author | wenzelm |
Mon, 16 Jun 2008 22:13:39 +0200 | |
changeset 27239 | f2f42f9fa09d |
parent 27225 | b316dde851f5 |
child 28698 | b1c4366e1212 |
permissions | -rw-r--r-- |
1839 | 1 |
(* Title: HOL/Auth/Message |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1996 University of Cambridge |
|
5 |
||
6 |
Datatypes of agents and messages; |
|
1913 | 7 |
Inductive relations "parts", "analz" and "synth" |
1839 | 8 |
*) |
9 |
||
13956 | 10 |
header{*Theory of Agents and Messages for Security Protocols*} |
11 |
||
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
12 |
theory Message |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
13 |
imports Main |
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
14 |
begin |
11189 | 15 |
|
16 |
(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) |
|
13926 | 17 |
lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" |
11189 | 18 |
by blast |
1839 | 19 |
|
20 |
types |
|
21 |
key = nat |
|
22 |
||
23 |
consts |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
24 |
all_symmetric :: bool --{*true if all keys are symmetric*} |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
25 |
invKey :: "key=>key" --{*inverse of a symmetric key*} |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
26 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
27 |
specification (invKey) |
14181 | 28 |
invKey [simp]: "invKey (invKey K) = K" |
29 |
invKey_symmetric: "all_symmetric --> invKey = id" |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
30 |
by (rule exI [of _ id], auto) |
1839 | 31 |
|
14126
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
32 |
|
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
33 |
text{*The inverse of a symmetric key is itself; that of a public key |
28824746d046
Tidying and replacement of some axioms by specifications
paulson
parents:
13956
diff
changeset
|
34 |
is the private key and vice versa*} |
1839 | 35 |
|
36 |
constdefs |
|
11230
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
37 |
symKeys :: "key set" |
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
paulson
parents:
11192
diff
changeset
|
38 |
"symKeys == {K. invKey K = K}" |
1839 | 39 |
|
16818 | 40 |
datatype --{*We allow any number of friendly agents*} |
2032 | 41 |
agent = Server | Friend nat | Spy |
1839 | 42 |
|
3668 | 43 |
datatype |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
44 |
msg = Agent agent --{*Agent names*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
45 |
| Number nat --{*Ordinary integers, timestamps, ...*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
46 |
| Nonce nat --{*Unguessable nonces*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
47 |
| Key key --{*Crypto keys*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
48 |
| Hash msg --{*Hashing*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
49 |
| MPair msg msg --{*Compound messages*} |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
50 |
| Crypt key msg --{*Encryption, public- or shared-key*} |
1839 | 51 |
|
5234 | 52 |
|
16818 | 53 |
text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*} |
5234 | 54 |
syntax |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
55 |
"@MTuple" :: "['a, args] => 'a * 'b" ("(2{|_,/ _|})") |
1839 | 56 |
|
9686 | 57 |
syntax (xsymbols) |
11189 | 58 |
"@MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)") |
9686 | 59 |
|
1839 | 60 |
translations |
61 |
"{|x, y, z|}" == "{|x, {|y, z|}|}" |
|
62 |
"{|x, y|}" == "MPair x y" |
|
63 |
||
64 |
||
2484 | 65 |
constdefs |
11189 | 66 |
HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) |
16818 | 67 |
--{*Message Y paired with a MAC computed with the help of X*} |
2516
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
paulson
parents:
2484
diff
changeset
|
68 |
"Hash[X] Y == {| Hash{|X,Y|}, Y|}" |
2484 | 69 |
|
11189 | 70 |
keysFor :: "msg set => key set" |
16818 | 71 |
--{*Keys useful to decrypt elements of a message set*} |
11192 | 72 |
"keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}" |
1839 | 73 |
|
16818 | 74 |
|
75 |
subsubsection{*Inductive Definition of All Parts" of a Message*} |
|
1839 | 76 |
|
23746 | 77 |
inductive_set |
78 |
parts :: "msg set => msg set" |
|
79 |
for H :: "msg set" |
|
80 |
where |
|
11192 | 81 |
Inj [intro]: "X \<in> H ==> X \<in> parts H" |
23746 | 82 |
| Fst: "{|X,Y|} \<in> parts H ==> X \<in> parts H" |
83 |
| Snd: "{|X,Y|} \<in> parts H ==> Y \<in> parts H" |
|
84 |
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H" |
|
11189 | 85 |
|
86 |
||
16818 | 87 |
text{*Monotonicity*} |
88 |
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" |
|
11189 | 89 |
apply auto |
90 |
apply (erule parts.induct) |
|
16818 | 91 |
apply (blast dest: parts.Fst parts.Snd parts.Body)+ |
11189 | 92 |
done |
1839 | 93 |
|
94 |
||
16818 | 95 |
text{*Equations hold because constructors are injective.*} |
13926 | 96 |
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" |
97 |
by auto |
|
98 |
||
99 |
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" |
|
100 |
by auto |
|
101 |
||
102 |
lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" |
|
103 |
by auto |
|
104 |
||
105 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
106 |
subsubsection{*Inverse of keys *} |
13926 | 107 |
|
108 |
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" |
|
109 |
apply safe |
|
110 |
apply (drule_tac f = invKey in arg_cong, simp) |
|
111 |
done |
|
112 |
||
113 |
||
114 |
subsection{*keysFor operator*} |
|
115 |
||
116 |
lemma keysFor_empty [simp]: "keysFor {} = {}" |
|
117 |
by (unfold keysFor_def, blast) |
|
118 |
||
119 |
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" |
