author | haftmann |
Sat, 03 Mar 2012 22:38:33 +0100 | |
changeset 46790 | f3c10e908f65 |
parent 45740 | 132a3e1c0fe5 |
permissions | -rw-r--r-- |
17618 | 1 |
(* Title: HOL/Tools/cnf_funcs.ML |
2 |
Author: Alwen Tiu, QSL Team, LORIA (http://qsl.loria.fr) |
|
29265
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
wenzelm
parents:
26341
diff
changeset
|
3 |
Author: Tjark Weber, TU Muenchen |
17618 | 4 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
5 |
FIXME: major overlaps with the code in meson.ML |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
6 |
|
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
7 |
Functions and tactics to transform a formula into Conjunctive Normal |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
8 |
Form (CNF). |
24958 | 9 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
10 |
A formula in CNF is of the following form: |
17618 | 11 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
12 |
(x11 | x12 | ... | x1n) & ... & (xm1 | xm2 | ... | xmk) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
13 |
False |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
14 |
True |
17618 | 15 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
16 |
where each xij is a literal (a positive or negative atomic Boolean |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
17 |
term), i.e. the formula is a conjunction of disjunctions of literals, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
18 |
or "False", or "True". |
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
19 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
20 |
A (non-empty) disjunction of literals is referred to as "clause". |
17618 | 21 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
22 |
For the purpose of SAT proof reconstruction, we also make use of |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
23 |
another representation of clauses, which we call the "raw clauses". |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
24 |
Raw clauses are of the form |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
25 |
|
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
26 |
[..., x1', x2', ..., xn'] |- False , |
17618 | 27 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
28 |
where each xi is a literal, and each xi' is the negation normal form |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
29 |
of ~xi. |
19236
150e8b0fb991
clauses now use (meta-)hyps instead of (meta-)implications; significant speedup
webertj
parents:
17809
diff
changeset
|
30 |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
31 |
Literals are successively removed from the hyps of raw clauses by |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32740
diff
changeset
|
32 |
resolution during SAT proof reconstruction. |
17618 | 33 |
*) |
34 |
||
35 |
signature CNF = |
|
36 |
sig |
|
41447 | 37 |
val is_atom: term -> bool |
38 |
val is_literal: term -> bool |
|
39 |
val is_clause: term -> bool |
|
40 |
val clause_is_trivial: term -> bool |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
41 |
|
41447 | 42 |
val clause2raw_thm: thm -> thm |
42335 | 43 |
val make_nnf_thm: theory -> term -> thm |
17618 | 44 |
|
41447 | 45 |
val weakening_tac: int -> tactic (* removes the first hypothesis of a subgoal *) |
17618 | 46 |
|
42335 | 47 |
val make_cnf_thm: Proof.context -> term -> thm |
48 |
val make_cnfx_thm: Proof.context -> term -> thm |
|
41447 | 49 |
val cnf_rewrite_tac: Proof.context -> int -> tactic (* converts all prems of a subgoal to CNF *) |
50 |
val cnfx_rewrite_tac: Proof.context -> int -> tactic |
|
51 |
(* converts all prems of a subgoal to (almost) definitional CNF *) |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
52 |
end; |
17618 | 53 |
|
54 |
structure cnf : CNF = |
|
55 |
struct |
|
56 |
||
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
57 |
val clause2raw_notE = @{lemma "[| P; ~P |] ==> False" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
58 |
val clause2raw_not_disj = @{lemma "[| ~P; ~Q |] ==> ~(P | Q)" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
59 |
