| author | nipkow | 
| Mon, 11 Jul 2022 08:21:54 +0200 | |
| changeset 75663 | f2e402a19530 | 
| parent 72550 | 1d0ae7e578a0 | 
| child 78653 | 7ed1759fe1bd | 
| permissions | -rw-r--r-- | 
| 69232 | 1  | 
(* Author: Tobias Nipkow, with contributions by Thomas Sewell *)  | 
2  | 
||
| 69145 | 3  | 
section "Arrays via Braun Trees"  | 
4  | 
||
5  | 
theory Array_Braun  | 
|
6  | 
imports  | 
|
7  | 
Array_Specs  | 
|
8  | 
Braun_Tree  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
subsection "Array"  | 
|
12  | 
||
13  | 
fun lookup1 :: "'a tree \<Rightarrow> nat \<Rightarrow> 'a" where  | 
|
14  | 
"lookup1 (Node l x r) n = (if n=1 then x else lookup1 (if even n then l else r) (n div 2))"  | 
|
15  | 
||
16  | 
fun update1 :: "nat \<Rightarrow> 'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where  | 
|
17  | 
"update1 n x Leaf = Node Leaf x Leaf" |  | 
|
18  | 
"update1 n x (Node l a r) =  | 
|
19  | 
(if n=1 then Node l x r else  | 
|
20  | 
if even n then Node (update1 (n div 2) x l) a r  | 
|
21  | 
else Node l a (update1 (n div 2) x r))"  | 
|
22  | 
||
23  | 
fun adds :: "'a list \<Rightarrow> nat \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where  | 
|
24  | 
"adds [] n t = t" |  | 
|
25  | 
"adds (x#xs) n t = adds xs (n+1) (update1 (n+1) x t)"  | 
|
26  | 
||
27  | 
fun list :: "'a tree \<Rightarrow> 'a list" where  | 
|
28  | 
"list Leaf = []" |  | 
|
29  | 
"list (Node l x r) = x # splice (list l) (list r)"  | 
|
30  | 
||
31  | 
||
32  | 
subsubsection "Functional Correctness"  | 
|
33  | 
||
34  | 
lemma size_list: "size(list t) = size t"  | 
|
35  | 
by(induction t)(auto)  | 
|
36  | 
||
37  | 
lemma minus1_div2: "(n - Suc 0) div 2 = (if odd n then n div 2 else n div 2 - 1)"  | 
|
38  | 
by auto arith  | 
|
39  | 
||
40  | 
lemma nth_splice: "\<lbrakk> n < size xs + size ys; size ys \<le> size xs; size xs \<le> size ys + 1 \<rbrakk>  | 
|
41  | 
\<Longrightarrow> splice xs ys ! n = (if even n then xs else ys) ! (n div 2)"  | 
|
42  | 
apply(induction xs ys arbitrary: n rule: splice.induct)  | 
|
43  | 
apply (auto simp: nth_Cons' minus1_div2)  | 
|
44  | 
done  | 
|
45  | 
||
46  | 
lemma div2_in_bounds:  | 
|
47  | 
  "\<lbrakk> braun (Node l x r); n \<in> {1..size(Node l x r)}; n > 1 \<rbrakk> \<Longrightarrow>
 | 
|
48  | 
   (odd n \<longrightarrow> n div 2 \<in> {1..size r}) \<and> (even n \<longrightarrow> n div 2 \<in> {1..size l})"
 | 
|
49  | 
by auto arith  | 
|
50  | 
||
51  | 
declare upt_Suc[simp del]  | 
|
52  | 
||
53  | 
||
| 69597 | 54  | 
paragraph \<open>\<^const>\<open>lookup1\<close>\<close>  | 
| 69145 | 55  | 
|
56  | 
lemma nth_list_lookup1: "\<lbrakk>braun t; i < size t\<rbrakk> \<Longrightarrow> list t ! i = lookup1 t (i+1)"  | 
|
57  | 
proof(induction t arbitrary: i)  | 
|
58  | 
case Leaf thus ?case by simp  | 
|
59  | 
next  | 
|
60  | 
case Node  | 
|
61  | 
thus ?case using div2_in_bounds[OF Node.prems(1), of "i+1"]  | 
|
62  | 
by (auto simp: nth_splice minus1_div2 size_list)  | 
|
63  | 
qed  | 
|
64  | 
||
65  | 
lemma list_eq_map_lookup1: "braun t \<Longrightarrow> list t = map (lookup1 t) [1..<size t + 1]"  | 
|
66  | 
by(auto simp add: list_eq_iff_nth_eq size_list nth_list_lookup1)  | 
|
67  | 
||
68  | 
||
| 69597 | 69  | 
paragraph \<open>\<^const>\<open>update1\<close>\<close>  | 
| 69145 | 70  | 
|
71  | 
lemma size_update1: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> size(update1 n x t) = size t"
 | 
|
72  | 
proof(induction t arbitrary: n)  | 
|
73  | 
case Leaf thus ?case by simp  | 
|
74  | 
next  | 
|
75  | 
case Node thus ?case using div2_in_bounds[OF Node.prems] by simp  | 
|
76  | 
qed  | 
|
77  | 
||
78  | 
lemma braun_update1: "\<lbrakk>braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> braun(update1 n x t)"
 | 
|
79  | 
proof(induction t arbitrary: n)  | 
|
80  | 
case Leaf thus ?case by simp  | 
|
81  | 
next  | 
|
82  | 
case Node thus ?case  | 
|
83  | 
using div2_in_bounds[OF Node.prems] by (simp add: size_update1)  | 
|
84  | 
qed  | 
|
85  | 
||
86  | 
lemma lookup1_update1: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow>
 | 
|
87  | 
lookup1 (update1 n x t) m = (if n=m then x else lookup1 t m)"  | 
|
88  | 
proof(induction t arbitrary: m n)  | 
|
89  | 
case Leaf  | 
|
90  | 
then show ?case by simp  | 
|
91  | 
next  | 
|
92  | 
have aux: "\<lbrakk> odd n; odd m \<rbrakk> \<Longrightarrow> n div 2 = (m::nat) div 2 \<longleftrightarrow> m=n" for m n  | 
|
93  | 
using odd_two_times_div_two_succ by fastforce  | 
