1478
|
1 |
(* Title: Reduction.thy
|
1048
|
2 |
ID: $Id$
|
1478
|
3 |
Author: Ole Rasmussen
|
1048
|
4 |
Copyright 1995 University of Cambridge
|
|
5 |
Logic Image: ZF
|
|
6 |
*)
|
|
7 |
|
|
8 |
Reduction = Terms+
|
|
9 |
|
|
10 |
consts
|
1401
|
11 |
Sred1, Sred, Spar_red1,Spar_red :: i
|
|
12 |
"-1->","--->","=1=>", "===>" :: [i,i]=>o (infixl 50)
|
1048
|
13 |
|
|
14 |
translations
|
|
15 |
"a -1-> b" == "<a,b>:Sred1"
|
|
16 |
"a ---> b" == "<a,b>:Sred"
|
|
17 |
"a =1=> b" == "<a,b>:Spar_red1"
|
|
18 |
"a ===> b" == "<a,b>:Spar_red"
|
|
19 |
|
|
20 |
|
|
21 |
inductive
|
|
22 |
domains "Sred1" <= "lambda*lambda"
|
|
23 |
intrs
|
1478
|
24 |
beta "[|m:lambda; n:lambda|] ==> Apl(Fun(m),n) -1-> n/m"
|
|
25 |
rfun "[|m -1-> n|] ==> Fun(m) -1-> Fun(n)"
|
|
26 |
apl_l "[|m2:lambda; m1 -1-> n1|] ==>
|
|
27 |
Apl(m1,m2) -1-> Apl(n1,m2)"
|
|
28 |
apl_r "[|m1:lambda; m2 -1-> n2|] ==>
|
|
29 |
Apl(m1,m2) -1-> Apl(m1,n2)"
|
|
30 |
type_intrs "red_typechecks"
|
1048
|
31 |
|
|
32 |
inductive
|
|
33 |
domains "Sred" <= "lambda*lambda"
|
|
34 |
intrs
|
1478
|
35 |
one_step "[|m-1->n|] ==> m--->n"
|
|
36 |
refl "m:lambda==>m --->m"
|
|
37 |
trans "[|m--->n; n--->p|]==>m--->p"
|
|
38 |
type_intrs "[Sred1.dom_subset RS subsetD]@red_typechecks"
|
1048
|
39 |
|
|
40 |
inductive
|
|
41 |
domains "Spar_red1" <= "lambda*lambda"
|
|
42 |
intrs
|
1478
|
43 |
beta "[|m =1=> m';
|
|
44 |
n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'"
|
|
45 |
rvar "n:nat==> Var(n) =1=> Var(n)"
|
|
46 |
rfun "[|m =1=> m'|]==> Fun(m) =1=> Fun(m')"
|
|
47 |
rapl "[|m =1=> m';
|
|
48 |
n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')"
|
|
49 |
type_intrs "red_typechecks"
|
1048
|
50 |
|
|
51 |
inductive
|
|
52 |
domains "Spar_red" <= "lambda*lambda"
|
|
53 |
intrs
|
1478
|
54 |
one_step "[|m =1=> n|] ==> m ===> n"
|
|
55 |
trans "[|m===>n; n===>p|]==>m===>p"
|
|
56 |
type_intrs "[Spar_red1.dom_subset RS subsetD]@red_typechecks"
|
1048
|
57 |
|
|
58 |
|
|
59 |
end
|
|
60 |
|