val clause2raw_not_not = @{lemma "P ==> ~~P" by auto}; |
17618 | 60 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
61 |
val iff_refl = @{lemma "(P::bool) = P" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
62 |
val iff_trans = @{lemma "[| (P::bool) = Q; Q = R |] ==> P = R" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
63 |
val conj_cong = @{lemma "[| P = P'; Q = Q' |] ==> (P & Q) = (P' & Q')" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
64 |
val disj_cong = @{lemma "[| P = P'; Q = Q' |] ==> (P | Q) = (P' | Q')" by auto}; |
17618 | 65 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
66 |
val make_nnf_imp = @{lemma "[| (~P) = P'; Q = Q' |] ==> (P --> Q) = (P' | Q')" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
67 |
val make_nnf_iff = @{lemma "[| P = P'; (~P) = NP; Q = Q'; (~Q) = NQ |] ==> (P = Q) = ((P' | NQ) & (NP | Q'))" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
68 |
val make_nnf_not_false = @{lemma "(~False) = True" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
69 |
val make_nnf_not_true = @{lemma "(~True) = False" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
70 |
val make_nnf_not_conj = @{lemma "[| (~P) = P'; (~Q) = Q' |] ==> (~(P & Q)) = (P' | Q')" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
71 |
val make_nnf_not_disj = @{lemma "[| (~P) = P'; (~Q) = Q' |] ==> (~(P | Q)) = (P' & Q')" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
72 |
val make_nnf_not_imp = @{lemma "[| P = P'; (~Q) = Q' |] ==> (~(P --> Q)) = (P' & Q')" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
73 |
val make_nnf_not_iff = @{lemma "[| P = P'; (~P) = NP; Q = Q'; (~Q) = NQ |] ==> (~(P = Q)) = ((P' | Q') & (NP | NQ))" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
74 |
val make_nnf_not_not = @{lemma "P = P' ==> (~~P) = P'" by auto}; |
17618 | 75 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
76 |
val simp_TF_conj_True_l = @{lemma "[| P = True; Q = Q' |] ==> (P & Q) = Q'" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
77 |
val simp_TF_conj_True_r = @{lemma "[| P = P'; Q = True |] ==> (P & Q) = P'" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
78 |
val simp_TF_conj_False_l = @{lemma "P = False ==> (P & Q) = False" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
79 |
val simp_TF_conj_False_r = @{lemma "Q = False ==> (P & Q) = False" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
80 |
val simp_TF_disj_True_l = @{lemma "P = True ==> (P | Q) = True" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
81 |
val simp_TF_disj_True_r = @{lemma "Q = True ==> (P | Q) = True" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
82 |
val simp_TF_disj_False_l = @{lemma "[| P = False; Q = Q' |] ==> (P | Q) = Q'" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
83 |
val simp_TF_disj_False_r = @{lemma "[| P = P'; Q = False |] ==> (P | Q) = P'" by auto}; |
17618 | 84 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
85 |
val make_cnf_disj_conj_l = @{lemma "[| (P | R) = PR; (Q | R) = QR |] ==> ((P & Q) | R) = (PR & QR)" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
86 |
val make_cnf_disj_conj_r = @{lemma "[| (P | Q) = PQ; (P | R) = PR |] ==> (P | (Q & R)) = (PQ & PR)" by auto}; |
17618 | 87 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
88 |
val make_cnfx_disj_ex_l = @{lemma "((EX (x::bool). P x) | Q) = (EX x. P x | Q)" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
89 |
val make_cnfx_disj_ex_r = @{lemma "(P | (EX (x::bool). Q x)) = (EX x. P | Q x)" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
90 |
val make_cnfx_newlit = @{lemma "(P | Q) = (EX x. (P | x) & (Q | ~x))" by auto}; |
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
91 |
val make_cnfx_ex_cong = @{lemma "(ALL (x::bool). P x = Q x) ==> (EX x. P x) = (EX x. Q x)" by auto}; |
17618 | 92 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
93 |
val weakening_thm = @{lemma "[| P; Q |] ==> Q" by auto}; |
17618 | 94 |
|
30607
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents:
29265
diff
changeset
|
95 |
val cnftac_eq_imp = @{lemma "[| P = Q; P |] ==> Q" by auto}; |
