imp_bij_betw) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
717 |
also have "... = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
718 |
by (auto simp add: nn_integral_count_space_indicator[symmetric]) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
719 |
finally show ?thesis by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
720 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
721 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
722 |
lemma nn_integral_count_compose_bij: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
723 |
assumes "bij_betw g A B" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
724 |
shows "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> B. f y \<partial>count_space UNIV)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
725 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
726 |
have "inj_on g A" using assms bij_betw_def by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
727 |
then have "(\<integral>\<^sup>+x \<in> A. f (g x) \<partial>count_space UNIV) = (\<integral>\<^sup>+y \<in> g`A. f y \<partial>count_space UNIV)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
728 |
by (rule nn_integral_count_compose_inj) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
729 |
then show ?thesis using assms by (simp add: bij_betw_def) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
730 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
731 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
732 |
lemma set_integral_null_delta: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
733 |
fixes f::"_ \<Rightarrow> _ :: {banach, second_countable_topology}" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
734 |
assumes [measurable]: "integrable M f" "A \<in> sets M" "B \<in> sets M" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
735 |
and null: "(A - B) \<union> (B - A) \<in> null_sets M" |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
736 |
shows "(\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> B. f x \<partial>M)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
737 |
proof (rule set_integral_cong_set) |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
738 |
have *: "AE a in M. a \<notin> (A - B) \<union> (B - A)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
739 |
using null AE_not_in by blast |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
740 |
then show "AE x in M. (x \<in> B) = (x \<in> A)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
741 |
by auto |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
742 |
qed (simp_all add: set_borel_measurable_def) |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
743 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
744 |
lemma set_integral_space: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
745 |
assumes "integrable M f" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
746 |
shows "(\<integral>x \<in> space M. f x \<partial>M) = (\<integral>x. f x \<partial>M)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
747 |
by (metis (no_types, lifting) indicator_simps(1) integral_cong scaleR_one set_lebesgue_integral_def) |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
748 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
749 |
lemma null_if_pos_func_has_zero_nn_int: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
750 |
fixes f::"'a \<Rightarrow> ennreal" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
751 |
assumes [measurable]: "f \<in> borel_measurable M" "A \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
752 |
and "AE x\<in>A in M. f x > 0" "(\<integral>\<^sup>+x\<in>A. f x \<partial>M) = 0" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
753 |
shows "A \<in> null_sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
754 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
755 |
have "AE x in M. f x * indicator A x = 0" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
756 |
by (subst nn_integral_0_iff_AE[symmetric], auto simp add: assms(4)) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
757 |
then have "AE x\<in>A in M. False" using assms(3) by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
758 |
then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
759 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
760 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
761 |
lemma null_if_pos_func_has_zero_int: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
762 |
assumes [measurable]: "integrable M f" "A \<in> sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
763 |
and "AE x\<in>A in M. f x > 0" "(\<integral>x\<in>A. f x \<partial>M) = (0::real)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
764 |
shows "A \<in> null_sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
765 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
766 |
have "AE x in M. indicator A x * f x = 0" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
767 |
apply (subst integral_nonneg_eq_0_iff_AE[symmetric]) |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
768 |
