| author | desharna | 
| Fri, 20 Oct 2023 12:25:35 +0200 | |
| changeset 78789 | f2e845c3e65c | 
| parent 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Library/Quotient_List.thy | 
| 53012 
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
 kuncar parents: 
52308diff
changeset | 2 | Author: Cezary Kaliszyk and Christian Urban | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 3 | *) | 
| 35788 | 4 | |
| 60500 | 5 | section \<open>Quotient infrastructure for the list type\<close> | 
| 35788 | 6 | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 7 | theory Quotient_List | 
| 62954 | 8 | imports Quotient_Set Quotient_Product Quotient_Option | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 9 | begin | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 10 | |
| 60500 | 11 | subsection \<open>Rules for the Quotient package\<close> | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 12 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 13 | lemma map_id [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 14 | "map id = id" | 
| 46663 | 15 | by (fact List.map.id) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 16 | |
| 53012 
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
 kuncar parents: 
52308diff
changeset | 17 | lemma list_all2_eq [id_simps]: | 
| 67399 | 18 | "list_all2 (=) = (=)" | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 19 | proof (rule ext)+ | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 20 | fix xs ys | 
| 67399 | 21 | show "list_all2 (=) xs ys \<longleftrightarrow> xs = ys" | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 22 | by (induct xs ys rule: list_induct2') simp_all | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 23 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 24 | |
| 55564 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 25 | lemma reflp_list_all2: | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 26 | assumes "reflp R" | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 27 | shows "reflp (list_all2 R)" | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 28 | proof (rule reflpI) | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 29 | from assms have *: "\<And>xs. R xs xs" by (rule reflpE) | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 30 | fix xs | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 31 | show "list_all2 R xs xs" | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 32 | by (induct xs) (simp_all add: *) | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 33 | qed | 
| 
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
 kuncar parents: 
53012diff
changeset | 34 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 35 | lemma list_symp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 36 | assumes "symp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 37 | shows "symp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 38 | proof (rule sympI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 39 | from assms have *: "\<And>xs ys. R xs ys \<Longrightarrow> R ys xs" by (rule sympE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 40 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 41 | assume "list_all2 R xs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 42 | then show "list_all2 R ys xs" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 43 | by (induct xs ys rule: list_induct2') (simp_all add: *) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 44 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 45 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 46 | lemma list_transp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 47 | assumes "transp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 48 | shows "transp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 49 | proof (rule transpI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 50 | from assms have *: "\<And>xs ys zs. R xs ys \<Longrightarrow> R ys zs \<Longrightarrow> R xs zs" by (rule transpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 51 | fix xs ys zs | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 52 | assume "list_all2 R xs ys" and "list_all2 R ys zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 53 | then show "list_all2 R xs zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 54 | by (induct arbitrary: zs) (auto simp: list_all2_Cons1 intro: *) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 55 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 56 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 57 | lemma list_equivp [quot_equiv]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 58 | "equivp R \<Longrightarrow> equivp (list_all2 R)" | 
| 51994 | 59 | by (blast intro: equivpI reflp_list_all2 list_symp list_transp elim: equivpE) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 60 | |
| 47308 | 61 | lemma list_quotient3 [quot_thm]: | 
| 62 | assumes "Quotient3 R Abs Rep" | |
| 63 | shows "Quotient3 (list_all2 R) (map Abs) (map Rep)" | |
| 64 | proof (rule Quotient3I) | |
| 65 | from assms have "\<And>x. Abs (Rep x) = x" by (rule Quotient3_abs_rep) | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 66 | then show "\<And>xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 67 | next | 
| 47308 | 68 | from assms have "\<And>x y. R (Rep x) (Rep y) \<longleftrightarrow> x = y" by (rule Quotient3_rel_rep) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 69 | then show "\<And>xs. list_all2 R (map Rep xs) (map Rep xs)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 70 | by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 71 | next | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 72 | fix xs ys | 
| 47308 | 73 | from assms have "\<And>x y. R x x \<and> R y y \<and> Abs x = Abs y \<longleftrightarrow> R x y" by (rule Quotient3_rel) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 74 | then show "list_all2 R xs ys \<longleftrightarrow> list_all2 R xs xs \<and> list_all2 R ys ys \<and> map Abs xs = map Abs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 75 | by (induct xs ys rule: list_induct2') auto | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 76 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 77 | |
| 47308 | 78 | declare [[mapQ3 list = (list_all2, list_quotient3)]] | 
| 47094 | 79 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 80 | lemma cons_prs [quot_preserve]: | 
| 47308 | 81 | assumes q: "Quotient3 R Abs Rep" | 
| 67399 | 82 | shows "(Rep ---> (map Rep) ---> (map Abs)) (#) = (#)" | 
| 47308 | 83 | by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 84 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 85 | lemma cons_rsp [quot_respect]: | 
| 47308 | 86 | assumes q: "Quotient3 R Abs Rep" | 
| 67399 | 87 | shows "(R ===> list_all2 R ===> list_all2 R) (#) (#)" | 
| 40463 | 88 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 89 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 90 | lemma nil_prs [quot_preserve]: | 
| 47308 | 91 | assumes q: "Quotient3 R Abs Rep" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 92 | shows "map Abs [] = []" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 93 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 94 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 95 | lemma nil_rsp [quot_respect]: | 