17618 | 96 |
|
41447 | 97 |
fun is_atom (Const (@{const_name False}, _)) = false |
98 |
| is_atom (Const (@{const_name True}, _)) = false |
|
99 |
| is_atom (Const (@{const_name HOL.conj}, _) $ _ $ _) = false |
|
100 |
| is_atom (Const (@{const_name HOL.disj}, _) $ _ $ _) = false |
|
101 |
| is_atom (Const (@{const_name HOL.implies}, _) $ _ $ _) = false |
|
102 |
| is_atom (Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ _ $ _) = false |
|
103 |
| is_atom (Const (@{const_name Not}, _) $ _) = false |
|
104 |
| is_atom _ = true; |
|
17618 | 105 |
|
38558 | 106 |
fun is_literal (Const (@{const_name Not}, _) $ x) = is_atom x |
41447 | 107 |
| is_literal x = is_atom x; |
17618 | 108 |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
109 |
fun is_clause (Const (@{const_name HOL.disj}, _) $ x $ y) = is_clause x andalso is_clause y |
41447 | 110 |
| is_clause x = is_literal x; |
17618 | 111 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
112 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
113 |
(* clause_is_trivial: a clause is trivially true if it contains both an atom *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
114 |
(* and the atom's negation *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
115 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
116 |
|
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
117 |
fun clause_is_trivial c = |
41447 | 118 |
let |
119 |
fun dual (Const (@{const_name Not}, _) $ x) = x |
|
120 |
| dual x = HOLogic.Not $ x |
|
121 |
fun has_duals [] = false |
|
122 |
| has_duals (x::xs) = member (op =) xs (dual x) orelse has_duals xs |
|
123 |
in |
|
124 |
has_duals (HOLogic.disjuncts c) |
|
125 |
end; |
|
17618 | 126 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
127 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
128 |
(* clause2raw_thm: translates a clause into a raw clause, i.e. *) |
20440
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
webertj
parents:
19236
diff
changeset
|
129 |
(* [...] |- x1 | ... | xn *) |
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
130 |
(* (where each xi is a literal) is translated to *) |
20440
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
webertj
parents:
19236
diff
changeset
|
131 |
(* [..., x1', ..., xn'] |- False , *) |
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
webertj
parents:
19236
diff
changeset
|
132 |
(* where each xi' is the negation normal form of ~xi *) |
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
133 |
(* ------------------------------------------------------------------------- *) |
17618 | 134 |
|
20440
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
webertj
parents:
19236
diff
changeset
|
135 |
fun clause2raw_thm clause = |
41447 | 136 |
let |
137 |
(* eliminates negated disjunctions from the i-th premise, possibly *) |
|
138 |
(* adding new premises, then continues with the (i+1)-th premise *) |
|
139 |
(* int -> Thm.thm -> Thm.thm *) |
|
140 |
fun not_disj_to_prem i thm = |
|
141 |
if i > nprems_of thm then |
|
142 |
thm |
|
143 |
else |
|
144 |
not_disj_to_prem (i+1) (Seq.hd (REPEAT_DETERM (rtac clause2raw_not_disj i) thm)) |
|
145 |
(* moves all premises to hyps, i.e. "[...] |- A1 ==> ... ==> An ==> B" *) |
|
146 |
(* becomes "[..., A1, ..., An] |- B" *) |
|
147 |
(* Thm.thm -> Thm.thm *) |
|
148 |
fun prems_to_hyps thm = |
|
149 |
fold (fn cprem => fn thm' => |
|
150 |
Thm.implies_elim thm' (Thm.assume cprem)) (cprems_of thm) thm |
|
151 |
in |
|
152 |
(* [...] |- ~(x1 | ... | xn) ==> False *) |
|
153 |
(clause2raw_notE OF [clause]) |
|
154 |
(* [...] |- ~x1 ==> ... ==> ~xn ==> False *) |
|
155 |
|> not_disj_to_prem 1 |
|
156 |
(* [...] |- x1' ==> ... ==> xn' ==> False *) |
|
157 |
|> Seq.hd o TRYALL (rtac clause2raw_not_not) |
|
158 |
(* [..., x1', ..., xn'] |- False *) |
|
159 |
|> prems_to_hyps |
|
160 |
end; |
|
17618 | 161 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
162 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
163 |
(* inst_thm: instantiates a theorem with a list of terms *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