|
94  | 
case Node  | 
|
95  | 
thus ?case using div2_in_bounds[OF Node.prems] by (auto simp: aux)  | 
|
96  | 
qed  | 
|
97  | 
||
98  | 
lemma list_update1: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> list(update1 n x t) = (list t)[n-1 := x]"
 | 
|
99  | 
by(auto simp add: list_eq_map_lookup1 list_eq_iff_nth_eq lookup1_update1 size_update1 braun_update1)  | 
|
100  | 
||
101  | 
text \<open>A second proof of @{thm list_update1}:\<close>
 | 
|
102  | 
||
103  | 
lemma diff1_eq_iff: "n > 0 \<Longrightarrow> n - Suc 0 = m \<longleftrightarrow> n = m+1"  | 
|
104  | 
by arith  | 
|
105  | 
||
106  | 
lemma list_update_splice:  | 
|
107  | 
"\<lbrakk> n < size xs + size ys; size ys \<le> size xs; size xs \<le> size ys + 1 \<rbrakk> \<Longrightarrow>  | 
|
108  | 
(splice xs ys) [n := x] =  | 
|
109  | 
(if even n then splice (xs[n div 2 := x]) ys else splice xs (ys[n div 2 := x]))"  | 
|
110  | 
by(induction xs ys arbitrary: n rule: splice.induct) (auto split: nat.split)  | 
|
111  | 
||
112  | 
lemma list_update2: "\<lbrakk> braun t;  n \<in> {1.. size t} \<rbrakk> \<Longrightarrow> list(update1 n x t) = (list t)[n-1 := x]"
 | 
|
113  | 
proof(induction t arbitrary: n)  | 
|
114  | 
case Leaf thus ?case by simp  | 
|
115  | 
next  | 
|
116  | 
case (Node l a r) thus ?case using div2_in_bounds[OF Node.prems]  | 
|
117  | 
by(auto simp: list_update_splice diff1_eq_iff size_list split: nat.split)  | 
|
118  | 
qed  | 
|
119  | 
||
120  | 
||
| 69597 | 121  | 
paragraph \<open>\<^const>\<open>adds\<close>\<close>  | 
| 69145 | 122  | 
|
123  | 
lemma splice_last: shows  | 
|
124  | 
"size ys \<le> size xs \<Longrightarrow> splice (xs @ [x]) ys = splice xs ys @ [x]"  | 
|
125  | 
and "size ys+1 \<ge> size xs \<Longrightarrow> splice xs (ys @ [y]) = splice xs ys @ [y]"  | 
|
126  | 
by(induction xs ys arbitrary: x y rule: splice.induct) (auto)  | 
|
127  | 
||
128  | 
lemma list_add_hi: "braun t \<Longrightarrow> list(update1 (Suc(size t)) x t) = list t @ [x]"  | 
|
129  | 
by(induction t)(auto simp: splice_last size_list)  | 
|
130  | 
||
131  | 
lemma size_add_hi: "braun t \<Longrightarrow> m = size t \<Longrightarrow> size(update1 (Suc m) x t) = size t + 1"  | 
|
132  | 
by(induction t arbitrary: m)(auto)  | 
|
133  | 
||
134  | 
lemma braun_add_hi: "braun t \<Longrightarrow> braun(update1 (Suc(size t)) x t)"  | 
|
135  | 
by(induction t)(auto simp: size_add_hi)  | 
|
136  | 
||
137  | 
lemma size_braun_adds:  | 
|
138  | 
"\<lbrakk> braun t; size t = n \<rbrakk> \<Longrightarrow> size(adds xs n t) = size t + length xs \<and> braun (adds xs n t)"  | 
|
139  | 
by(induction xs arbitrary: t n)(auto simp: braun_add_hi size_add_hi)  | 
|
140  | 
||
141  | 
lemma list_adds: "\<lbrakk> braun t; size t = n \<rbrakk> \<Longrightarrow> list(adds xs n t) = list t @ xs"  | 
|
142  | 
by(induction xs arbitrary: t n)(auto simp: size_braun_adds list_add_hi size_add_hi braun_add_hi)  | 
|
143  | 
||
144  | 
||
145  | 
subsubsection "Array Implementation"  | 
|
146  | 
||
147  | 
interpretation A: Array  | 
|
148  | 
where lookup = "\<lambda>(t,l) n. lookup1 t (n+1)"  | 
|
149  | 
and update = "\<lambda>n x (t,l). (update1 (n+1) x t, l)"  | 
|
150  | 
and len = "\<lambda>(t,l). l"  | 
|
151  | 
and array = "\<lambda>xs. (adds xs 0 Leaf, length xs)"  | 
|
152  | 
and invar = "\<lambda>(t,l). braun t \<and> l = size t"  | 
|
153  | 
and list = "\<lambda>(t,l). list t"  | 
|
154  | 
proof (standard, goal_cases)  | 
|
155  | 
case 1 thus ?case by (simp add: nth_list_lookup1 split: prod.splits)  | 
|
156  | 
next  | 
|
157  | 
case 2 thus ?case by (simp add: list_update1 split: prod.splits)  | 
|
158  | 
next  | 
|
159  | 
case 3 thus ?case by (simp add: size_list split: prod.splits)  | 
|
160  | 
next  | 
|
161  | 
case 4 thus ?case by (simp add: list_adds)  | 
|
162  | 
next  | 
|
163  | 
case 5 thus ?case by (simp add: braun_update1 size_update1 split: prod.splits)  | 
|
164  | 
next  | 
|
165  | 
case 6 thus ?case by (simp add: size_braun_adds split: prod.splits)  | 
|
166  | 
qed  | 
|
167  | 
||
168  | 
||
169  | 
subsection "Flexible Array"  | 
|
170  | 
||
171  | 
fun add_lo where  | 
|
172  | 
"add_lo x Leaf = Node Leaf x Leaf" |  | 
|
173  | 
"add_lo x (Node l a r) = Node (add_lo a r) x l"  | 
|
174  | 
||
175  | 
fun merge where  | 
|
176  | 
"merge Leaf r = r" |  | 
|
177  | 
"merge (Node l a r) rr = Node rr a (merge l r)"  | 
|
178  | 
||
179  | 
fun del_lo where  | 
|
180  | 
"del_lo Leaf = Leaf" |  | 