|
120 |
by (unfold keysFor_def, blast) |
|
121 |
||
122 |
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" |
|
123 |
by (unfold keysFor_def, blast) |
|
124 |
||
16818 | 125 |
text{*Monotonicity*} |
126 |
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" |
|
13926 | 127 |
by (unfold keysFor_def, blast) |
128 |
||
129 |
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" |
|
130 |
by (unfold keysFor_def, auto) |
|
131 |
||
132 |
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" |
|
133 |
by (unfold keysFor_def, auto) |
|
134 |
||
135 |
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" |
|
136 |
by (unfold keysFor_def, auto) |
|
137 |
||
138 |
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" |
|
139 |
by (unfold keysFor_def, auto) |
|
140 |
||
141 |
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" |
|
142 |
by (unfold keysFor_def, auto) |
|
143 |
||
144 |
lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H" |
|
145 |
by (unfold keysFor_def, auto) |
|
146 |
||
147 |
lemma keysFor_insert_Crypt [simp]: |
|
148 |
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
149 |
by (unfold keysFor_def, auto) |
13926 | 150 |
|
151 |
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}" |
|
152 |
by (unfold keysFor_def, auto) |
|
153 |
||
154 |
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" |
|
155 |
by (unfold keysFor_def, blast) |
|
156 |
||
157 |
||
158 |
subsection{*Inductive relation "parts"*} |
|
159 |
||
160 |
lemma MPair_parts: |
|
161 |
"[| {|X,Y|} \<in> parts H; |
|
162 |
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" |
|
163 |
by (blast dest: parts.Fst parts.Snd) |
|
164 |
||
165 |
declare MPair_parts [elim!] parts.Body [dest!] |
|
166 |
text{*NB These two rules are UNSAFE in the formal sense, as they discard the |
|
167 |
compound message. They work well on THIS FILE. |
|
168 |
@{text MPair_parts} is left as SAFE because it speeds up proofs. |
|
169 |
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} |
|
170 |
||
171 |
lemma parts_increasing: "H \<subseteq> parts(H)" |
|
172 |
by blast |
|
173 |
||
174 |
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] |
|
175 |
||
176 |
lemma parts_empty [simp]: "parts{} = {}" |
|
177 |
apply safe |
|
178 |
apply (erule parts.induct, blast+) |
|
179 |
done |
|
180 |
||
181 |
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P" |
|
182 |
by simp |
|
183 |
||
16818 | 184 |
text{*WARNING: loops if H = {Y}, therefore must not be repeated!*} |
13926 | 185 |
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}" |
26807
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
berghofe
parents:
26342
diff
changeset
|
186 |
by (erule parts.induct, fast+) |
13926 | 187 |
|
188 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
189 |
subsubsection{*Unions *} |
13926 | 190 |
|
191 |
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" |
|
192 |
by (intro Un_least parts_mono Un_upper1 Un_upper2) |
|
193 |
||
194 |
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" |
|
195 |
apply (rule subsetI) |
|
196 |
apply (erule parts.induct, blast+) |
|
197 |
done |
|
198 |
||
199 |
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" |
|
200 |
by (intro equalityI parts_Un_subset1 parts_Un_subset2) |
|
201 |
||
202 |
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H" |
|
203 |
apply (subst insert_is_Un [of _ H]) |
|
204 |
apply (simp only: parts_Un) |
|
205 |
done |
|
206 |
||
16818 | 207 |
text{*TWO inserts to avoid looping. This rewrite is better than nothing. |
208 |
Not suitable for Addsimps: its behaviour can be strange.*} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
209 |
lemma parts_insert2: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
210 |
"parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H" |
13926 | 211 |
apply (simp add: Un_assoc) |
212 |
apply (simp add: parts_insert [symmetric]) |
|
213 |
done |
|
214 |
||
215 |
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" |
|
216 |
by (intro UN_least parts_mono UN_upper) |
|
217 |
||
218 |
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" |
|
219 |
apply (rule subsetI) |
|
220 |
apply (erule parts.induct, blast+) |
|
221 |
done |
|
222 |
||
223 |
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" |
|
224 |
by (intro equalityI parts_UN_subset1 parts_UN_subset2) |
|
225 |
||
16818 | 226 |
text{*Added to simplify arguments to parts, analz and synth. |
227 |
NOTE: the UN versions are no longer used!*} |
|
13926 | 228 |
|
229 |
||
230 |
text{*This allows @{text blast} to simplify occurrences of |
|
231 |
@{term "parts(G\<union>H)"} in the assumption.*} |
|
17729 | 232 |
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] |
233 |
declare in_parts_UnE [elim!] |
|
13926 | 234 |
|
235 |
||
236 |
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" |
|
237 |
by (blast intro: parts_mono [THEN [2] rev_subsetD]) |
|
238 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
239 |
subsubsection{*Idempotence and transitivity *} |
13926 | 240 |
|
241 |
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" |
|
242 |
by (erule parts.induct, blast+) |
|
243 |
||
244 |
lemma parts_idem [simp]: "parts (parts H) = parts H" |
|
245 |
by blast |
|
246 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
247 |
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
248 |
apply (rule iffI) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
249 |
apply (iprover intro: subset_trans parts_increasing) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
250 |
apply (frule parts_mono, simp) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
251 |
done |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
