| author | traytel | 
| Wed, 26 Feb 2014 23:09:29 +0100 | |
| changeset 55770 | f2cf7f92c9ac | 
| parent 39302 | d7728f65b353 | 
| child 58878 | f962e42e324d | 
| permissions | -rw-r--r-- | 
| 27468 | 1  | 
(* Title : NatStar.thy  | 
2  | 
Author : Jacques D. Fleuriot  | 
|
3  | 
Copyright : 1998 University of Cambridge  | 
|
4  | 
||
5  | 
Converted to Isar and polished by lcp  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
header{*Star-transforms for the Hypernaturals*}
 | 
|
9  | 
||
10  | 
theory NatStar  | 
|
11  | 
imports Star  | 
|
12  | 
begin  | 
|
13  | 
||
14  | 
lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"  | 
|
15  | 
by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)  | 
|
16  | 
||
17  | 
lemma starset_n_Un: "*sn* (%n. (A n) Un (B n)) = *sn* A Un *sn* B"  | 
|
18  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Un_def)  | 
|
19  | 
apply (rule_tac x=whn in spec, transfer, simp)  | 
|
20  | 
done  | 
|
21  | 
||
22  | 
lemma InternalSets_Un:  | 
|
23  | 
"[| X \<in> InternalSets; Y \<in> InternalSets |]  | 
|
24  | 
==> (X Un Y) \<in> InternalSets"  | 
|
25  | 
by (auto simp add: InternalSets_def starset_n_Un [symmetric])  | 
|
26  | 
||
27  | 
lemma starset_n_Int:  | 
|
28  | 
"*sn* (%n. (A n) Int (B n)) = *sn* A Int *sn* B"  | 
|
29  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Int_def)  | 
|
30  | 
apply (rule_tac x=whn in spec, transfer, simp)  | 
|
31  | 
done  | 
|
32  | 
||
33  | 
lemma InternalSets_Int:  | 
|
34  | 
"[| X \<in> InternalSets; Y \<in> InternalSets |]  | 
|
35  | 
==> (X Int Y) \<in> InternalSets"  | 
|
36  | 
by (auto simp add: InternalSets_def starset_n_Int [symmetric])  | 
|
37  | 
||
38  | 
lemma starset_n_Compl: "*sn* ((%n. - A n)) = -( *sn* A)"  | 
|
39  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)  | 
|
40  | 
apply (rule_tac x=whn in spec, transfer, simp)  | 
|
41  | 
done  | 
|
42  | 
||
43  | 
lemma InternalSets_Compl: "X \<in> InternalSets ==> -X \<in> InternalSets"  | 
|
44  | 
by (auto simp add: InternalSets_def starset_n_Compl [symmetric])  | 
|
45  | 
||
46  | 
lemma starset_n_diff: "*sn* (%n. (A n) - (B n)) = *sn* A - *sn* B"  | 
|
47  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)  | 
|
48  | 
apply (rule_tac x=whn in spec, transfer, simp)  | 
|
49  | 
done  | 
|
50  | 
||
51  | 
lemma InternalSets_diff:  | 
|
52  | 
"[| X \<in> InternalSets; Y \<in> InternalSets |]  | 
|
53  | 
==> (X - Y) \<in> InternalSets"  | 
|
54  | 
by (auto simp add: InternalSets_def starset_n_diff [symmetric])  | 
|
55  | 
||
56  | 
lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"  | 
|
57  | 
by simp  | 
|
58  | 
||
59  | 
lemma NatStar_hypreal_of_real_Int:  | 
|
60  | 
"*s* X Int Nats = hypnat_of_nat ` X"  | 
|
61  | 
by (auto simp add: SHNat_eq)  | 
|
62  | 
||
63  | 
lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)"  | 
|
64  | 
by (simp add: starset_n_starset)  | 
|
65  | 
||
66  | 
lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"  | 
|
67  | 
by (auto simp add: InternalSets_def starset_starset_n_eq)  | 
|
68  | 
||
69  | 
lemma InternalSets_UNIV_diff:  | 
|
70  | 
"X \<in> InternalSets ==> UNIV - X \<in> InternalSets"  | 
|
71  | 
apply (subgoal_tac "UNIV - X = - X")  | 
|
72  | 
by (auto intro: InternalSets_Compl)  | 
|
73  | 
||
74  | 
||
75  | 
subsection{*Nonstandard Extensions of Functions*}
 | 
|
76  | 
||
77  | 
text{* Example of transfer of a property from reals to hyperreals
 | 
|
78  | 
--- used for limit comparison of sequences*}  | 
|
79  | 
||
80  | 