using assms integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] |
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
769 |
by (auto simp: set_lebesgue_integral_def) |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
770 |
then have "AE x\<in>A in M. f x = 0" by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
771 |
then have "AE x\<in>A in M. False" using assms(3) by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
772 |
then show "A \<in> null_sets M" using assms(2) by (simp add: AE_iff_null_sets) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
773 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
774 |
|
64911 | 775 |
text\<open>The next lemma is a variant of \<open>density_unique\<close>. Note that it uses the notation |
776 |
for nonnegative set integrals introduced earlier.\<close> |
|
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
777 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
778 |
lemma (in sigma_finite_measure) density_unique2: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
779 |
assumes [measurable]: "f \<in> borel_measurable M" "f' \<in> borel_measurable M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
780 |
assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+ x \<in> A. f' x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
781 |
shows "AE x in M. f x = f' x" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
782 |
proof (rule density_unique) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
783 |
show "density M f = density M f'" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
784 |
by (intro measure_eqI) (auto simp: emeasure_density intro!: density_eq) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
785 |
qed (auto simp add: assms) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
786 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
787 |
|
64911 | 788 |
text \<open>The next lemma implies the same statement for Banach-space valued functions |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
789 |
using Hahn-Banach theorem and linear forms. Since they are not yet easily available, I |
64911 | 790 |
only formulate it for real-valued functions.\<close> |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
791 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
792 |
lemma density_unique_real: |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
793 |
fixes f f'::"_ \<Rightarrow> real" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
794 |
assumes M[measurable]: "integrable M f" "integrable M f'" |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
795 |
assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M)" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
796 |
shows "AE x in M. f x = f' x" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
797 |
proof - |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
798 |
define A where "A = {x \<in> space M. f x < f' x}" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
799 |
then have [measurable]: "A \<in> sets M" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
800 |
have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M) - (\<integral>x \<in> A. f x \<partial>M)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
801 |
using \<open>A \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
802 |
then have "(\<integral>x \<in> A. (f' x - f x) \<partial>M) = 0" using assms(3) by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
803 |
then have "A \<in> null_sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
804 |
using A_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f' x - f x" and ?A = A] assms by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
805 |
then have "AE x in M. x \<notin> A" by (simp add: AE_not_in) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
806 |
then have *: "AE x in M. f' x \<le> f x" unfolding A_def by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
807 |
|
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
808 |
define B where "B = {x \<in> space M. f' x < f x}" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
809 |
then have [measurable]: "B \<in> sets M" by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
810 |
have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = (\<integral>x \<in> B. f x \<partial>M) - (\<integral>x \<in> B. f' x \<partial>M)" |
67974
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents:
67399
diff
changeset
|
811 |
using \<open>B \<in> sets M\<close> M integrable_mult_indicator set_integrable_def by blast |
64283
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
812 |
then have "(\<integral>x \<in> B. (f x - f' x) \<partial>M) = 0" using assms(3) by simp |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
813 |
then have "B \<in> null_sets M" |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
814 |
using B_def null_if_pos_func_has_zero_int[where ?f = "\<lambda>x. f x - f' x" and ?A = B] assms by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
815 |
then have "AE x in M. x \<notin> B" by (simp add: AE_not_in) |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
