author | paulson |
Fri, 17 Jul 1998 11:13:43 +0200 | |
changeset 5156 | f23494fa8dc1 |
parent 5137 | 60205b0de9b9 |
child 5242 | 3087dafb70ec |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/ZF.ML |
0 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
0 | 5 |
|
6 |
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
open ZF; |
|
10 |
||
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
11 |
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) |
5137 | 12 |
Goal "[| b:A; a=b |] ==> a:A"; |
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
13 |
by (etac ssubst 1); |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
14 |
by (assume_tac 1); |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
15 |
val subst_elem = result(); |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
16 |
|
2469 | 17 |
|
0 | 18 |
(*** Bounded universal quantifier ***) |
19 |
||
775 | 20 |
qed_goalw "ballI" ZF.thy [Ball_def] |
0 | 21 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)" |
22 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]); |
|
23 |
||
775 | 24 |
qed_goalw "bspec" ZF.thy [Ball_def] |
0 | 25 |
"[| ALL x:A. P(x); x: A |] ==> P(x)" |
26 |
(fn major::prems=> |
|
27 |
[ (rtac (major RS spec RS mp) 1), |
|
28 |
(resolve_tac prems 1) ]); |
|
29 |
||
775 | 30 |
qed_goalw "ballE" ZF.thy [Ball_def] |
37 | 31 |
"[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q" |
0 | 32 |
(fn major::prems=> |
33 |
[ (rtac (major RS allE) 1), |
|
34 |
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]); |
|
35 |
||
36 |
(*Used in the datatype package*) |
|
775 | 37 |
qed_goal "rev_bspec" ZF.thy |
0 | 38 |
"!!x A P. [| x: A; ALL x:A. P(x) |] ==> P(x)" |
39 |
(fn _ => |
|
40 |
[ REPEAT (ares_tac [bspec] 1) ]); |
|
41 |
||
42 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
775 | 43 |
qed_goal "rev_ballE" ZF.thy |
37 | 44 |
"[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q" |
0 | 45 |
(fn major::prems=> |
46 |
[ (rtac (major RS ballE) 1), |
|
47 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
48 |
||
2469 | 49 |
AddSIs [ballI]; |
50 |
AddEs [rev_ballE]; |
|
51 |
||
0 | 52 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*) |
53 |
val ball_tac = dtac bspec THEN' assume_tac; |
|
54 |
||
55 |
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*) |
|
3840 | 56 |
qed_goal "ball_triv" ZF.thy "(ALL x:A. P) <-> ((EX x. x:A) --> P)" |
4091 | 57 |
(fn _=> [ simp_tac (simpset() addsimps [Ball_def]) 1 ]); |
3425 | 58 |
Addsimps [ball_triv]; |
0 | 59 |
|
60 |
(*Congruence rule for rewriting*) |
|
775 | 61 |
qed_goalw "ball_cong" ZF.thy [Ball_def] |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
62 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
63 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]); |
0 | 64 |
|
65 |
(*** Bounded existential quantifier ***) |
|
66 |
||
775 | 67 |
qed_goalw "bexI" ZF.thy [Bex_def] |
2469 | 68 |
"!!P. [| P(x); x: A |] ==> EX x:A. P(x)" |
2877 | 69 |
(fn _=> [ Blast_tac 1 ]); |
0 | 70 |
|
71 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
775 | 72 |
qed_goal "bexCI" ZF.thy |
3840 | 73 |
"[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A. P(x)" |
0 | 74 |
(fn prems=> |
75 |
[ (rtac classical 1), |
|
76 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); |
|
77 |
||
775 | 78 |
qed_goalw "bexE" ZF.thy [Bex_def] |
0 | 79 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \ |
80 |
\ |] ==> Q" |
|
81 |
(fn major::prems=> |