lemma starfun_le_mono:  | 
|
81  | 
"\<forall>n. N \<le> n --> f n \<le> g n  | 
|
82  | 
==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n \<le> ( *f* g) n"  | 
|
83  | 
by transfer  | 
|
84  | 
||
85  | 
(*****----- and another -----*****)  | 
|
86  | 
lemma starfun_less_mono:  | 
|
87  | 
"\<forall>n. N \<le> n --> f n < g n  | 
|
88  | 
==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n < ( *f* g) n"  | 
|
89  | 
by transfer  | 
|
90  | 
||
91  | 
text{*Nonstandard extension when we increment the argument by one*}
 | 
|
92  | 
||
93  | 
lemma starfun_shift_one:  | 
|
94  | 
"!!N. ( *f* (%n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"  | 
|
95  | 
by (transfer, simp)  | 
|
96  | 
||
97  | 
text{*Nonstandard extension with absolute value*}
 | 
|
98  | 
||
99  | 
lemma starfun_abs: "!!N. ( *f* (%n. abs (f n))) N = abs(( *f* f) N)"  | 
|
100  | 
by (transfer, rule refl)  | 
|
101  | 
||
102  | 
text{*The hyperpow function as a nonstandard extension of realpow*}
 | 
|
103  | 
||
104  | 
lemma starfun_pow: "!!N. ( *f* (%n. r ^ n)) N = (hypreal_of_real r) pow N"  | 
|
105  | 
by (transfer, rule refl)  | 
|
106  | 
||
107  | 
lemma starfun_pow2:  | 
|
108  | 
"!!N. ( *f* (%n. (X n) ^ m)) N = ( *f* X) N pow hypnat_of_nat m"  | 
|
109  | 
by (transfer, rule refl)  | 
|
110  | 
||
111  | 
lemma starfun_pow3: "!!R. ( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n"  | 
|
112  | 
by (transfer, rule refl)  | 
|
113  | 
||
114  | 
text{*The @{term hypreal_of_hypnat} function as a nonstandard extension of
 | 
|
115  | 
  @{term real_of_nat} *}
 | 
|
116  | 
||
117  | 
lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
118  | 
by transfer (simp add: fun_eq_iff real_of_nat_def)  | 
| 27468 | 119  | 
|
120  | 
lemma starfun_inverse_real_of_nat_eq:  | 
|
121  | 
"N \<in> HNatInfinite  | 
|
122  | 
==> ( *f* (%x::nat. inverse(real x))) N = inverse(hypreal_of_hypnat N)"  | 
|
123  | 
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])  | 
|
124  | 
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")  | 
|
125  | 
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat starfun_inverse_inverse)  | 
|
126  | 
done  | 
|
127  | 
||
128  | 
text{*Internal functions - some redundancy with *f* now*}
 | 
|
129  | 
||
130  | 
lemma starfun_n: "( *fn* f) (star_n X) = star_n (%n. f n (X n))"  | 
|
131  | 
by (simp add: starfun_n_def Ifun_star_n)  | 
|
132  | 
||
133  | 
text{*Multiplication: @{text "( *fn) x ( *gn) = *(fn x gn)"}*}
 | 
|
134  | 
||
135  | 
lemma starfun_n_mult:  | 
|
136  | 
"( *fn* f) z * ( *fn* g) z = ( *fn* (% i x. f i x * g i x)) z"  | 
|
137  | 
apply (cases z)  | 
|
138  | 
apply (simp add: starfun_n star_n_mult)  | 
|
139  | 
done  | 
|
140  | 
||
141  | 
text{*Addition: @{text "( *fn) + ( *gn) = *(fn + gn)"}*}
 | 
|
142  | 
||
143  | 
lemma starfun_n_add:  | 
|
144  | 
"( *fn* f) z + ( *fn* g) z = ( *fn* (%i x. f i x + g i x)) z"  | 
|
145  | 
apply (cases z)  | 
|
146  | 
apply (simp add: starfun_n star_n_add)  | 
|
147  | 
done  | 
|
148  | 
||
149  | 
text{*Subtraction: @{text "( *fn) - ( *gn) = *(fn + - gn)"}*}
 | 
|
150  | 
||
151  | 
lemma starfun_n_add_minus:  | 
|
152  | 
"( *fn* f) z + -( *fn* g) z = ( *fn* (%i x. f i x + -g i x)) z"  | 
|
153  | 
apply (cases z)  | 
|
154  | 
apply (simp add: starfun_n star_n_minus star_n_add)  | 
|
155  | 
done  | 
|
156  | 
||
157  | 
||
158  | 
text{*Composition: @{text "( *fn) o ( *gn) = *(fn o gn)"}*}
 | 
|
159  | 
||
160  | 
lemma starfun_n_const_fun [simp]:  | 
|
161  | 