|
181  | 
"del_lo (Node l a r) = merge l r"  | 
|
182  | 
||
183  | 
fun del_hi :: "nat \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where  | 
|
184  | 
"del_hi n Leaf = Leaf" |  | 
|
185  | 
"del_hi n (Node l x r) =  | 
|
| 69752 | 186  | 
(if n = 1 then Leaf  | 
187  | 
else if even n  | 
|
188  | 
then Node (del_hi (n div 2) l) x r  | 
|
189  | 
else Node l x (del_hi (n div 2) r))"  | 
|
| 69145 | 190  | 
|
191  | 
||
192  | 
subsubsection "Functional Correctness"  | 
|
193  | 
||
194  | 
||
| 69597 | 195  | 
paragraph \<open>\<^const>\<open>add_lo\<close>\<close>  | 
| 69145 | 196  | 
|
197  | 
lemma list_add_lo: "braun t \<Longrightarrow> list (add_lo a t) = a # list t"  | 
|
198  | 
by(induction t arbitrary: a) auto  | 
|
199  | 
||
200  | 
lemma braun_add_lo: "braun t \<Longrightarrow> braun(add_lo x t)"  | 
|
201  | 
by(induction t arbitrary: x) (auto simp add: list_add_lo simp flip: size_list)  | 
|
202  | 
||
203  | 
||
| 69597 | 204  | 
paragraph \<open>\<^const>\<open>del_lo\<close>\<close>  | 
| 69145 | 205  | 
|
206  | 
lemma list_merge: "braun (Node l x r) \<Longrightarrow> list(merge l r) = splice (list l) (list r)"  | 
|
207  | 
by (induction l r rule: merge.induct) auto  | 
|
208  | 
||
209  | 
lemma braun_merge: "braun (Node l x r) \<Longrightarrow> braun(merge l r)"  | 
|
210  | 
by (induction l r rule: merge.induct)(auto simp add: list_merge simp flip: size_list)  | 
|
211  | 
||
212  | 
lemma list_del_lo: "braun t \<Longrightarrow> list(del_lo t) = tl (list t)"  | 
|
213  | 
by (cases t) (simp_all add: list_merge)  | 
|
214  | 
||
215  | 
lemma braun_del_lo: "braun t \<Longrightarrow> braun(del_lo t)"  | 
|
216  | 
by (cases t) (simp_all add: braun_merge)  | 
|
217  | 
||
218  | 
||
| 69597 | 219  | 
paragraph \<open>\<^const>\<open>del_hi\<close>\<close>  | 
| 69145 | 220  | 
|
221  | 
lemma list_Nil_iff: "list t = [] \<longleftrightarrow> t = Leaf"  | 
|
222  | 
by(cases t) simp_all  | 
|
223  | 
||
224  | 
lemma butlast_splice: "butlast (splice xs ys) =  | 
|
225  | 
(if size xs > size ys then splice (butlast xs) ys else splice xs (butlast ys))"  | 
|
226  | 
by(induction xs ys rule: splice.induct) (auto)  | 
|
227  | 
||
228  | 
lemma list_del_hi: "braun t \<Longrightarrow> size t = st \<Longrightarrow> list(del_hi st t) = butlast(list t)"  | 
|
229  | 
apply(induction t arbitrary: st)  | 
|
230  | 
by(auto simp: list_Nil_iff size_list butlast_splice)  | 
|
231  | 
||
232  | 
lemma braun_del_hi: "braun t \<Longrightarrow> size t = st \<Longrightarrow> braun(del_hi st t)"  | 
|
233  | 
apply(induction t arbitrary: st)  | 
|
234  | 
by(auto simp: list_del_hi simp flip: size_list)  | 
|
235  | 
||
236  | 
||
237  | 
subsubsection "Flexible Array Implementation"  | 
|
238  | 
||
239  | 
interpretation AF: Array_Flex  | 
|
240  | 
where lookup = "\<lambda>(t,l) n. lookup1 t (n+1)"  | 
|
241  | 
and update = "\<lambda>n x (t,l). (update1 (n+1) x t, l)"  | 
|
242  | 
and len = "\<lambda>(t,l). l"  | 
|
243  | 
and array = "\<lambda>xs. (adds xs 0 Leaf, length xs)"  | 
|
244  | 
and invar = "\<lambda>(t,l). braun t \<and> l = size t"  | 
|
245  | 
and list = "\<lambda>(t,l). list t"  | 
|
246  | 
and add_lo = "\<lambda>x (t,l). (add_lo x t, l+1)"  | 
|
247  | 
and del_lo = "\<lambda>(t,l). (del_lo t, l-1)"  | 
|
248  | 
and add_hi = "\<lambda>x (t,l). (update1 (Suc l) x t, l+1)"  | 
|
249  | 
and del_hi = "\<lambda>(t,l). (del_hi l t, l-1)"  | 
|
250  | 
proof (standard, goal_cases)  | 
|
251  | 
case 1 thus ?case by (simp add: list_add_lo split: prod.splits)  | 
|
252  | 
next  | 
|
253  | 
case 2 thus ?case by (simp add: list_del_lo split: prod.splits)  | 
|
254  | 
next  | 
|
255  | 
case 3 thus ?case by (simp add: list_add_hi braun_add_hi split: prod.splits)  | 
|
256  | 
next  | 
|
257  | 
case 4 thus ?case by (simp add: list_del_hi split: prod.splits)  | 
|
258  | 
next  | 
|
259  | 
case 5 thus ?case by (simp add: braun_add_lo list_add_lo flip: size_list split: prod.splits)  | 
|
260  | 
next  | 
|
261  | 
case 6 thus ?case by (simp add: braun_del_lo list_del_lo flip: size_list split: prod.splits)  | 
|
262  | 
next  | 
|
263  | 
case 7 thus ?case by (simp add: size_add_hi braun_add_hi split: prod.splits)  | 
|
264  | 
next  | 
|
265  | 
case 8 thus ?case by (simp add: braun_del_hi list_del_hi flip: size_list split: prod.splits)  | 
|
266  | 
qed  | 
|
267  | 
||
268  | 
||
269  | 
subsection "Faster"  | 
|
270  | 
||
| 69232 | 271  | 
|
| 69941 | 272  | 
subsubsection \<open>Size\<close>  | 