|
82 |
[ (rtac (major RS exE) 1), |
|
83 |
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]); |
|
84 |
||
2469 | 85 |
AddIs [bexI]; |
86 |
AddSEs [bexE]; |
|
87 |
||
0 | 88 |
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*) |
3840 | 89 |
qed_goal "bex_triv" ZF.thy "(EX x:A. P) <-> ((EX x. x:A) & P)" |
4091 | 90 |
(fn _=> [ simp_tac (simpset() addsimps [Bex_def]) 1 ]); |
3425 | 91 |
Addsimps [bex_triv]; |
0 | 92 |
|
775 | 93 |
qed_goalw "bex_cong" ZF.thy [Bex_def] |
0 | 94 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \ |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
95 |
\ |] ==> Bex(A,P) <-> Bex(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
96 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]); |
0 | 97 |
|
2469 | 98 |
Addcongs [ball_cong, bex_cong]; |
99 |
||
100 |
||
0 | 101 |
(*** Rules for subsets ***) |
102 |
||
775 | 103 |
qed_goalw "subsetI" ZF.thy [subset_def] |
3840 | 104 |
"(!!x. x:A ==> x:B) ==> A <= B" |
0 | 105 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]); |
106 |
||
107 |
(*Rule in Modus Ponens style [was called subsetE] *) |
|
775 | 108 |
qed_goalw "subsetD" ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B" |
0 | 109 |
(fn major::prems=> |
110 |
[ (rtac (major RS bspec) 1), |
|
111 |
(resolve_tac prems 1) ]); |
|
112 |
||
113 |
(*Classical elimination rule*) |
|
775 | 114 |
qed_goalw "subsetCE" ZF.thy [subset_def] |
37 | 115 |
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P" |
0 | 116 |
(fn major::prems=> |
117 |
[ (rtac (major RS ballE) 1), |
|
118 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
119 |
||
2469 | 120 |
AddSIs [subsetI]; |
121 |
AddEs [subsetCE, subsetD]; |
|
122 |
||
123 |
||
0 | 124 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
125 |
val set_mp_tac = dtac subsetD THEN' assume_tac; |
|
126 |
||
127 |
(*Sometimes useful with premises in this order*) |
|
775 | 128 |
qed_goal "rev_subsetD" ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B" |
2877 | 129 |
(fn _=> [ Blast_tac 1 ]); |
0 | 130 |
|
1889 | 131 |
qed_goal "contra_subsetD" ZF.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A" |
2877 | 132 |
(fn _=> [ Blast_tac 1 ]); |
1889 | 133 |
|
134 |
qed_goal "rev_contra_subsetD" ZF.thy "!!c. [| c ~: B; A <= B |] ==> c ~: A" |
|
2877 | 135 |
(fn _=> [ Blast_tac 1 ]); |
1889 | 136 |
|
775 | 137 |
qed_goal "subset_refl" ZF.thy "A <= A" |
2877 | 138 |
(fn _=> [ Blast_tac 1 ]); |
0 | 139 |
|
2469 | 140 |
Addsimps [subset_refl]; |
141 |
||
142 |
qed_goal "subset_trans" ZF.thy "!!A B C. [| A<=B; B<=C |] ==> A<=C" |
|
2877 | 143 |
(fn _=> [ Blast_tac 1 ]); |
0 | 144 |
|
435 | 145 |
(*Useful for proving A<=B by rewriting in some cases*) |
775 | 146 |
qed_goalw "subset_iff" ZF.thy [subset_def,Ball_def] |
435 | 147 |
"A<=B <-> (ALL x. x:A --> x:B)" |
148 |
(fn _=> [ (rtac iff_refl 1) ]); |
|
149 |
||
0 | 150 |
|
151 |
(*** Rules for equality ***) |
|
152 |
||
153 |
(*Anti-symmetry of the subset relation*) |
|
775 | 154 |
qed_goal "equalityI" ZF.thy "[| A <= B; B <= A |] ==> A = B" |
0 | 155 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]); |
156 |
||
2493 | 157 |
AddIs [equalityI]; |
158 |
||
775 | 159 |
qed_goal "equality_iffI" ZF.thy "(!!x. x:A <-> x:B) ==> A = B" |
0 | 160 |
(fn [prem] => |
161 |
[ (rtac equalityI 1), |
|
162 |
(REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]); |
|
163 |
||
2469 | 164 |
bind_thm ("equalityD1", extension RS iffD1 RS conjunct1); |