816 |
then have "AE x in M. f' x \<ge> f x" unfolding B_def by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
817 |
then show ?thesis using * by auto |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
818 |
qed |
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents:
63958
diff
changeset
|
819 |
|
64911 | 820 |
text \<open>The next lemma shows that $L^1$ convergence of a sequence of functions follows from almost |
64284
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
821 |
everywhere convergence and the weaker condition of the convergence of the integrated norms (or even |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
822 |
just the nontrivial inequality about them). Useful in a lot of contexts! This statement (or its |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
823 |
variations) are known as Scheffe lemma. |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
824 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
825 |
The formalization is more painful as one should jump back and forth between reals and ereals and justify |
64911 | 826 |
all the time positivity or integrability (thankfully, measurability is handled more or less automatically).\<close> |
64284
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
827 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
828 |
lemma Scheffe_lemma1: |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
829 |
assumes "\<And>n. integrable M (F n)" "integrable M f" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
830 |
"AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
831 |
"limsup (\<lambda>n. \<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
832 |
shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
833 |
proof - |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
834 |
have [measurable]: "\<And>n. F n \<in> borel_measurable M" "f \<in> borel_measurable M" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
835 |
using assms(1) assms(2) by simp_all |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
836 |
define G where "G = (\<lambda>n x. norm(f x) + norm(F n x) - norm(F n x - f x))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
837 |
have [measurable]: "\<And>n. G n \<in> borel_measurable M" unfolding G_def by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
838 |
have G_pos[simp]: "\<And>n x. G n x \<ge> 0" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
839 |
unfolding G_def by (metis ge_iff_diff_ge_0 norm_minus_commute norm_triangle_ineq4) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
840 |
have finint: "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
841 |
using has_bochner_integral_implies_finite_norm[OF has_bochner_integral_integrable[OF \<open>integrable M f\<close>]] |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
842 |
by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
843 |
then have fin2: "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) \<noteq> \<infinity>" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
844 |
by (auto simp: ennreal_mult_eq_top_iff) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
845 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
846 |
{ |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
847 |
fix x assume *: "(\<lambda>n. F n x) \<longlonglongrightarrow> f x" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
848 |
then have "(\<lambda>n. norm(F n x)) \<longlonglongrightarrow> norm(f x)" using tendsto_norm by blast |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
849 |
moreover have "(\<lambda>n. norm(F n x - f x)) \<longlonglongrightarrow> 0" using * Lim_null tendsto_norm_zero_iff by fastforce |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
850 |
ultimately have a: "(\<lambda>n. norm(F n x) - norm(F n x - f x)) \<longlonglongrightarrow> norm(f x)" using tendsto_diff by fastforce |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
851 |
have "(\<lambda>n. norm(f x) + (norm(F n x) - norm(F n x - f x))) \<longlonglongrightarrow> norm(f x) + norm(f x)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
852 |
by (rule tendsto_add) (auto simp add: a) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
853 |
moreover have "\<And>n. G n x = norm(f x) + (norm(F n x) - norm(F n x - f x))" unfolding G_def by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
854 |
ultimately have "(\<lambda>n. G n x) \<longlonglongrightarrow> 2 * norm(f x)" by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
855 |
then have "(\<lambda>n. ennreal(G n x)) \<longlonglongrightarrow> ennreal(2 * norm(f x))" by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
856 |
then have "liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
857 |
using sequentially_bot tendsto_iff_Liminf_eq_Limsup by blast |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
858 |
} |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
859 |
then have "AE x in M. liminf (\<lambda>n. ennreal(G n x)) = ennreal(2 * norm(f x))" using assms(3) by auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
860 |