273  | 
||
274  | 
fun diff :: "'a tree \<Rightarrow> nat \<Rightarrow> nat" where  | 
|
| 71345 | 275  | 
"diff Leaf _ = 0" |  | 
| 69941 | 276  | 
"diff (Node l x r) n = (if n=0 then 1 else if even n then diff r (n div 2 - 1) else diff l (n div 2))"  | 
277  | 
||
278  | 
fun size_fast :: "'a tree \<Rightarrow> nat" where  | 
|
279  | 
"size_fast Leaf = 0" |  | 
|
280  | 
"size_fast (Node l x r) = (let n = size_fast r in 1 + 2*n + diff l n)"  | 
|
281  | 
||
| 71846 | 282  | 
declare Let_def[simp]  | 
283  | 
||
| 69943 | 284  | 
lemma diff: "braun t \<Longrightarrow> size t : {n, n + 1} \<Longrightarrow> diff t n = size t - n"
 | 
| 69941 | 285  | 
by(induction t arbitrary: n) auto  | 
286  | 
||
287  | 
lemma size_fast: "braun t \<Longrightarrow> size_fast t = size t"  | 
|
| 71846 | 288  | 
by(induction t) (auto simp add: diff)  | 
| 69941 | 289  | 
|
290  | 
||
| 69232 | 291  | 
subsubsection \<open>Initialization with 1 element\<close>  | 
292  | 
||
| 69206 | 293  | 
fun braun_of_naive :: "'a \<Rightarrow> nat \<Rightarrow> 'a tree" where  | 
294  | 
"braun_of_naive x n = (if n=0 then Leaf  | 
|
| 69145 | 295  | 
else let m = (n-1) div 2  | 
| 69206 | 296  | 
in if odd n then Node (braun_of_naive x m) x (braun_of_naive x m)  | 
297  | 
else Node (braun_of_naive x (m + 1)) x (braun_of_naive x m))"  | 
|
| 69145 | 298  | 
|
299  | 
fun braun2_of :: "'a \<Rightarrow> nat \<Rightarrow> 'a tree * 'a tree" where  | 
|
300  | 
"braun2_of x n = (if n = 0 then (Leaf, Node Leaf x Leaf)  | 
|
301  | 
else let (s,t) = braun2_of x ((n-1) div 2)  | 
|
302  | 
in if odd n then (Node s x s, Node t x s) else (Node t x s, Node t x t))"  | 
|
303  | 
||
304  | 
definition braun_of :: "'a \<Rightarrow> nat \<Rightarrow> 'a tree" where  | 
|
305  | 
"braun_of x n = fst (braun2_of x n)"  | 
|
306  | 
||
307  | 
declare braun2_of.simps [simp del]  | 
|
308  | 
||
309  | 
lemma braun2_of_size_braun: "braun2_of x n = (s,t) \<Longrightarrow> size s = n \<and> size t = n+1 \<and> braun s \<and> braun t"  | 
|
310  | 
proof(induction x n arbitrary: s t rule: braun2_of.induct)  | 
|
311  | 
case (1 x n)  | 
|
312  | 
then show ?case  | 
|
313  | 
by (auto simp: braun2_of.simps[of x n] split: prod.splits if_splits) presburger+  | 
|
314  | 
qed  | 
|
315  | 
||
316  | 
lemma braun2_of_replicate:  | 
|
317  | 
"braun2_of x n = (s,t) \<Longrightarrow> list s = replicate n x \<and> list t = replicate (n+1) x"  | 
|
318  | 
proof(induction x n arbitrary: s t rule: braun2_of.induct)  | 
|
319  | 
case (1 x n)  | 
|
320  | 
have "x # replicate m x = replicate (m+1) x" for m by simp  | 
|
321  | 
with 1 show ?case  | 
|
322  | 
apply (auto simp: braun2_of.simps[of x n] replicate.simps(2)[of 0 x]  | 
|
323  | 
simp del: replicate.simps(2) split: prod.splits if_splits)  | 
|
324  | 
by presburger+  | 
|
325  | 
qed  | 
|
326  | 
||
327  | 
corollary braun_braun_of: "braun(braun_of x n)"  | 
|
328  | 
unfolding braun_of_def by (metis eq_fst_iff braun2_of_size_braun)  | 
|
329  | 
||
330  | 
corollary list_braun_of: "list(braun_of x n) = replicate n x"  | 
|
331  | 
unfolding braun_of_def by (metis eq_fst_iff braun2_of_replicate)  | 
|
332  | 
||
| 69232 | 333  | 
|
334  | 
subsubsection "Proof Infrastructure"  | 
|
335  | 
||
336  | 
text \<open>Originally due to Thomas Sewell.\<close>  | 
|
337  | 
||
338  | 
paragraph \<open>\<open>take_nths\<close>\<close>  | 
|
339  | 
||
340  | 
fun take_nths :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where  | 
|
341  | 
"take_nths i k [] = []" |  | 
|
342  | 
"take_nths i k (x # xs) = (if i = 0 then x # take_nths (2^k - 1) k xs  | 
|
343  | 
else take_nths (i - 1) k xs)"  | 
|
344  | 
||
| 71399 | 345  | 
text \<open>This is the more concise definition but seems to complicate the proofs:\<close>  | 
346  | 
||
347  | 
lemma take_nths_eq_nths: "take_nths i k xs = nths xs (\<Union>n. {n*2^k + i})"
 | 
|
348  | 
proof(induction xs arbitrary: i)  | 
|
349  | 
case Nil  | 
|
350  | 
then show ?case by simp  | 
|
351  | 
next  | 
|
352  | 
case (Cons x xs)  | 
|
353  | 
show ?case  | 
|
354  | 
proof cases  | 
|
355  | 
assume [simp]: "i = 0"  | 
|
356  | 
    have "(\<Union>n. {(n+1) * 2 ^ k - 1}) = {m. \<exists>n. Suc m = n * 2 ^ k}"
 | 
|
357  | 
apply (auto simp del: mult_Suc)  | 
|
358  | 
by (metis diff_Suc_Suc diff_zero mult_eq_0_iff not0_implies_Suc)  | 
|
359  | 
thus ?thesis by (simp add: Cons.IH ac_simps nths_Cons)  | 
|
360  | 
next  | 
|
361  | 
assume [arith]: "i \<noteq> 0"  | 