165 |
bind_thm ("equalityD2", extension RS iffD1 RS conjunct2); |
|
0 | 166 |
|
775 | 167 |
qed_goal "equalityE" ZF.thy |
0 | 168 |
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" |
169 |
(fn prems=> |
|
170 |
[ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]); |
|
171 |
||
775 | 172 |
qed_goal "equalityCE" ZF.thy |
37 | 173 |
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P" |
0 | 174 |
(fn major::prems=> |
175 |
[ (rtac (major RS equalityE) 1), |
|
176 |
(REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]); |
|
177 |
||
178 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
179 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
180 |
put universal quantifiers over the free variables in p. |
|
181 |
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*) |
|
775 | 182 |
qed_goal "setup_induction" ZF.thy |
0 | 183 |
"[| p: A; !!z. z: A ==> p=z --> R |] ==> R" |
184 |
(fn prems=> |
|
185 |
[ (rtac mp 1), |
|
186 |
(REPEAT (resolve_tac (refl::prems) 1)) ]); |
|
187 |
||
188 |
||
189 |
(*** Rules for Replace -- the derived form of replacement ***) |
|
190 |
||
775 | 191 |
qed_goalw "Replace_iff" ZF.thy [Replace_def] |
0 | 192 |
"b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))" |
193 |
(fn _=> |
|
194 |
[ (rtac (replacement RS iff_trans) 1), |
|
195 |
(REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1 |
|
196 |
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]); |
|
197 |
||
198 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *) |
|
775 | 199 |
qed_goal "ReplaceI" ZF.thy |
485 | 200 |
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> \ |
0 | 201 |
\ b : {y. x:A, P(x,y)}" |
202 |
(fn prems=> |
|
203 |
[ (rtac (Replace_iff RS iffD2) 1), |
|
204 |
(REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]); |
|
205 |
||
206 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) |
|
775 | 207 |
qed_goal "ReplaceE" ZF.thy |
0 | 208 |
"[| b : {y. x:A, P(x,y)}; \ |
209 |
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \ |
|
210 |
\ |] ==> R" |
|
211 |
(fn prems=> |
|
212 |
[ (rtac (Replace_iff RS iffD1 RS bexE) 1), |
|
213 |
(etac conjE 2), |
|
214 |
(REPEAT (ares_tac prems 1)) ]); |
|
215 |
||
485 | 216 |
(*As above but without the (generally useless) 3rd assumption*) |
775 | 217 |
qed_goal "ReplaceE2" ZF.thy |
485 | 218 |
"[| b : {y. x:A, P(x,y)}; \ |
219 |
\ !!x. [| x: A; P(x,b) |] ==> R \ |
|
220 |
\ |] ==> R" |
|
221 |
(fn major::prems=> |
|
222 |
[ (rtac (major RS ReplaceE) 1), |
|
223 |
(REPEAT (ares_tac prems 1)) ]); |
|
224 |
||
2469 | 225 |
AddIs [ReplaceI]; |
226 |
AddSEs [ReplaceE2]; |
|
227 |
||
775 | 228 |
qed_goal "Replace_cong" ZF.thy |
0 | 229 |
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \ |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
230 |
\ Replace(A,P) = Replace(B,Q)" |
0 | 231 |
(fn prems=> |
232 |
let val substprems = prems RL [subst, ssubst] |
|
233 |
and iffprems = prems RL [iffD1,iffD2] |
|
234 |
in [ (rtac equalityI 1), |
|
1461 | 235 |
(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1 |
236 |
ORELSE resolve_tac [subsetI, ReplaceI] 1 |
|
237 |
ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ] |
|
0 | 238 |
end); |
239 |
||
2469 | 240 |
Addcongs [Replace_cong]; |
241 |
||
0 | 242 |
(*** Rules for RepFun ***) |
243 |
||
775 | 244 |
qed_goalw "RepFunI" ZF.thy [RepFun_def] |
0 | 245 |
"!!a A. a : A ==> f(a) : {f(x). x:A}" |
246 |
(fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]); |