252 |
|
13926 | 253 |
lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" |
254 |
by (drule parts_mono, blast) |
|
255 |
||
16818 | 256 |
text{*Cut*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
257 |
lemma parts_cut: |
18492 | 258 |
"[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" |
259 |
by (blast intro: parts_trans) |
|
260 |
||
13926 | 261 |
|
262 |
lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" |
|
263 |
by (force dest!: parts_cut intro: parts_insertI) |
|
264 |
||
265 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
266 |
subsubsection{*Rewrite rules for pulling out atomic messages *} |
13926 | 267 |
|
268 |
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] |
|
269 |
||
270 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
271 |
lemma parts_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
272 |
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" |
13926 | 273 |
apply (rule parts_insert_eq_I) |
274 |
apply (erule parts.induct, auto) |
|
275 |
done |
|
276 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
277 |
lemma parts_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
278 |
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" |
13926 | 279 |
apply (rule parts_insert_eq_I) |
280 |
apply (erule parts.induct, auto) |
|
281 |
done |
|
282 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
283 |
lemma parts_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
284 |
"parts (insert (Number N) H) = insert (Number N) (parts H)" |
13926 | 285 |
apply (rule parts_insert_eq_I) |
286 |
apply (erule parts.induct, auto) |
|
287 |
done |
|
288 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
289 |
lemma parts_insert_Key [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
290 |
"parts (insert (Key K) H) = insert (Key K) (parts H)" |
13926 | 291 |
apply (rule parts_insert_eq_I) |
292 |
apply (erule parts.induct, auto) |
|
293 |
done |
|
294 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
295 |
lemma parts_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
296 |
"parts (insert (Hash X) H) = insert (Hash X) (parts H)" |
13926 | 297 |
apply (rule parts_insert_eq_I) |
298 |
apply (erule parts.induct, auto) |
|
299 |
done |
|
300 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
301 |
lemma parts_insert_Crypt [simp]: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
302 |
"parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" |
13926 | 303 |
apply (rule equalityI) |
304 |
apply (rule subsetI) |
|
305 |
apply (erule parts.induct, auto) |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
306 |
apply (blast intro: parts.Body) |
13926 | 307 |
done |
308 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
309 |
lemma parts_insert_MPair [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
310 |
"parts (insert {|X,Y|} H) = |
13926 | 311 |
insert {|X,Y|} (parts (insert X (insert Y H)))" |
312 |
apply (rule equalityI) |
|
313 |
apply (rule subsetI) |
|
314 |
apply (erule parts.induct, auto) |
|
315 |
apply (blast intro: parts.Fst parts.Snd)+ |
|
316 |
done |
|
317 |
||
318 |
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" |
|
319 |
apply auto |
|
320 |
apply (erule parts.induct, auto) |
|
321 |
done |
|
322 |
||
323 |
||
16818 | 324 |
text{*In any message, there is an upper bound N on its greatest nonce.*} |
13926 | 325 |
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}" |
27105
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
haftmann
parents:
26807
diff
changeset
|
326 |
apply (induct msg) |
13926 | 327 |
apply (simp_all (no_asm_simp) add: exI parts_insert2) |
16818 | 328 |
txt{*MPair case: blast works out the necessary sum itself!*} |
22424 | 329 |
prefer 2 apply auto apply (blast elim!: add_leE) |
16818 | 330 |
txt{*Nonce case*} |
331 |
apply (rule_tac x = "N + Suc nat" in exI, auto) |
|
13926 | 332 |
done |
333 |
||
334 |
||
335 |
subsection{*Inductive relation "analz"*} |
|
336 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
337 |
text{*Inductive definition of "analz" -- what can be broken down from a set of |
1839 | 338 |
messages, including keys. A form of downward closure. Pairs can |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
339 |
be taken apart; messages decrypted with known keys. *} |
1839 | 340 |
|
23746 | 341 |
inductive_set |
342 |
analz :: "msg set => msg set" |
|
343 |
for H :: "msg set" |
|
344 |
where |
|
11192 | 345 |
Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" |
23746 | 346 |
| Fst: "{|X,Y|} \<in> analz H ==> X \<in> analz H" |
347 |
| Snd: "{|X,Y|} \<in> analz H ==> Y \<in> analz H" |
|
348 |
| Decrypt [dest]: |
|
11192 | 349 |
"[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" |
1839 | 350 |
|
351 |
||
16818 | 352 |
text{*Monotonicity; Lemma 1 of Lowe's paper*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
353 |
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" |
11189 | 354 |
apply auto |
355 |
apply (erule analz.induct) |
|
16818 | 356 |
apply (auto dest: analz.Fst analz.Snd) |
11189 | 357 |
done |
358 |
||
13926 | 359 |
text{*Making it safe speeds up proofs*} |
360 |
lemma MPair_analz [elim!]: |
|
361 |
"[| {|X,Y|} \<in> analz H; |
|
362 |
[| X \<in> analz H; Y \<in> analz H |] ==> P |
|
363 |
|] ==> P" |
|
364 |
by (blast dest: analz.Fst analz.Snd) |
|
365 |
||
366 |
lemma analz_increasing: "H \<subseteq> analz(H)" |
|
367 |
by blast |
|
368 |
||
369 |
lemma analz_subset_parts: "analz H \<subseteq> parts H" |
|
370 |
apply (rule subsetI) |
|
371 |
apply (erule analz.induct, blast+) |
|
372 |
done |
|
373 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