"( *fn* (%i x. k)) z = star_of k"  | 
|
162  | 
apply (cases z)  | 
|
163  | 
apply (simp add: starfun_n star_of_def)  | 
|
164  | 
done  | 
|
165  | 
||
166  | 
lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (%i x. - (f i) x)) x"  | 
|
167  | 
apply (cases x)  | 
|
168  | 
apply (simp add: starfun_n star_n_minus)  | 
|
169  | 
done  | 
|
170  | 
||
171  | 
lemma starfun_n_eq [simp]:  | 
|
172  | 
"( *fn* f) (star_of n) = star_n (%i. f i n)"  | 
|
173  | 
by (simp add: starfun_n star_of_def)  | 
|
174  | 
||
175  | 
lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) = (f = g)"  | 
|
176  | 
by (transfer, rule refl)  | 
|
177  | 
||
178  | 
lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:  | 
|
179  | 
"N \<in> HNatInfinite ==> ( *f* (%x. inverse (real x))) N \<in> Infinitesimal"  | 
|
180  | 
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])  | 
|
181  | 
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")  | 
|
182  | 
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat)  | 
|
183  | 
done  | 
|
184  | 
||
185  | 
||
186  | 
subsection{*Nonstandard Characterization of Induction*}
 | 
|
187  | 
||
188  | 
lemma hypnat_induct_obj:  | 
|
189  | 
"!!n. (( *p* P) (0::hypnat) &  | 
|
190  | 
(\<forall>n. ( *p* P)(n) --> ( *p* P)(n + 1)))  | 
|
191  | 
--> ( *p* P)(n)"  | 
|
192  | 
by (transfer, induct_tac n, auto)  | 
|
193  | 
||
194  | 
lemma hypnat_induct:  | 
|
195  | 
"!!n. [| ( *p* P) (0::hypnat);  | 
|
196  | 
!!n. ( *p* P)(n) ==> ( *p* P)(n + 1)|]  | 
|
197  | 
==> ( *p* P)(n)"  | 
|
198  | 
by (transfer, induct_tac n, auto)  | 
|
199  | 
||
200  | 
lemma starP2_eq_iff: "( *p2* (op =)) = (op =)"  | 
|
201  | 
by transfer (rule refl)  | 
|
202  | 
||
203  | 
lemma starP2_eq_iff2: "( *p2* (%x y. x = y)) X Y = (X = Y)"  | 
|
204  | 
by (simp add: starP2_eq_iff)  | 
|
205  | 
||
206  | 
lemma nonempty_nat_set_Least_mem:  | 
|
207  | 
"c \<in> (S :: nat set) ==> (LEAST n. n \<in> S) \<in> S"  | 
|
208  | 
by (erule LeastI)  | 
|
209  | 
||
210  | 
lemma nonempty_set_star_has_least:  | 
|
211  | 
    "!!S::nat set star. Iset S \<noteq> {} ==> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
 | 
|
212  | 
apply (transfer empty_def)  | 
|
213  | 
apply (rule_tac x="LEAST n. n \<in> S" in bexI)  | 
|
214  | 
apply (simp add: Least_le)  | 
|
215  | 
apply (rule LeastI_ex, auto)  | 
|
216  | 
done  | 
|
217  | 
||
218  | 
lemma nonempty_InternalNatSet_has_least:  | 
|
219  | 
    "[| (S::hypnat set) \<in> InternalSets; S \<noteq> {} |] ==> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
 | 
|
220  | 
apply (clarsimp simp add: InternalSets_def starset_n_def)  | 
|
221  | 
apply (erule nonempty_set_star_has_least)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
text{* Goldblatt page 129 Thm 11.3.2*}
 | 
|
225  | 
lemma internal_induct_lemma:  | 
|
226  | 
"!!X::nat set star. [| (0::hypnat) \<in> Iset X; \<forall>n. n \<in> Iset X --> n + 1 \<in> Iset X |]  | 
|
227  | 
==> Iset X = (UNIV:: hypnat set)"  | 
|
228  | 
apply (transfer UNIV_def)  | 
|
229  | 
apply (rule equalityI [OF subset_UNIV subsetI])  | 
|
230  | 
apply (induct_tac x, auto)  | 
|
231  | 
done  | 
|
232  | 
||
233  | 
lemma internal_induct:  | 
|
234  | 
"[| X \<in> InternalSets; (0::hypnat) \<in> X; \<forall>n. n \<in> X --> n + 1 \<in> X |]  | 
|
235  | 
==> X = (UNIV:: hypnat set)"  | 
|
236  | 
apply (clarsimp simp add: InternalSets_def starset_n_def)  | 
|
237  | 
apply (erule (1) internal_induct_lemma)  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
||
241  | 
end  |