| 47308 | 96 | assumes q: "Quotient3 R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 97 | shows "list_all2 R [] []" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 98 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 99 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 100 | lemma map_prs_aux: | 
| 47308 | 101 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 102 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 103 | shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 104 | by (induct l) | 
| 47308 | 105 | (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 106 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 107 | lemma map_prs [quot_preserve]: | 
| 47308 | 108 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 109 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 110 | shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" | 
| 36216 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 111 | and "((abs1 ---> id) ---> map rep1 ---> id) map = map" | 
| 40463 | 112 | by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) | 
| 47308 | 113 | (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 40463 | 114 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 115 | lemma map_rsp [quot_respect]: | 
| 47308 | 116 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 117 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 118 | shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" | 
| 67399 | 119 | and "((R1 ===> (=)) ===> (list_all2 R1) ===> (=)) map map" | 
| 58961 
7c507e664047
dropped redundant transfer rules (now proved and registered by datatype and plugins)
 traytel parents: 
58881diff
changeset | 120 | unfolding list_all2_eq [symmetric] by (rule list.map_transfer)+ | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 121 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 122 | lemma foldr_prs_aux: | 
| 47308 | 123 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 124 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 125 | shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" | 
| 47308 | 126 | by (induct l) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 127 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 128 | lemma foldr_prs [quot_preserve]: | 
| 47308 | 129 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 130 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 131 | shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" | 
| 40463 | 132 | apply (simp add: fun_eq_iff) | 
| 133 | by (simp only: fun_eq_iff foldr_prs_aux[OF a b]) | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 134 | (simp) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 135 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 136 | lemma foldl_prs_aux: | 
| 47308 | 137 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 138 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 139 | shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" | 
| 47308 | 140 | by (induct l arbitrary:e) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 141 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 142 | lemma foldl_prs [quot_preserve]: | 
| 47308 | 143 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 144 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 145 | shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" | 
| 40463 | 146 | by (simp add: fun_eq_iff foldl_prs_aux [OF a b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 147 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 148 | lemma foldl_rsp[quot_respect]: | 
| 47308 | 149 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 150 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 151 | shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 152 | by (rule foldl_transfer) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 153 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 154 | lemma foldr_rsp[quot_respect]: | 
| 47308 | 155 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 156 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 157 | shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 158 | by (rule foldr_transfer) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 159 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 160 | lemma list_all2_rsp: | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 161 | assumes r: "\<forall>x y. R x y \<longrightarrow> (\<forall>a b. R a b \<longrightarrow> S x a = T y b)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 162 | and l1: "list_all2 R x y" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 163 | and l2: "list_all2 R a b" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 164 | shows "list_all2 S x a = list_all2 T y b" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 165 | using l1 l2 | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 166 | by (induct arbitrary: a b rule: list_all2_induct, | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 167 | auto simp: list_all2_Cons1 list_all2_Cons2 r) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 168 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 169 | lemma [quot_respect]: | 
| 67399 | 170 | "((R ===> R ===> (=)) ===> list_all2 R ===> list_all2 R ===> (=)) list_all2 list_all2" | 
| 58961 
7c507e664047
dropped redundant transfer rules (now proved and registered by datatype and plugins)
 traytel parents: 
58881diff
changeset | 171 | by (rule list.rel_transfer) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 172 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 173 | lemma [quot_preserve]: | 
| 47308 | 174 | assumes a: "Quotient3 R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 175 | shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 176 | apply (simp add: fun_eq_iff) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 177 | apply clarify | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 178 | apply (induct_tac xa xb rule: list_induct2') | 
| 47308 | 179 | apply (simp_all add: Quotient3_abs_rep[OF a]) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 180 | done | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 181 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 182 | lemma [quot_preserve]: | 
| 47308 | 183 | assumes a: "Quotient3 R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 184 | shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" | 
| 47308 | 185 | by (induct l m rule: list_induct2') (simp_all add: Quotient3_rel_rep[OF a]) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 186 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 187 | lemma list_all2_find_element: | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 188 | assumes a: "x \<in> set a" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 189 | and b: "list_all2 R a b" | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 190 | shows "\<exists>y. (y \<in> set b \<and> R x y)" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 191 | using b a by induct auto | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 192 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 193 | lemma list_all2_refl: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 194 | assumes a: "\<And>x y. R x y = (R x = R y)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 195 | shows "list_all2 R x x" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 196 | by (induct x) (auto simp add: a) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 197 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 198 | end |