374 |
lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
375 |
|
13926 | 376 |
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] |
377 |
||
378 |
||
379 |
lemma parts_analz [simp]: "parts (analz H) = parts H" |
|
380 |
apply (rule equalityI) |
|
381 |
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp) |
|
382 |
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD]) |
|
383 |
done |
|
384 |
||
385 |
lemma analz_parts [simp]: "analz (parts H) = parts H" |
|
386 |
apply auto |
|
387 |
apply (erule analz.induct, auto) |
|
388 |
done |
|
389 |
||
390 |
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] |
|
391 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
392 |
subsubsection{*General equational properties *} |
13926 | 393 |
|
394 |
lemma analz_empty [simp]: "analz{} = {}" |
|
395 |
apply safe |
|
396 |
apply (erule analz.induct, blast+) |
|
397 |
done |
|
398 |
||
16818 | 399 |
text{*Converse fails: we can analz more from the union than from the |
400 |
separate parts, as a key in one might decrypt a message in the other*} |
|
13926 | 401 |
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" |
402 |
by (intro Un_least analz_mono Un_upper1 Un_upper2) |
|
403 |
||
404 |
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" |
|
405 |
by (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
406 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
407 |
subsubsection{*Rewrite rules for pulling out atomic messages *} |
13926 | 408 |
|
409 |
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] |
|
410 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
411 |
lemma analz_insert_Agent [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
412 |
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" |
13926 | 413 |
apply (rule analz_insert_eq_I) |
414 |
apply (erule analz.induct, auto) |
|
415 |
done |
|
416 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
417 |
lemma analz_insert_Nonce [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
418 |
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" |
13926 | 419 |
apply (rule analz_insert_eq_I) |
420 |
apply (erule analz.induct, auto) |
|
421 |
done |
|
422 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
423 |
lemma analz_insert_Number [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
424 |
"analz (insert (Number N) H) = insert (Number N) (analz H)" |
13926 | 425 |
apply (rule analz_insert_eq_I) |
426 |
apply (erule analz.induct, auto) |
|
427 |
done |
|
428 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
429 |
lemma analz_insert_Hash [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
430 |
"analz (insert (Hash X) H) = insert (Hash X) (analz H)" |
13926 | 431 |
apply (rule analz_insert_eq_I) |
432 |
apply (erule analz.induct, auto) |
|
433 |
done |
|
434 |
||
16818 | 435 |
text{*Can only pull out Keys if they are not needed to decrypt the rest*} |
13926 | 436 |
lemma analz_insert_Key [simp]: |
437 |
"K \<notin> keysFor (analz H) ==> |
|
438 |
analz (insert (Key K) H) = insert (Key K) (analz H)" |
|
439 |
apply (unfold keysFor_def) |
|
440 |
apply (rule analz_insert_eq_I) |
|
441 |
apply (erule analz.induct, auto) |
|
442 |
done |
|
443 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
444 |
lemma analz_insert_MPair [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
445 |
"analz (insert {|X,Y|} H) = |
13926 | 446 |
insert {|X,Y|} (analz (insert X (insert Y H)))" |
447 |
apply (rule equalityI) |
|
448 |
apply (rule subsetI) |
|
449 |
apply (erule analz.induct, auto) |
|
450 |
apply (erule analz.induct) |
|
451 |
apply (blast intro: analz.Fst analz.Snd)+ |
|
452 |
done |
|
453 |
||
16818 | 454 |
text{*Can pull out enCrypted message if the Key is not known*} |
13926 | 455 |
lemma analz_insert_Crypt: |
456 |
"Key (invKey K) \<notin> analz H |
|
457 |
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" |
|
458 |
apply (rule analz_insert_eq_I) |
|
459 |
apply (erule analz.induct, auto) |
|
460 |
||
461 |
done |
|
462 |
||
463 |
lemma lemma1: "Key (invKey K) \<in> analz H ==> |
|
464 |
analz (insert (Crypt K X) H) \<subseteq> |
|
465 |
insert (Crypt K X) (analz (insert X H))" |
|
466 |
apply (rule subsetI) |
|
23746 | 467 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 468 |
done |
469 |
||
470 |
lemma lemma2: "Key (invKey K) \<in> analz H ==> |
|
471 |
insert (Crypt K X) (analz (insert X H)) \<subseteq> |
|
472 |
analz (insert (Crypt K X) H)" |
|
473 |
apply auto |
|
23746 | 474 |
apply (erule_tac x = x in analz.induct, auto) |
13926 | 475 |
apply (blast intro: analz_insertI analz.Decrypt) |
476 |
done |
|
477 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
478 |
lemma analz_insert_Decrypt: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
479 |
"Key (invKey K) \<in> analz H ==> |
13926 | 480 |
analz (insert (Crypt K X) H) = |
481 |
insert (Crypt K X) (analz (insert X H))" |
|
482 |
by (intro equalityI lemma1 lemma2) |
|
483 |
||
16818 | 484 |
text{*Case analysis: either the message is secure, or it is not! Effective, |
485 |
but can cause subgoals to blow up! Use with @{text "split_if"}; apparently |
|
486 |
@{text "split_tac"} does not cope with patterns such as @{term"analz (insert |
|
487 |
(Crypt K X) H)"} *} |
|
13926 | 488 |
lemma analz_Crypt_if [simp]: |
489 |
"analz (insert (Crypt K X) H) = |
|
490 |
(if (Key (invKey K) \<in> analz H) |
|
491 |
then insert (Crypt K X) (analz (insert X H)) |
|
492 |
else insert (Crypt K X) (analz H))" |
|
493 |
by (simp add: analz_insert_Crypt analz_insert_Decrypt) |
|
494 |
||
495 |
||
16818 | 496 |
text{*This rule supposes "for the sake of argument" that we have the key.*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