then have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = (\<integral>\<^sup>+ x. 2 * ennreal(norm(f x)) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
861 |
by (simp add: nn_integral_cong_AE ennreal_mult) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
862 |
also have "... = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" by (rule nn_integral_cmult) auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
863 |
finally have int_liminf: "(\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M) = 2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
864 |
by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
865 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
866 |
have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M)" for n |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
867 |
by (rule nn_integral_add) (auto simp add: assms) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
868 |
then have "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) = |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
869 |
limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(F n x) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
870 |
by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
871 |
also have "... = (\<integral>\<^sup>+x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
872 |
by (rule Limsup_const_add, auto simp add: finint) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
873 |
also have "... \<le> (\<integral>\<^sup>+x. norm(f x) \<partial>M) + (\<integral>\<^sup>+x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
874 |
using assms(4) by (simp add: add_left_mono) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
875 |
also have "... = 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
876 |
unfolding one_add_one[symmetric] distrib_right by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
877 |
ultimately have a: "limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M)) \<le> |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
878 |
2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
879 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
880 |
have le: "ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" for n x |
68403 | 881 |
by (simp add: norm_minus_commute norm_triangle_ineq4 ennreal_minus flip: ennreal_plus) |
64284
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
882 |
then have le2: "(\<integral>\<^sup>+ x. ennreal (norm (F n x - f x)) \<partial>M) \<le> (\<integral>\<^sup>+ x. ennreal (norm (f x)) + ennreal (norm (F n x)) \<partial>M)" for n |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
883 |
by (rule nn_integral_mono) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
884 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
885 |
have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) = (\<integral>\<^sup>+ x. liminf (\<lambda>n. ennreal (G n x)) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
886 |
by (simp add: int_liminf) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
887 |
also have "\<dots> \<le> liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
888 |
by (rule nn_integral_liminf) auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
889 |
also have "liminf (\<lambda>n. (\<integral>\<^sup>+x. G n x \<partial>M)) = |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
890 |
liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
891 |
proof (intro arg_cong[where f=liminf] ext) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
892 |
fix n |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
893 |
have "\<And>x. ennreal(G n x) = ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x))" |
68403 | 894 |
unfolding G_def by (simp add: ennreal_minus flip: ennreal_plus) |
64284
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
895 |
moreover have "(\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) - ennreal(norm(F n x - f x)) \<partial>M) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
896 |
= (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
897 |
proof (rule nn_integral_diff) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
898 |
from le show "AE x in M. ennreal (norm (F n x - f x)) \<le> ennreal (norm (f x)) + ennreal (norm (F n x))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
899 |
by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
900 |
from le2 have "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) < \<infinity>" using assms(1) assms(2) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
901 |
by (metis has_bochner_integral_implies_finite_norm integrable.simps Bochner_Integration.integrable_diff) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
902 |
then show "(\<integral>\<^sup>+x. ennreal (norm (F n x - f x)) \<partial>M) \<noteq> \<infinity>" by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
903 |
qed (auto simp add: assms) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
904 |
ultimately show "(\<integral>\<^sup>+x. G n x \<partial>M) = (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
905 |
by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