|
247 |
||
120 | 248 |
(*Useful for coinduction proofs*) |
775 | 249 |
qed_goal "RepFun_eqI" ZF.thy |
0 | 250 |
"!!b a f. [| b=f(a); a : A |] ==> b : {f(x). x:A}" |
251 |
(fn _ => [ etac ssubst 1, etac RepFunI 1 ]); |
|
252 |
||
775 | 253 |
qed_goalw "RepFunE" ZF.thy [RepFun_def] |
0 | 254 |
"[| b : {f(x). x:A}; \ |
255 |
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \ |
|
256 |
\ P" |
|
257 |
(fn major::prems=> |
|
258 |
[ (rtac (major RS ReplaceE) 1), |
|
259 |
(REPEAT (ares_tac prems 1)) ]); |
|
260 |
||
2716 | 261 |
AddIs [RepFun_eqI]; |
2469 | 262 |
AddSEs [RepFunE]; |
263 |
||
775 | 264 |
qed_goalw "RepFun_cong" ZF.thy [RepFun_def] |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
265 |
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" |
4091 | 266 |
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]); |
2469 | 267 |
|
268 |
Addcongs [RepFun_cong]; |
|
0 | 269 |
|
775 | 270 |
qed_goalw "RepFun_iff" ZF.thy [Bex_def] |
485 | 271 |
"b : {f(x). x:A} <-> (EX x:A. b=f(x))" |
2877 | 272 |
(fn _ => [Blast_tac 1]); |
485 | 273 |
|
5067 | 274 |
Goal "{x. x:A} = A"; |
2877 | 275 |
by (Blast_tac 1); |
2469 | 276 |
qed "triv_RepFun"; |
277 |
||
278 |
Addsimps [RepFun_iff, triv_RepFun]; |
|
0 | 279 |
|
280 |
(*** Rules for Collect -- forming a subset by separation ***) |
|
281 |
||
282 |
(*Separation is derivable from Replacement*) |
|
775 | 283 |
qed_goalw "separation" ZF.thy [Collect_def] |
0 | 284 |
"a : {x:A. P(x)} <-> a:A & P(a)" |
2877 | 285 |
(fn _=> [Blast_tac 1]); |
2469 | 286 |
|
287 |
Addsimps [separation]; |
|
0 | 288 |
|
775 | 289 |
qed_goal "CollectI" ZF.thy |
2469 | 290 |
"!!P. [| a:A; P(a) |] ==> a : {x:A. P(x)}" |
291 |
(fn _=> [ Asm_simp_tac 1 ]); |
|
0 | 292 |
|
775 | 293 |
qed_goal "CollectE" ZF.thy |
0 | 294 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R" |
295 |
(fn prems=> |
|
296 |
[ (rtac (separation RS iffD1 RS conjE) 1), |
|
297 |
(REPEAT (ares_tac prems 1)) ]); |
|
298 |
||
2469 | 299 |
qed_goal "CollectD1" ZF.thy "!!P. a : {x:A. P(x)} ==> a:A" |
300 |
(fn _=> [ (etac CollectE 1), (assume_tac 1) ]); |
|
0 | 301 |
|
2469 | 302 |
qed_goal "CollectD2" ZF.thy "!!P. a : {x:A. P(x)} ==> P(a)" |
303 |
(fn _=> [ (etac CollectE 1), (assume_tac 1) ]); |
|
0 | 304 |
|
775 | 305 |
qed_goalw "Collect_cong" ZF.thy [Collect_def] |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
306 |
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)" |
4091 | 307 |
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]); |
2469 | 308 |
|
309 |
AddSIs [CollectI]; |
|
310 |
AddSEs [CollectE]; |
|
311 |
Addcongs [Collect_cong]; |
|
0 | 312 |
|
313 |
(*** Rules for Unions ***) |
|
314 |
||
2469 | 315 |
Addsimps [Union_iff]; |
316 |
||
0 | 317 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
2469 | 318 |
qed_goal "UnionI" ZF.thy "!!C. [| B: C; A: B |] ==> A: Union(C)" |
2877 | 319 |
(fn _=> [ Simp_tac 1, Blast_tac 1 ]); |
0 | 320 |
|
775 | 321 |
qed_goal "UnionE" ZF.thy |
0 | 322 |
"[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R" |
323 |
(fn prems=> |
|
485 | 324 |
[ (resolve_tac [Union_iff RS iffD1 RS bexE] 1), |
0 | 325 |
(REPEAT (ares_tac prems 1)) ]); |
326 |
||
327 |
(*** Rules for Unions of families ***) |
|
328 |
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *) |
|
329 |
||
775 | 330 |
qed_goalw "UN_iff" ZF.thy [Bex_def] |
485 | 331 |
"b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))" |
2877 | 332 |