497 |
lemma analz_insert_Crypt_subset: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
498 |
"analz (insert (Crypt K X) H) \<subseteq> |
13926 | 499 |
insert (Crypt K X) (analz (insert X H))" |
500 |
apply (rule subsetI) |
|
501 |
apply (erule analz.induct, auto) |
|
502 |
done |
|
503 |
||
504 |
||
505 |
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" |
|
506 |
apply auto |
|
507 |
apply (erule analz.induct, auto) |
|
508 |
done |
|
509 |
||
510 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
511 |
subsubsection{*Idempotence and transitivity *} |
13926 | 512 |
|
513 |
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" |
|
514 |
by (erule analz.induct, blast+) |
|
515 |
||
516 |
lemma analz_idem [simp]: "analz (analz H) = analz H" |
|
517 |
by blast |
|
518 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
519 |
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
520 |
apply (rule iffI) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
521 |
apply (iprover intro: subset_trans analz_increasing) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
522 |
apply (frule analz_mono, simp) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
523 |
done |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
524 |
|
13926 | 525 |
lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" |
526 |
by (drule analz_mono, blast) |
|
527 |
||
16818 | 528 |
text{*Cut; Lemma 2 of Lowe*} |
13926 | 529 |
lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" |
530 |
by (erule analz_trans, blast) |
|
531 |
||
532 |
(*Cut can be proved easily by induction on |
|
533 |
"Y: analz (insert X H) ==> X: analz H --> Y: analz H" |
|
534 |
*) |
|
535 |
||
16818 | 536 |
text{*This rewrite rule helps in the simplification of messages that involve |
13926 | 537 |
the forwarding of unknown components (X). Without it, removing occurrences |
16818 | 538 |
of X can be very complicated. *} |
13926 | 539 |
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" |
540 |
by (blast intro: analz_cut analz_insertI) |
|
541 |
||
542 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
543 |
text{*A congruence rule for "analz" *} |
13926 | 544 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
545 |
lemma analz_subset_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
546 |
"[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
547 |
==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
548 |
apply simp |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
549 |
apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) |
13926 | 550 |
done |
551 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
552 |
lemma analz_cong: |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
553 |
"[| analz G = analz G'; analz H = analz H' |] |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
554 |
==> analz (G \<union> H) = analz (G' \<union> H')" |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
555 |
by (intro equalityI analz_subset_cong, simp_all) |
13926 | 556 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
557 |
lemma analz_insert_cong: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
558 |
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')" |
13926 | 559 |
by (force simp only: insert_def intro!: analz_cong) |
560 |
||
16818 | 561 |
text{*If there are no pairs or encryptions then analz does nothing*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
562 |
lemma analz_trivial: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
563 |
"[| \<forall>X Y. {|X,Y|} \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" |
13926 | 564 |
apply safe |
565 |
apply (erule analz.induct, blast+) |
|
566 |
done |
|
567 |
||
16818 | 568 |
text{*These two are obsolete (with a single Spy) but cost little to prove...*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
569 |
lemma analz_UN_analz_lemma: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
570 |
"X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" |
13926 | 571 |
apply (erule analz.induct) |
572 |
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ |
|
573 |
done |
|
574 |
||
575 |
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" |
|
576 |
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) |
|
577 |
||
578 |
||
579 |
subsection{*Inductive relation "synth"*} |
|
580 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
581 |
text{*Inductive definition of "synth" -- what can be built up from a set of |
1839 | 582 |
messages. A form of upward closure. Pairs can be built, messages |
3668 | 583 |
encrypted with known keys. Agent names are public domain. |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
584 |
Numbers can be guessed, but Nonces cannot be. *} |
1839 | 585 |
|
23746 | 586 |
inductive_set |
587 |
synth :: "msg set => msg set" |
|
588 |
for H :: "msg set" |
|
589 |
where |
|
11192 | 590 |
Inj [intro]: "X \<in> H ==> X \<in> synth H" |
23746 | 591 |
| Agent [intro]: "Agent agt \<in> synth H" |
592 |
| Number [intro]: "Number n \<in> synth H" |
|
593 |
| Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" |
|
594 |
| MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> {|X,Y|} \<in> synth H" |
|
595 |
| Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" |
|
11189 | 596 |
|
16818 | 597 |
text{*Monotonicity*} |
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
598 |
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" |
16818 | 599 |
by (auto, erule synth.induct, auto) |
11189 | 600 |
|
16818 | 601 |
text{*NO @{text Agent_synth}, as any Agent name can be synthesized. |
602 |
The same holds for @{term Number}*} |
|
11192 | 603 |