906 |
qed |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
907 |
finally have "2 * (\<integral>\<^sup>+ x. norm(f x) \<partial>M) + limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) \<le> |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
908 |
liminf (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) + |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
909 |
limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
910 |
by (intro add_mono) auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
911 |
also have "\<dots> \<le> (limsup (\<lambda>n. \<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M) - limsup (\<lambda>n. \<integral>\<^sup>+x. norm (F n x - f x) \<partial>M)) + |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
912 |
limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
913 |
by (intro add_mono liminf_minus_ennreal le2) auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
914 |
also have "\<dots> = limsup (\<lambda>n. (\<integral>\<^sup>+x. ennreal(norm(f x)) + ennreal(norm(F n x)) \<partial>M))" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
915 |
by (intro diff_add_cancel_ennreal Limsup_mono always_eventually allI le2) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
916 |
also have "\<dots> \<le> 2 * (\<integral>\<^sup>+x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
917 |
by fact |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
918 |
finally have "limsup (\<lambda>n. (\<integral>\<^sup>+x. norm(F n x - f x) \<partial>M)) = 0" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
919 |
using fin2 by simp |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
920 |
then show ?thesis |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
921 |
by (rule tendsto_0_if_Limsup_eq_0_ennreal) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
922 |
qed |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
923 |
|
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
924 |
lemma Scheffe_lemma2: |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
925 |
fixes F::"nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
926 |
assumes "\<And> n::nat. F n \<in> borel_measurable M" "integrable M f" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
927 |
"AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
928 |
"\<And>n. (\<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
929 |
shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0" |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
930 |
proof (rule Scheffe_lemma1) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
931 |
fix n::nat |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
932 |
have "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) < \<infinity>" using assms(2) by (metis has_bochner_integral_implies_finite_norm integrable.cases) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
933 |
then have "(\<integral>\<^sup>+ x. norm(F n x) \<partial>M) < \<infinity>" using assms(4)[of n] by auto |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
934 |
then show "integrable M (F n)" by (subst integrable_iff_bounded, simp add: assms(1)[of n]) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
935 |
qed (auto simp add: assms Limsup_bounded) |
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents:
64283
diff
changeset
|
936 |
|
68721 | 937 |
lemma tendsto_set_lebesgue_integral_at_right: |
938 |
fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}" |
|
939 |
assumes "a < b" and sets: "\<And>a'. a' \<in> {a<..b} \<Longrightarrow> {a'..b} \<in> sets M" |
|
940 |
and "set_integrable M {a<..b} f" |
|
941 |
shows "((\<lambda>a'. set_lebesgue_integral M {a'..b} f) \<longlongrightarrow> |
|
942 |
set_lebesgue_integral M {a<..b} f) (at_right a)" |
|
943 |
proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases) |
|
944 |
case (1 S) |
|
945 |
have eq: "(\<Union>n. {S n..b}) = {a<..b}" |
|
946 |
proof safe |
|
947 |
fix x n assume "x \<in> {S n..b}" |
|
948 |
with 1(1,2)[of n] show "x \<in> {a<..b}" by auto |
|
949 |
next |
|
950 |
fix x assume "x \<in> {a<..b}" |
|
951 |
with order_tendstoD[OF \<open>S \<longlonglongrightarrow> a\<close>, of x] show "x \<in> (\<Union>n. {S n..b})" |
|
952 |
by (force simp: eventually_at_top_linorder dest: less_imp_le) |
|
953 |
qed |
|
954 |
have "(\<lambda>n. set_lebesgue_integral M {S n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {S n..b}) f" |
|
955 |
by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le) |
|
956 |
with eq show ?case by simp |
|
957 |
qed |
|
958 |
||
959 |
||
960 |
text \<open> |
|
961 |
The next lemmas relate convergence of integrals over an interval to |
|
962 |
improper integrals. |
|
963 |
\<close> |
|
964 |
lemma tendsto_set_lebesgue_integral_at_left: |
|
965 |
fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}" |
|
966 |
assumes "a < b" and sets: "\<And>b'. b' \<in> {a..<b} \<Longrightarrow> {a..b'} \<in> sets M" |
|
967 |
and "set_integrable M {a..<b} f" |
|
968 |
shows "((\<lambda>b'. set_lebesgue_integral M {a..b'} f) \<longlongrightarrow> |
|
969 |
set_lebesgue_integral M {a..<b} f) (at_left b)" |