|
362  | 
    have "(\<Union>n. {n * 2 ^ k + i - 1}) = {m. \<exists>n. Suc m = n * 2 ^ k + i}"
 | 
|
363  | 
apply auto  | 
|
364  | 
by (metis diff_Suc_Suc diff_zero)  | 
|
365  | 
thus ?thesis by (simp add: Cons.IH nths_Cons)  | 
|
366  | 
qed  | 
|
367  | 
qed  | 
|
368  | 
||
| 69232 | 369  | 
lemma take_nths_drop:  | 
370  | 
"take_nths i k (drop j xs) = take_nths (i + j) k xs"  | 
|
371  | 
by (induct xs arbitrary: i j; simp add: drop_Cons split: nat.split)  | 
|
372  | 
||
373  | 
lemma take_nths_00:  | 
|
374  | 
"take_nths 0 0 xs = xs"  | 
|
375  | 
by (induct xs; simp)  | 
|
376  | 
||
377  | 
lemma splice_take_nths:  | 
|
378  | 
"splice (take_nths 0 (Suc 0) xs) (take_nths (Suc 0) (Suc 0) xs) = xs"  | 
|
379  | 
by (induct xs; simp)  | 
|
380  | 
||
381  | 
lemma take_nths_take_nths:  | 
|
382  | 
"take_nths i m (take_nths j n xs) = take_nths ((i * 2^n) + j) (m + n) xs"  | 
|
383  | 
by (induct xs arbitrary: i j; simp add: algebra_simps power_add)  | 
|
384  | 
||
385  | 
lemma take_nths_empty:  | 
|
386  | 
"(take_nths i k xs = []) = (length xs \<le> i)"  | 
|
387  | 
by (induction xs arbitrary: i k) auto  | 
|
388  | 
||
389  | 
lemma hd_take_nths:  | 
|
390  | 
"i < length xs \<Longrightarrow> hd(take_nths i k xs) = xs ! i"  | 
|
391  | 
by (induction xs arbitrary: i k) auto  | 
|
392  | 
||
393  | 
lemma take_nths_01_splice:  | 
|
394  | 
"\<lbrakk> length xs = length ys \<or> length xs = length ys + 1 \<rbrakk> \<Longrightarrow>  | 
|
395  | 
take_nths 0 (Suc 0) (splice xs ys) = xs \<and>  | 
|
396  | 
take_nths (Suc 0) (Suc 0) (splice xs ys) = ys"  | 
|
397  | 
by (induct xs arbitrary: ys; case_tac ys; simp)  | 
|
398  | 
||
399  | 
lemma length_take_nths_00:  | 
|
400  | 
"length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) \<or>  | 
|
401  | 
length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) + 1"  | 
|
402  | 
by (induct xs) auto  | 
|
403  | 
||
404  | 
||
405  | 
paragraph \<open>\<open>braun_list\<close>\<close>  | 
|
406  | 
||
407  | 
fun braun_list :: "'a tree \<Rightarrow> 'a list \<Rightarrow> bool" where  | 
|
408  | 
"braun_list Leaf xs = (xs = [])" |  | 
|
409  | 
"braun_list (Node l x r) xs = (xs \<noteq> [] \<and> x = hd xs \<and>  | 
|
410  | 
braun_list l (take_nths 1 1 xs) \<and>  | 
|
411  | 
braun_list r (take_nths 2 1 xs))"  | 
|
412  | 
||
413  | 
lemma braun_list_eq:  | 
|
414  | 
"braun_list t xs = (braun t \<and> xs = list t)"  | 
|
415  | 
proof (induct t arbitrary: xs)  | 
|
416  | 
case Leaf  | 
|
417  | 
show ?case by simp  | 
|
418  | 
next  | 
|
419  | 
case Node  | 
|
420  | 
show ?case  | 
|
421  | 
using length_take_nths_00[of xs] splice_take_nths[of xs]  | 
|
422  | 
by (auto simp: neq_Nil_conv Node.hyps size_list[symmetric] take_nths_01_splice)  | 
|
423  | 
qed  | 
|
424  | 
||
425  | 
||
426  | 
subsubsection \<open>Converting a list of elements into a Braun tree\<close>  | 
|
427  | 
||
428  | 
fun nodes :: "'a tree list \<Rightarrow> 'a list \<Rightarrow> 'a tree list \<Rightarrow> 'a tree list" where  | 
|
429  | 
"nodes (l#ls) (x#xs) (r#rs) = Node l x r # nodes ls xs rs" |  | 
|
430  | 
"nodes (l#ls) (x#xs) [] = Node l x Leaf # nodes ls xs []" |  | 
|
431  | 
"nodes [] (x#xs) (r#rs) = Node Leaf x r # nodes [] xs rs" |  | 
|
432  | 
"nodes [] (x#xs) [] = Node Leaf x Leaf # nodes [] xs []" |  | 
|
433  | 
"nodes ls [] rs = []"  | 
|
434  | 
||
435  | 
fun brauns :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a tree list" where  | 
|
436  | 
"brauns k xs = (if xs = [] then [] else  | 
|
437  | 
let ys = take (2^k) xs;  | 
|
438  | 
zs = drop (2^k) xs;  | 
|
439  | 
ts = brauns (k+1) zs  | 
|
440  | 
in nodes ts ys (drop (2^k) ts))"  | 
|
441  | 
||
442  | 
declare brauns.simps[simp del]  | 
|
443  | 
||
444  | 
definition brauns1 :: "'a list \<Rightarrow> 'a tree" where  | 
|
445  | 
"brauns1 xs = (if xs = [] then Leaf else brauns 0 xs ! 0)"  | 
|
446  | 
||
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
447  | 
fun T_brauns :: "nat \<Rightarrow> 'a list \<Rightarrow> nat" where  | 
| 
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
448  | 
"T_brauns k xs = (if xs = [] then 0 else  | 
| 69232 | 449  | 
let ys = take (2^k) xs;  | 
450  | 
zs = drop (2^k) xs;  | 
|
451  | 
ts = brauns (k+1) zs  | 
|
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
452  | 
in 4 * min (2^k) (length xs) + T_brauns (k+1) zs)"  | 
| 69232 | 453  | 
|
454  | 
||
455  | 
paragraph "Functional correctness"  | 
|
456  | 
||
457  | 