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" |
604 |
inductive_cases Key_synth [elim!]: "Key K \<in> synth H" |
|
605 |
inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" |
|
606 |
inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H" |
|
607 |
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" |
|
11189 | 608 |
|
13926 | 609 |
|
610 |
lemma synth_increasing: "H \<subseteq> synth(H)" |
|
611 |
by blast |
|
612 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
613 |
subsubsection{*Unions *} |
13926 | 614 |
|
16818 | 615 |
text{*Converse fails: we can synth more from the union than from the |
616 |
separate parts, building a compound message using elements of each.*} |
|
13926 | 617 |
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" |
618 |
by (intro Un_least synth_mono Un_upper1 Un_upper2) |
|
619 |
||
620 |
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" |
|
621 |
by (blast intro: synth_mono [THEN [2] rev_subsetD]) |
|
622 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
623 |
subsubsection{*Idempotence and transitivity *} |
13926 | 624 |
|
625 |
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" |
|
626 |
by (erule synth.induct, blast+) |
|
627 |
||
628 |
lemma synth_idem: "synth (synth H) = synth H" |
|
629 |
by blast |
|
630 |
||
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
631 |
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
632 |
apply (rule iffI) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
633 |
apply (iprover intro: subset_trans synth_increasing) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
634 |
apply (frule synth_mono, simp add: synth_idem) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
635 |
done |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
636 |
|
13926 | 637 |
lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" |
638 |
by (drule synth_mono, blast) |
|
639 |
||
16818 | 640 |
text{*Cut; Lemma 2 of Lowe*} |
13926 | 641 |
lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" |
642 |
by (erule synth_trans, blast) |
|
643 |
||
644 |
lemma Agent_synth [simp]: "Agent A \<in> synth H" |
|
645 |
by blast |
|
646 |
||
647 |
lemma Number_synth [simp]: "Number n \<in> synth H" |
|
648 |
by blast |
|
649 |
||
650 |
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" |
|
651 |
by blast |
|
652 |
||
653 |
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" |
|
654 |
by blast |
|
655 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
656 |
lemma Crypt_synth_eq [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
657 |
"Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" |
13926 | 658 |
by blast |
659 |
||
660 |
||
661 |
lemma keysFor_synth [simp]: |
|
662 |
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
663 |
by (unfold keysFor_def, blast) |
13926 | 664 |
|
665 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
666 |
subsubsection{*Combinations of parts, analz and synth *} |
13926 | 667 |
|
668 |
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" |
|
669 |
apply (rule equalityI) |
|
670 |
apply (rule subsetI) |
|
671 |
apply (erule parts.induct) |
|
672 |
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] |
|
673 |
parts.Fst parts.Snd parts.Body)+ |
|
674 |
done |
|
675 |
||
676 |
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" |
|
677 |
apply (intro equalityI analz_subset_cong)+ |
|
678 |
apply simp_all |
|
679 |
done |
|
680 |
||
681 |
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" |
|
682 |
apply (rule equalityI) |
|
683 |
apply (rule subsetI) |
|
684 |
apply (erule analz.induct) |
|
685 |
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) |
|
686 |
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ |
|
687 |
done |
|
688 |
||
689 |
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" |
|
690 |
apply (cut_tac H = "{}" in analz_synth_Un) |
|
691 |
apply (simp (no_asm_use)) |
|
692 |
done |
|
693 |
||
694 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
695 |
subsubsection{*For reasoning about the Fake rule in traces *} |
13926 | 696 |
|
697 |
lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" |
|
698 |
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast) |
|
699 |
||
16818 | 700 |
text{*More specifically for Fake. Very occasionally we could do with a version |
701 |
of the form @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
702 |
lemma Fake_parts_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
703 |
"X \<in> synth (analz H) ==> |
13926 | 704 |
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" |
705 |
apply (drule parts_insert_subset_Un) |
|
706 |
apply (simp (no_asm_use)) |
|
707 |
apply blast |
|
708 |
done |
|
709 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
710 |
lemma Fake_parts_insert_in_Un: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
711 |
"[|Z \<in> parts (insert X H); X: synth (analz H)|] |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
712 |
==> Z \<in> synth (analz H) \<union> parts H"; |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
713 |
by (blast dest: Fake_parts_insert [THEN subsetD, dest]) |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
714 |
|
16818 | 715 |
text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put |
716 |
@{term "G=H"}.*} |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
717 |
lemma Fake_analz_insert: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
718 |
"X\<in> synth (analz G) ==> |
13926 | 719 |
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" |
720 |
apply (rule subsetI) |
|
721 |
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ") |
|
722 |