|
970 |
proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases) |
|
971 |
case (1 S) |
|
972 |
have eq: "(\<Union>n. {a..S n}) = {a..<b}" |
|
973 |
proof safe |
|
974 |
fix x n assume "x \<in> {a..S n}" |
|
975 |
with 1(1,2)[of n] show "x \<in> {a..<b}" by auto |
|
976 |
next |
|
977 |
fix x assume "x \<in> {a..<b}" |
|
978 |
with order_tendstoD[OF \<open>S \<longlonglongrightarrow> b\<close>, of x] show "x \<in> (\<Union>n. {a..S n})" |
|
979 |
by (force simp: eventually_at_top_linorder dest: less_imp_le) |
|
980 |
qed |
|
981 |
have "(\<lambda>n. set_lebesgue_integral M {a..S n} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {a..S n}) f" |
|
982 |
by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le) |
|
983 |
with eq show ?case by simp |
|
984 |
qed |
|
985 |
||
986 |
lemma tendsto_set_lebesgue_integral_at_top: |
|
987 |
fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}" |
|
988 |
assumes sets: "\<And>b. b \<ge> a \<Longrightarrow> {a..b} \<in> sets M" |
|
989 |
and int: "set_integrable M {a..} f" |
|
990 |
shows "((\<lambda>b. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {a..} f) at_top" |
|
991 |
proof (rule tendsto_at_topI_sequentially) |
|
992 |
fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially" |
|
993 |
show "(\<lambda>n. set_lebesgue_integral M {a..X n} f) \<longlonglongrightarrow> set_lebesgue_integral M {a..} f" |
|
994 |
unfolding set_lebesgue_integral_def |
|
995 |
proof (rule integral_dominated_convergence) |
|
996 |
show "integrable M (\<lambda>x. indicat_real {a..} x *\<^sub>R norm (f x))" |
|
997 |
using integrable_norm[OF int[unfolded set_integrable_def]] by simp |
|
998 |
show "AE x in M. (\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x" |
|
999 |
proof |
|
1000 |
fix x |
|
1001 |
from \<open>filterlim X at_top sequentially\<close> |
|
1002 |
have "eventually (\<lambda>n. x \<le> X n) sequentially" |
|
1003 |
unfolding filterlim_at_top_ge[where c=x] by auto |
|
1004 |
then show "(\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x" |
|
1005 |
by (intro Lim_eventually) (auto split: split_indicator elim!: eventually_mono) |
|
1006 |
qed |
|
1007 |
fix n show "AE x in M. norm (indicator {a..X n} x *\<^sub>R f x) \<le> |
|
1008 |
indicator {a..} x *\<^sub>R norm (f x)" |
|
1009 |
by (auto split: split_indicator) |
|
1010 |
next |
|
1011 |
from int show "(\<lambda>x. indicat_real {a..} x *\<^sub>R f x) \<in> borel_measurable M" |
|
1012 |
by (simp add: set_integrable_def) |
|
1013 |
next |
|
1014 |
fix n :: nat |
|
1015 |
from sets have "{a..X n} \<in> sets M" by (cases "X n \<ge> a") auto |
|
1016 |
with int have "set_integrable M {a..X n} f" |
|
1017 |
by (rule set_integrable_subset) auto |
|
1018 |
thus "(\<lambda>x. indicat_real {a..X n} x *\<^sub>R f x) \<in> borel_measurable M" |
|
1019 |
by (simp add: set_integrable_def) |
|
1020 |
qed |
|
1021 |
qed |
|
1022 |
||
1023 |
lemma tendsto_set_lebesgue_integral_at_bot: |
|
1024 |
fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}" |
|
1025 |
assumes sets: "\<And>a. a \<le> b \<Longrightarrow> {a..b} \<in> sets M" |
|
1026 |
and int: "set_integrable M {..b} f" |
|
1027 |
shows "((\<lambda>a. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {..b} f) at_bot" |
|
1028 |
proof (rule tendsto_at_botI_sequentially) |
|
1029 |
fix X :: "nat \<Rightarrow> real" assume "filterlim X at_bot sequentially" |
|
1030 |
show "(\<lambda>n. set_lebesgue_integral M {X n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M {..b} f" |
|
1031 |
unfolding set_lebesgue_integral_def |
|
1032 |
proof (rule integral_dominated_convergence) |
|
1033 |
show "integrable M (\<lambda>x. indicat_real {..b} x *\<^sub>R norm (f x))" |
|
1034 |
using integrable_norm[OF int[unfolded set_integrable_def]] by simp |
|
1035 |
show "AE x in M. (\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x" |
|
1036 |
proof |
|
1037 |
fix x |
|
1038 |
from \<open>filterlim X at_bot sequentially\<close> |
|
1039 |
have "eventually (\<lambda>n. x \<ge> X n) sequentially" |
|
1040 |
unfolding filterlim_at_bot_le[where c=x] by auto |
|
1041 |
then show "(\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x" |
|
1042 |
by (intro Lim_eventually) (auto split: split_indicator elim!: eventually_mono) |
|
1043 |
qed |
|
1044 |
fix n show "AE x in M. norm (indicator {X n..b} x *\<^sub>R f x) \<le> |
|
1045 |
indicator {..b} x *\<^sub>R norm (f x)" |
|
1046 |
by (auto split: split_indicator) |
|
1047 |
next |
|
1048 |
from int show "(\<lambda>x. indicat_real {..b} x *\<^sub>R f x) \<in> borel_measurable M" |
|
1049 |
by (simp add: set_integrable_def) |
|
1050 |
next |
|
1051 |
fix n :: nat |
|
1052 |
from sets have "{X n..b} \<in> sets M" by (cases "X n \<le> b") auto |
|
1053 |
with int have "set_integrable M {X n..b} f" |
|
1054 |
by (rule set_integrable_subset) auto |
|
1055 |
thus "(\<lambda>x. indicat_real {X n..b} x *\<^sub>R f x) \<in> borel_measurable M" |
|
1056 |
by (simp add: set_integrable_def) |
|
1057 |
qed |
|
1058 |
qed |
|
1059 |
||
59092
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff
changeset
|
1060 |
end |