text \<open>The proof is originally due to Thomas Sewell.\<close>  | 
|
458  | 
||
459  | 
lemma length_nodes:  | 
|
460  | 
"length (nodes ls xs rs) = length xs"  | 
|
461  | 
by (induct ls xs rs rule: nodes.induct; simp)  | 
|
462  | 
||
463  | 
lemma nth_nodes:  | 
|
464  | 
"i < length xs \<Longrightarrow> nodes ls xs rs ! i =  | 
|
465  | 
Node (if i < length ls then ls ! i else Leaf) (xs ! i)  | 
|
466  | 
(if i < length rs then rs ! i else Leaf)"  | 
|
467  | 
by (induct ls xs rs arbitrary: i rule: nodes.induct;  | 
|
468  | 
simp add: nth_Cons split: nat.split)  | 
|
469  | 
||
470  | 
theorem length_brauns:  | 
|
471  | 
"length (brauns k xs) = min (length xs) (2 ^ k)"  | 
|
472  | 
proof (induct xs arbitrary: k rule: measure_induct_rule[where f=length])  | 
|
| 71846 | 473  | 
case (less xs) thus ?case by (simp add: brauns.simps[of k xs] length_nodes)  | 
| 69232 | 474  | 
qed  | 
475  | 
||
476  | 
theorem brauns_correct:  | 
|
477  | 
"i < min (length xs) (2 ^ k) \<Longrightarrow> braun_list (brauns k xs ! i) (take_nths i k xs)"  | 
|
478  | 
proof (induct xs arbitrary: i k rule: measure_induct_rule[where f=length])  | 
|
479  | 
case (less xs)  | 
|
480  | 
have "xs \<noteq> []" using less.prems by auto  | 
|
481  | 
let ?zs = "drop (2^k) xs"  | 
|
482  | 
let ?ts = "brauns (Suc k) ?zs"  | 
|
483  | 
from less.hyps[of ?zs _ "Suc k"]  | 
|
484  | 
have IH: "\<lbrakk> j = i + 2 ^ k; i < min (length ?zs) (2 ^ (k+1)) \<rbrakk> \<Longrightarrow>  | 
|
485  | 
braun_list (?ts ! i) (take_nths j (Suc k) xs)" for i j  | 
|
486  | 
using \<open>xs \<noteq> []\<close> by (simp add: take_nths_drop)  | 
|
487  | 
show ?case  | 
|
| 71304 | 488  | 
using less.prems  | 
| 71846 | 489  | 
by (auto simp: brauns.simps[of k xs] nth_nodes take_nths_take_nths  | 
| 69232 | 490  | 
IH take_nths_empty hd_take_nths length_brauns)  | 
491  | 
qed  | 
|
492  | 
||
493  | 
corollary brauns1_correct:  | 
|
494  | 
"braun (brauns1 xs) \<and> list (brauns1 xs) = xs"  | 
|
495  | 
using brauns_correct[of 0 xs 0]  | 
|
496  | 
by (simp add: brauns1_def braun_list_eq take_nths_00)  | 
|
497  | 
||
498  | 
||
499  | 
paragraph "Running Time Analysis"  | 
|
500  | 
||
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
501  | 
theorem T_brauns:  | 
| 
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
502  | 
"T_brauns k xs = 4 * length xs"  | 
| 69232 | 503  | 
proof (induction xs arbitrary: k rule: measure_induct_rule[where f = length])  | 
504  | 
case (less xs)  | 
|
505  | 
show ?case  | 
|
506  | 
proof cases  | 
|
507  | 
assume "xs = []"  | 
|
| 71846 | 508  | 
thus ?thesis by(simp)  | 
| 69232 | 509  | 
next  | 
510  | 
assume "xs \<noteq> []"  | 
|
511  | 
let ?zs = "drop (2^k) xs"  | 
|
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
512  | 
have "T_brauns k xs = T_brauns (k+1) ?zs + 4 * min (2^k) (length xs)"  | 
| 71846 | 513  | 
using \<open>xs \<noteq> []\<close> by(simp)  | 
| 69232 | 514  | 
also have "\<dots> = 4 * length ?zs + 4 * min (2^k) (length xs)"  | 
515  | 
using less[of ?zs "k+1"] \<open>xs \<noteq> []\<close>  | 
|
516  | 
by (simp)  | 
|
517  | 
also have "\<dots> = 4 * length xs"  | 
|
518  | 
by(simp)  | 
|
519  | 
finally show ?case .  | 
|
520  | 
qed  | 
|
521  | 
qed  | 
|
522  | 
||
523  | 
||
524  | 
subsubsection \<open>Converting a Braun Tree into a List of Elements\<close>  | 
|
525  | 
||
526  | 
text \<open>The code and the proof are originally due to Thomas Sewell (except running time).\<close>  | 
|
527  | 
||
528  | 
function list_fast_rec :: "'a tree list \<Rightarrow> 'a list" where  | 
|
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
529  | 
"list_fast_rec ts = (let us = filter (\<lambda>t. t \<noteq> Leaf) ts in  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
530  | 
if us = [] then [] else  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
531  | 
map value us @ list_fast_rec (map left us @ map right us))"  | 
| 69232 | 532  | 
by (pat_completeness, auto)  | 
533  | 
||
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
534  | 
lemma list_fast_rec_term1: "ts \<noteq> [] \<Longrightarrow> Leaf \<notin> set ts \<Longrightarrow>  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
535  | 
sum_list (map (size o left) ts) + sum_list (map (size o right) ts) < sum_list (map size ts)"  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
536  | 
apply (clarsimp simp: sum_list_addf[symmetric] sum_list_map_filter')  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