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) |
|
723 |
apply (simp (no_asm_use)) |
|
724 |
apply blast |
|
725 |
done |
|
726 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
727 |
lemma analz_conj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
728 |
"(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
729 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 730 |
|
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
731 |
lemma analz_disj_parts [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
732 |
"(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" |
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
733 |
by (blast intro: analz_subset_parts [THEN subsetD]) |
13926 | 734 |
|
16818 | 735 |
text{*Without this equation, other rules for synth and analz would yield |
736 |
redundant cases*} |
|
13926 | 737 |
lemma MPair_synth_analz [iff]: |
738 |
"({|X,Y|} \<in> synth (analz H)) = |
|
739 |
(X \<in> synth (analz H) & Y \<in> synth (analz H))" |
|
740 |
by blast |
|
741 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
742 |
lemma Crypt_synth_analz: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
743 |
"[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] |
13926 | 744 |
==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" |
745 |
by blast |
|
746 |
||
747 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
748 |
lemma Hash_synth_analz [simp]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
749 |
"X \<notin> synth (analz H) |
13926 | 750 |
==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)" |
751 |
by blast |
|
752 |
||
753 |
||
754 |
subsection{*HPair: a combination of Hash and MPair*} |
|
755 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
756 |
subsubsection{*Freeness *} |
13926 | 757 |
|
758 |
lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" |
|
759 |
by (unfold HPair_def, simp) |
|
760 |
||
761 |
lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" |
|
762 |
by (unfold HPair_def, simp) |
|
763 |
||
764 |
lemma Number_neq_HPair: "Number N ~= Hash[X] Y" |
|
765 |
by (unfold HPair_def, simp) |
|
766 |
||
767 |
lemma Key_neq_HPair: "Key K ~= Hash[X] Y" |
|
768 |
by (unfold HPair_def, simp) |
|
769 |
||
770 |
lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" |
|
771 |
by (unfold HPair_def, simp) |
|
772 |
||
773 |
lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" |
|
774 |
by (unfold HPair_def, simp) |
|
775 |
||
776 |
lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair |
|
777 |
Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair |
|
778 |
||
779 |
declare HPair_neqs [iff] |
|
780 |
declare HPair_neqs [symmetric, iff] |
|
781 |
||
782 |
lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" |
|
783 |
by (simp add: HPair_def) |
|
784 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
785 |
lemma MPair_eq_HPair [iff]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
786 |
"({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)" |
13926 | 787 |
by (simp add: HPair_def) |
788 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
789 |
lemma HPair_eq_MPair [iff]: |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
790 |
"(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)" |
13926 | 791 |
by (auto simp add: HPair_def) |
792 |
||
793 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
794 |
subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *} |
13926 | 795 |
|
796 |
lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" |
|
797 |
by (simp add: HPair_def) |
|
798 |
||
799 |
lemma parts_insert_HPair [simp]: |
|
800 |
"parts (insert (Hash[X] Y) H) = |
|
801 |
insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))" |
|
802 |
by (simp add: HPair_def) |
|
803 |
||
804 |
lemma analz_insert_HPair [simp]: |
|
805 |
"analz (insert (Hash[X] Y) H) = |
|
806 |
insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))" |
|
807 |
by (simp add: HPair_def) |
|
808 |
||
809 |
lemma HPair_synth_analz [simp]: |
|
810 |
"X \<notin> synth (analz H) |
|
811 |
==> (Hash[X] Y \<in> synth (analz H)) = |
|
812 |
(Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))" |
|
813 |
by (simp add: HPair_def) |
|
814 |
||
815 |
||
16818 | 816 |
text{*We do NOT want Crypt... messages broken up in protocols!!*} |
13926 | 817 |
declare parts.Body [rule del] |
818 |
||
819 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
820 |
text{*Rewrites to push in Key and Crypt messages, so that other messages can |
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
821 |
be pulled out using the @{text analz_insert} rules*} |
13926 | 822 |
|
27225 | 823 |
lemmas pushKeys [standard] = |
824 |
insert_commute [of "Key K" "Agent C"] |
|
825 |
insert_commute [of "Key K" "Nonce N"] |
|
826 |
insert_commute [of "Key K" "Number N"] |
|
827 |
insert_commute [of "Key K" "Hash X"] |
|
828 |
insert_commute [of "Key K" "MPair X Y"] |
|
829 |
insert_commute [of "Key K" "Crypt X K'"] |
|
13926 | 830 |
|
27225 | 831 |
lemmas pushCrypts [standard] = |
832 |
insert_commute [of "Crypt X K" "Agent C"] |
|
833 |
insert_commute [of "Crypt X K" "Agent C"] |
|
834 |
insert_commute [of "Crypt X K" "Nonce N"] |
|
835 |
insert_commute [of "Crypt X K" "Number N"] |
|
836 |
insert_commute [of "Crypt X K" "Hash X'"] |
|
837 |
insert_commute [of "Crypt X K" "MPair X' Y"] |
|
13926 | 838 |
|
839 |
text{*Cannot be added with @{text "[simp]"} -- messages should not always be |
|
840 |
re-ordered. *} |
|
841 |
lemmas pushes = pushKeys pushCrypts |
|
842 |
||
843 |
||
844 |
subsection{*Tactics useful for many protocol proofs*} |
|
845 |
ML |
|
846 |
{* |
|
24122 | 847 |
structure Message = |
848 |
struct |
|
13926 | 849 |