(fn _=> [ Simp_tac 1, Blast_tac 1 ]); |
2469 | 333 |
|
334 |
Addsimps [UN_iff]; |
|
485 | 335 |
|
0 | 336 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
2469 | 337 |
qed_goal "UN_I" ZF.thy "!!A B. [| a: A; b: B(a) |] ==> b: (UN x:A. B(x))" |
2877 | 338 |
(fn _=> [ Simp_tac 1, Blast_tac 1 ]); |
0 | 339 |
|
775 | 340 |
qed_goal "UN_E" ZF.thy |
0 | 341 |
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" |
342 |
(fn major::prems=> |
|
343 |
[ (rtac (major RS UnionE) 1), |
|
344 |
(REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]); |
|
345 |
||
775 | 346 |
qed_goal "UN_cong" ZF.thy |
3840 | 347 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A. C(x)) = (UN x:B. D(x))" |
4091 | 348 |
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]); |
2469 | 349 |
|
350 |
(*No "Addcongs [UN_cong]" because UN is a combination of constants*) |
|
351 |
||
352 |
(* UN_E appears before UnionE so that it is tried first, to avoid expensive |
|
353 |
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge |
|
354 |
the search space.*) |
|
355 |
AddIs [UnionI]; |
|
356 |
AddSEs [UN_E]; |
|
357 |
AddSEs [UnionE]; |
|
358 |
||
359 |
||
360 |
(*** Rules for Inter ***) |
|
361 |
||
362 |
(*Not obviously useful towards proving InterI, InterD, InterE*) |
|
363 |
qed_goalw "Inter_iff" ZF.thy [Inter_def,Ball_def] |
|
364 |
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)" |
|
2877 | 365 |
(fn _=> [ Simp_tac 1, Blast_tac 1 ]); |
435 | 366 |
|
2469 | 367 |
(* Intersection is well-behaved only if the family is non-empty! *) |
2815
c05fa3ce5439
Improved intersection rule InterI: now truly safe, since the unsafeness is
paulson
parents:
2716
diff
changeset
|
368 |
qed_goal "InterI" ZF.thy |
c05fa3ce5439
Improved intersection rule InterI: now truly safe, since the unsafeness is
paulson
parents:
2716
diff
changeset
|
369 |
"[| !!x. x: C ==> A: x; EX c. c:C |] ==> A : Inter(C)" |
4091 | 370 |
(fn prems=> [ (simp_tac (simpset() addsimps [Inter_iff]) 1), |
371 |
blast_tac (claset() addIs prems) 1 ]); |
|
2469 | 372 |
|
373 |
(*A "destruct" rule -- every B in C contains A as an element, but |
|
374 |
A:B can hold when B:C does not! This rule is analogous to "spec". *) |
|
375 |
qed_goalw "InterD" ZF.thy [Inter_def] |
|
376 |
"!!C. [| A : Inter(C); B : C |] ==> A : B" |
|
2877 | 377 |
(fn _=> [ Blast_tac 1 ]); |
2469 | 378 |
|
379 |
(*"Classical" elimination rule -- does not require exhibiting B:C *) |
|
380 |
qed_goalw "InterE" ZF.thy [Inter_def] |
|
2716 | 381 |
"[| A : Inter(C); B~:C ==> R; A:B ==> R |] ==> R" |
2469 | 382 |
(fn major::prems=> |
383 |
[ (rtac (major RS CollectD2 RS ballE) 1), |
|
384 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
385 |
||
386 |
AddSIs [InterI]; |
|
2716 | 387 |
AddEs [InterD, InterE]; |
0 | 388 |
|
389 |
(*** Rules for Intersections of families ***) |
|
390 |
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *) |
|
391 |
||
2469 | 392 |
qed_goalw "INT_iff" ZF.thy [Inter_def] |
485 | 393 |
"b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)" |
2469 | 394 |
(fn _=> [ Simp_tac 1, Best_tac 1 ]); |
485 | 395 |
|
775 | 396 |
qed_goal "INT_I" ZF.thy |
0 | 397 |
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))" |
4091 | 398 |
(fn prems=> [ blast_tac (claset() addIs prems) 1 ]); |
0 | 399 |
|
775 | 400 |
qed_goal "INT_E" ZF.thy |
0 | 401 |
"[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)" |
402 |
(fn [major,minor]=> |
|
403 |
[ (rtac (major RS InterD) 1), |