537  | 
apply (rule sum_list_strict_mono; clarsimp?)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
538  | 
apply (case_tac x; simp)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
539  | 
done  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
540  | 
|
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
541  | 
lemma list_fast_rec_term: "us \<noteq> [] \<Longrightarrow> us = filter (\<lambda>t. t \<noteq> \<langle>\<rangle>) ts \<Longrightarrow>  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
542  | 
sum_list (map (size o left) us) + sum_list (map (size o right) us) < sum_list (map size ts)"  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
543  | 
apply (rule order_less_le_trans, rule list_fast_rec_term1, simp_all)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
544  | 
apply (rule sum_list_filter_le_nat)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
545  | 
done  | 
| 69232 | 546  | 
|
547  | 
termination  | 
|
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
548  | 
apply (relation "measure (sum_list o map size)")  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
549  | 
apply simp  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
550  | 
apply (simp add: list_fast_rec_term)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
551  | 
done  | 
| 69232 | 552  | 
|
553  | 
declare list_fast_rec.simps[simp del]  | 
|
554  | 
||
555  | 
definition list_fast :: "'a tree \<Rightarrow> 'a list" where  | 
|
556  | 
"list_fast t = list_fast_rec [t]"  | 
|
557  | 
||
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
558  | 
function T_list_fast_rec :: "'a tree list \<Rightarrow> nat" where  | 
| 
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
559  | 
"T_list_fast_rec ts = (let us = filter (\<lambda>t. t \<noteq> Leaf) ts  | 
| 
69985
 
8e916ed23d17
follow up on Braun: get timing function right
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69984 
diff
changeset
 | 
560  | 
in length ts + (if us = [] then 0 else  | 
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
561  | 
5 * length us + T_list_fast_rec (map left us @ map right us)))"  | 
| 69232 | 562  | 
by (pat_completeness, auto)  | 
563  | 
||
564  | 
termination  | 
|
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
565  | 
apply (relation "measure (sum_list o map size)")  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
566  | 
apply simp  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
567  | 
apply (simp add: list_fast_rec_term)  | 
| 
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
568  | 
done  | 
| 69232 | 569  | 
|
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
570  | 
declare T_list_fast_rec.simps[simp del]  | 
| 69232 | 571  | 
|
572  | 
paragraph "Functional Correctness"  | 
|
573  | 
||
574  | 
lemma list_fast_rec_all_Leaf:  | 
|
575  | 
"\<forall>t \<in> set ts. t = Leaf \<Longrightarrow> list_fast_rec ts = []"  | 
|
576  | 
by (simp add: filter_empty_conv list_fast_rec.simps)  | 
|
577  | 
||
578  | 
lemma take_nths_eq_single:  | 
|
579  | 
"length xs - i < 2^n \<Longrightarrow> take_nths i n xs = take 1 (drop i xs)"  | 
|
580  | 
by (induction xs arbitrary: i n; simp add: drop_Cons')  | 
|
581  | 
||
582  | 
lemma braun_list_Nil:  | 
|
583  | 
"braun_list t [] = (t = Leaf)"  | 
|
584  | 
by (cases t; simp)  | 
|
585  | 
||
586  | 
lemma braun_list_not_Nil: "xs \<noteq> [] \<Longrightarrow>  | 
|
587  | 
braun_list t xs =  | 
|
588  | 
(\<exists>l x r. t = Node l x r \<and> x = hd xs \<and>  | 
|
589  | 
braun_list l (take_nths 1 1 xs) \<and>  | 
|
590  | 
braun_list r (take_nths 2 1 xs))"  | 
|
591  | 
by(cases t; simp)  | 
|
592  | 
||
593  | 
theorem list_fast_rec_correct:  | 
|
594  | 
"\<lbrakk> length ts = 2 ^ k; \<forall>i < 2 ^ k. braun_list (ts ! i) (take_nths i k xs) \<rbrakk>  | 
|
595  | 
\<Longrightarrow> list_fast_rec ts = xs"  | 
|
596  | 
proof (induct xs arbitrary: k ts rule: measure_induct_rule[where f=length])  | 
|
597  | 
case (less xs)  | 
|
598  | 
show ?case  | 
|
599  | 
proof (cases "length xs < 2 ^ k")  | 
|
600  | 
case True  | 
|
601  | 
from less.prems True have filter:  | 
|
602  | 
"\<exists>n. ts = map (\<lambda>x. Node Leaf x Leaf) xs @ replicate n Leaf"  | 
|
603  | 
apply (rule_tac x="length ts - length xs" in exI)  | 
|
604  | 
apply (clarsimp simp: list_eq_iff_nth_eq)  | 
|
605  | 
apply(auto simp: nth_append braun_list_not_Nil take_nths_eq_single braun_list_Nil hd_drop_conv_nth)  | 
|
606  | 
done  | 
|
607  | 