|
850 |
(*Prove base case (subgoal i) and simplify others. A typical base case |
|
851 |
concerns Crypt K X \<notin> Key`shrK`bad and cannot be proved by rewriting |
|
852 |
alone.*) |
|
853 |
fun prove_simple_subgoals_tac i = |
|
26342 | 854 |
CLASIMPSET' (fn (cs, ss) => force_tac (cs, ss addsimps [@{thm image_eq_UN}])) i THEN |
855 |
ALLGOALS (SIMPSET' asm_simp_tac) |
|
13926 | 856 |
|
857 |
(*Analysis of Fake cases. Also works for messages that forward unknown parts, |
|
858 |
but this application is no longer necessary if analz_insert_eq is used. |
|
859 |
Abstraction over i is ESSENTIAL: it delays the dereferencing of claset |
|
860 |
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) |
|
861 |
||
862 |
(*Apply rules to break down assumptions of the form |
|
863 |
Y \<in> parts(insert X H) and Y \<in> analz(insert X H) |
|
864 |
*) |
|
865 |
val Fake_insert_tac = |
|
24122 | 866 |
dresolve_tac [impOfSubs @{thm Fake_analz_insert}, |
867 |
impOfSubs @{thm Fake_parts_insert}] THEN' |
|
868 |
eresolve_tac [asm_rl, @{thm synth.Inj}]; |
|
13926 | 869 |
|
870 |
fun Fake_insert_simp_tac ss i = |
|
871 |
REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i; |
|
872 |
||
873 |
fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL |
|
874 |
(Fake_insert_simp_tac ss 1 |
|
875 |
THEN |
|
876 |
IF_UNSOLVED (Blast.depth_tac |
|
24122 | 877 |
(cs addIs [@{thm analz_insertI}, |
878 |
impOfSubs @{thm analz_subset_parts}]) 4 1)) |
|
13926 | 879 |
|
880 |
(*The explicit claset and simpset arguments help it work with Isar*) |
|
881 |
fun gen_spy_analz_tac (cs,ss) i = |
|
882 |
DETERM |
|
883 |
(SELECT_GOAL |
|
884 |
(EVERY |
|
885 |
[ (*push in occurrences of X...*) |
|
886 |
(REPEAT o CHANGED) |
|
27239 | 887 |
(res_inst_tac (Simplifier.the_context ss) [(("x", 1), "X")] (insert_commute RS ssubst) 1), |
13926 | 888 |
(*...allowing further simplifications*) |
889 |
simp_tac ss 1, |
|
890 |
REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), |
|
891 |
DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i) |
|
892 |
||
26342 | 893 |
val spy_analz_tac = CLASIMPSET' gen_spy_analz_tac; |
24122 | 894 |
|
895 |
end |
|
13926 | 896 |
*} |
897 |
||
16818 | 898 |
text{*By default only @{text o_apply} is built-in. But in the presence of |
899 |
eta-expansion this means that some terms displayed as @{term "f o g"} will be |
|
900 |
rewritten, and others will not!*} |
|
13926 | 901 |
declare o_def [simp] |
902 |
||
11189 | 903 |
|
13922 | 904 |
lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" |
905 |
by auto |
|
906 |
||
907 |
lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" |
|
908 |
by auto |
|
909 |
||
14200
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
paulson
parents:
14181
diff
changeset
|
910 |
lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
911 |
by (iprover intro: synth_mono analz_mono) |
13922 | 912 |
|
913 |
lemma Fake_analz_eq [simp]: |
|
914 |
"X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" |
|
915 |
apply (drule Fake_analz_insert[of _ _ "H"]) |
|
916 |
apply (simp add: synth_increasing[THEN Un_absorb2]) |
|
917 |
apply (drule synth_mono) |
|
918 |
apply (simp add: synth_idem) |
|
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
919 |
apply (rule equalityI) |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
920 |
apply (simp add: ); |
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
921 |
apply (rule synth_analz_mono, blast) |
13922 | 922 |
done |
923 |
||
924 |
text{*Two generalizations of @{text analz_insert_eq}*} |
|
925 |
lemma gen_analz_insert_eq [rule_format]: |
|
926 |
"X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"; |
|
927 |
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) |
|
928 |
||
929 |
lemma synth_analz_insert_eq [rule_format]: |
|
930 |
"X \<in> synth (analz H) |
|
931 |
==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"; |
|
932 |
apply (erule synth.induct) |
|
933 |
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) |
|
934 |
done |
|
935 |
||
936 |
lemma Fake_parts_sing: |
|
13926 | 937 |
"X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"; |
13922 | 938 |
apply (rule subset_trans) |
17689
a04b5b43625e
streamlined theory; conformance to recent publication
paulson
parents:
16818
diff
changeset
|
939 |
apply (erule_tac [2] Fake_parts_insert) |
20648 | 940 |
apply (rule parts_mono, blast) |
13922 | 941 |
done |
942 |
||
14145
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
943 |
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] |
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
paulson
parents:
14126
diff
changeset
|
944 |
|
11189 | 945 |
method_setup spy_analz = {* |
11270
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents:
11264
diff
changeset
|
946 |
Method.ctxt_args (fn ctxt => |
24122 | 947 |
Method.SIMPLE_METHOD (Message.gen_spy_analz_tac (local_clasimpset_of ctxt) 1)) *} |
11189 | 948 |
"for proving the Fake case when analz is involved" |
1839 | 949 |
|
11264 | 950 |
method_setup atomic_spy_analz = {* |
11270
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents:
11264
diff
changeset
|
951 |
Method.ctxt_args (fn ctxt => |
24122 | 952 |
Method.SIMPLE_METHOD (Message.atomic_spy_analz_tac (local_clasimpset_of ctxt) 1)) *} |
11264 | 953 |
"for debugging spy_analz" |
954 |
||
955 |
method_setup Fake_insert_simp = {* |
|
11270
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
paulson
parents:
11264
diff
changeset
|
956 |
Method.ctxt_args (fn ctxt => |
24122 | 957 |
Method.SIMPLE_METHOD (Message.Fake_insert_simp_tac (local_simpset_of ctxt) 1)) *} |
11264 | 958 |
"for debugging spy_analz" |
959 |
||
1839 | 960 |
end |