|
404 |
(rtac (minor RS RepFunI) 1) ]); |
|
405 |
||
775 | 406 |
qed_goal "INT_cong" ZF.thy |
3840 | 407 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A. C(x)) = (INT x:B. D(x))" |
4091 | 408 |
(fn prems=> [ (simp_tac (simpset() addsimps prems) 1) ]); |
2469 | 409 |
|
410 |
(*No "Addcongs [INT_cong]" because INT is a combination of constants*) |
|
435 | 411 |
|
0 | 412 |
|
413 |
(*** Rules for Powersets ***) |
|
414 |
||
775 | 415 |
qed_goal "PowI" ZF.thy "A <= B ==> A : Pow(B)" |
485 | 416 |
(fn [prem]=> [ (rtac (prem RS (Pow_iff RS iffD2)) 1) ]); |
0 | 417 |
|
775 | 418 |
qed_goal "PowD" ZF.thy "A : Pow(B) ==> A<=B" |
485 | 419 |
(fn [major]=> [ (rtac (major RS (Pow_iff RS iffD1)) 1) ]); |
0 | 420 |
|
2469 | 421 |
AddSIs [PowI]; |
422 |
AddSDs [PowD]; |
|
423 |
||
0 | 424 |
|
425 |
(*** Rules for the empty set ***) |
|
426 |
||
427 |
(*The set {x:0.False} is empty; by foundation it equals 0 |
|
428 |
See Suppes, page 21.*) |
|
2469 | 429 |
qed_goal "not_mem_empty" ZF.thy "a ~: 0" |
430 |
(fn _=> |
|
431 |
[ (cut_facts_tac [foundation] 1), |
|
4091 | 432 |
(best_tac (claset() addDs [equalityD2]) 1) ]); |
2469 | 433 |
|
434 |
bind_thm ("emptyE", not_mem_empty RS notE); |
|
435 |
||
436 |
Addsimps [not_mem_empty]; |
|
437 |
AddSEs [emptyE]; |
|
0 | 438 |
|
775 | 439 |
qed_goal "empty_subsetI" ZF.thy "0 <= A" |
2877 | 440 |
(fn _=> [ Blast_tac 1 ]); |
2469 | 441 |
|
442 |
Addsimps [empty_subsetI]; |
|
0 | 443 |
|
775 | 444 |
qed_goal "equals0I" ZF.thy "[| !!y. y:A ==> False |] ==> A=0" |
4091 | 445 |
(fn prems=> [ blast_tac (claset() addDs prems) 1 ]); |
0 | 446 |
|
2469 | 447 |
qed_goal "equals0D" ZF.thy "!!P. [| A=0; a:A |] ==> P" |
2877 | 448 |
(fn _=> [ Full_simp_tac 1, Blast_tac 1 ]); |
0 | 449 |
|
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
450 |
qed_goal "not_emptyI" ZF.thy "!!A a. a:A ==> A ~= 0" |
2877 | 451 |
(fn _=> [ Blast_tac 1 ]); |
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
452 |
|
868
452f1e6ae3bc
Deleted semicolon at the end of the qed_goal line, which was preventing
lcp
parents:
854
diff
changeset
|
453 |
qed_goal "not_emptyE" ZF.thy "[| A ~= 0; !!x. x:A ==> R |] ==> R" |
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
454 |
(fn [major,minor]=> |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
455 |
[ rtac ([major, equals0I] MRS swap) 1, |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
456 |
swap_res_tac [minor] 1, |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
457 |
assume_tac 1 ]); |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
458 |
|
0 | 459 |
|
748 | 460 |
(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***) |
461 |
||
462 |
val cantor_cs = FOL_cs (*precisely the rules needed for the proof*) |
|
463 |
addSIs [ballI, CollectI, PowI, subsetI] addIs [bexI] |
|
464 |
addSEs [CollectE, equalityCE]; |
|
465 |
||
466 |
(*The search is undirected; similar proof attempts may fail. |
|
467 |
b represents ANY map, such as (lam x:A.b(x)): A->Pow(A). *) |
|
775 | 468 |
qed_goal "cantor" ZF.thy "EX S: Pow(A). ALL x:A. b(x) ~= S" |
2877 | 469 |
(fn _ => [best_tac cantor_cs 1]); |
748 | 470 |
|
516 | 471 |
(*Lemma for the inductive definition in Zorn.thy*) |
775 | 472 |
qed_goal "Union_in_Pow" ZF.thy |
516 | 473 |
"!!Y. Y : Pow(Pow(A)) ==> Union(Y) : Pow(A)" |
2877 | 474 |
(fn _ => [Blast_tac 1]); |
1902
e349b91cf197
Added function for storing default claset in theory.
berghofe
parents:
1889
diff
changeset
|
475 |