thus ?thesis  | 
|
| 71846 | 608  | 
by (clarsimp simp: list_fast_rec.simps[of ts] o_def list_fast_rec_all_Leaf)  | 
| 69232 | 609  | 
next  | 
610  | 
case False  | 
|
611  | 
with less.prems(2) have *:  | 
|
612  | 
"\<forall>i < 2 ^ k. ts ! i \<noteq> Leaf  | 
|
| 69655 | 613  | 
\<and> value (ts ! i) = xs ! i  | 
| 69232 | 614  | 
\<and> braun_list (left (ts ! i)) (take_nths (i + 2 ^ k) (Suc k) xs)  | 
615  | 
\<and> (\<forall>ys. ys = take_nths (i + 2 * 2 ^ k) (Suc k) xs  | 
|
616  | 
\<longrightarrow> braun_list (right (ts ! i)) ys)"  | 
|
617  | 
by (auto simp: take_nths_empty hd_take_nths braun_list_not_Nil take_nths_take_nths  | 
|
618  | 
algebra_simps)  | 
|
| 69655 | 619  | 
have 1: "map value ts = take (2 ^ k) xs"  | 
| 69232 | 620  | 
using less.prems(1) False by (simp add: list_eq_iff_nth_eq *)  | 
621  | 
have 2: "list_fast_rec (map left ts @ map right ts) = drop (2 ^ k) xs"  | 
|
622  | 
using less.prems(1) False  | 
|
623  | 
by (auto intro!: Nat.diff_less less.hyps[where k= "Suc k"]  | 
|
624  | 
simp: nth_append * take_nths_drop algebra_simps)  | 
|
625  | 
from less.prems(1) False show ?thesis  | 
|
| 71846 | 626  | 
by (auto simp: list_fast_rec.simps[of ts] 1 2 * all_set_conv_all_nth)  | 
| 69232 | 627  | 
qed  | 
628  | 
qed  | 
|
629  | 
||
630  | 
corollary list_fast_correct:  | 
|
631  | 
"braun t \<Longrightarrow> list_fast t = list t"  | 
|
632  | 
by (simp add: list_fast_def take_nths_00 braun_list_eq list_fast_rec_correct[where k=0])  | 
|
633  | 
||
634  | 
paragraph "Running Time Analysis"  | 
|
635  | 
||
636  | 
lemma sum_tree_list_children: "\<forall>t \<in> set ts. t \<noteq> Leaf \<Longrightarrow>  | 
|
637  | 
(\<Sum>t\<leftarrow>ts. k * size t) = (\<Sum>t \<leftarrow> map left ts @ map right ts. k * size t) + k * length ts"  | 
|
638  | 
by(induction ts)(auto simp add: neq_Leaf_iff algebra_simps)  | 
|
639  | 
||
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
640  | 
theorem T_list_fast_rec_ub:  | 
| 
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
641  | 
"T_list_fast_rec ts \<le> sum_list (map (\<lambda>t. 7*size t + 1) ts)"  | 
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
642  | 
proof (induction ts rule: measure_induct_rule[where f="sum_list o map size"])  | 
| 69232 | 643  | 
case (less ts)  | 
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
644  | 
let ?us = "filter (\<lambda>t. t \<noteq> Leaf) ts"  | 
| 69232 | 645  | 
show ?case  | 
646  | 
proof cases  | 
|
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
647  | 
assume "?us = []"  | 
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
648  | 
thus ?thesis using T_list_fast_rec.simps[of ts]  | 
| 71846 | 649  | 
by(simp add: sum_list_Suc)  | 
| 
69985
 
8e916ed23d17
follow up on Braun: get timing function right
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69984 
diff
changeset
 | 
650  | 
next  | 
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
651  | 
assume "?us \<noteq> []"  | 
| 69232 | 652  | 
let ?children = "map left ?us @ map right ?us"  | 
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
653  | 
have "T_list_fast_rec ts = T_list_fast_rec ?children + 5 * length ?us + length ts"  | 
| 
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
654  | 
using \<open>?us \<noteq> []\<close> T_list_fast_rec.simps[of ts] by(simp)  | 
| 69232 | 655  | 
also have "\<dots> \<le> (\<Sum>t\<leftarrow>?children. 7 * size t + 1) + 5 * length ?us + length ts"  | 
| 
69984
 
3afa3b25b5e7
Tweak Braun tree list_fast_rec recursion.
 
Thomas Sewell <sewell@chalmers.se> 
parents: 
69943 
diff
changeset
 | 
656  | 
using less[of "?children"] list_fast_rec_term[of "?us"] \<open>?us \<noteq> []\<close>  | 
| 69232 | 657  | 
by (simp)  | 
658  | 
also have "\<dots> = (\<Sum>t\<leftarrow>?children. 7*size t) + 7 * length ?us + length ts"  | 
|
659  | 
by(simp add: sum_list_Suc o_def)  | 
|
660  | 
also have "\<dots> = (\<Sum>t\<leftarrow>?us. 7*size t) + length ts"  | 
|
661  | 
by(simp add: sum_tree_list_children)  | 
|
662  | 
also have "\<dots> \<le> (\<Sum>t\<leftarrow>ts. 7*size t) + length ts"  | 
|
663  | 
by(simp add: sum_list_filter_le_nat)  | 
|
664  | 
also have "\<dots> = (\<Sum>t\<leftarrow>ts. 7 * size t + 1)"  | 
|
665  | 
by(simp add: sum_list_Suc)  | 
|
666  | 
finally show ?case .  | 
|
667  | 
qed  | 
|
668  | 
qed  | 
|
669  | 
||
| 
72550
 
1d0ae7e578a0
renamed t_ functions to T_ (im Auftrag von T. Nipkow)
 
blanchet 
parents: 
71846 
diff
changeset
 | 
670  | 
end  |