164 |
(* ------------------------------------------------------------------------- *) |
17618 | 165 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
166 |
fun inst_thm thy ts thm = |
41447 | 167 |
instantiate' [] (map (SOME o cterm_of thy) ts) thm; |
17618 | 168 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
169 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
170 |
(* Naive CNF transformation *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
171 |
(* ------------------------------------------------------------------------- *) |
17618 | 172 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
173 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
174 |
(* make_nnf_thm: produces a theorem of the form t = t', where t' is the *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
175 |
(* negation normal form (i.e. negation only occurs in front of atoms) *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
176 |
(* of t; implications ("-->") and equivalences ("=" on bool) are *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
177 |
(* eliminated (possibly causing an exponential blowup) *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
178 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
179 |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
180 |
fun make_nnf_thm thy (Const (@{const_name HOL.conj}, _) $ x $ y) = |
41447 | 181 |
let |
182 |
val thm1 = make_nnf_thm thy x |
|
183 |
val thm2 = make_nnf_thm thy y |
|
184 |
in |
|
185 |
conj_cong OF [thm1, thm2] |
|
186 |
end |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
187 |
| make_nnf_thm thy (Const (@{const_name HOL.disj}, _) $ x $ y) = |
41447 | 188 |
let |
189 |
val thm1 = make_nnf_thm thy x |
|
190 |
val thm2 = make_nnf_thm thy y |
|
191 |
in |
|
192 |
disj_cong OF [thm1, thm2] |
|
193 |
end |
|
38786
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
haftmann
parents:
38558
diff
changeset
|
194 |
| make_nnf_thm thy (Const (@{const_name HOL.implies}, _) $ x $ y) = |
41447 | 195 |
let |
196 |
val thm1 = make_nnf_thm thy (HOLogic.Not $ x) |
|
197 |
val thm2 = make_nnf_thm thy y |
|
198 |
in |
|
199 |
make_nnf_imp OF [thm1, thm2] |
|
200 |
end |
|
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38795
diff
changeset
|
201 |
| make_nnf_thm thy (Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ x $ y) = |
41447 | 202 |
let |
203 |
val thm1 = make_nnf_thm thy x |
|
204 |
val thm2 = make_nnf_thm thy (HOLogic.Not $ x) |
|
205 |
val thm3 = make_nnf_thm thy y |
|
206 |
val thm4 = make_nnf_thm thy (HOLogic.Not $ y) |
|
207 |
in |
|
208 |
make_nnf_iff OF [thm1, thm2, thm3, thm4] |
|
209 |
end |
|
38558 | 210 |
| make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name False}, _)) = |
41447 | 211 |
make_nnf_not_false |
38558 | 212 |
| make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name True}, _)) = |
41447 | 213 |
make_nnf_not_true |
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
214 |
| make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.conj}, _) $ x $ y)) = |
41447 | 215 |
let |
216 |
val thm1 = make_nnf_thm thy (HOLogic.Not $ x) |
|
217 |
val thm2 = make_nnf_thm thy (HOLogic.Not $ y) |
|
218 |
in |
|
219 |
make_nnf_not_conj OF [thm1, thm2] |
|
220 |
end |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
221 |
| make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.disj}, _) $ x $ y)) = |
41447 | 222 |
let |
223 |
val thm1 = make_nnf_thm thy (HOLogic.Not $ x) |
|
224 |
val thm2 = make_nnf_thm thy (HOLogic.Not $ y) |
|
225 |
in |
|
226 |
make_nnf_not_disj OF [thm1, thm2] |
|
227 |
end |
|
228 |
| make_nnf_thm thy |
|
229 |
(Const (@{const_name Not}, _) $ |
|
230 |
(Const (@{const_name HOL.implies}, _) $ x $ y)) = |
|
231 |
let |
|
232 |
val thm1 = make_nnf_thm thy x |
|
233 |
val thm2 = make_nnf_thm thy (HOLogic.Not $ y) |
|
234 |
in |
|
235 |
make_nnf_not_imp OF [thm1, thm2] |
|
236 |
end |
|
237 |
| make_nnf_thm thy |
|
238 |
(Const (@{const_name Not}, _) $ |
|
239 |
(Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ x $ y)) = |
|
240 |
let |
|
241 |
val thm1 = make_nnf_thm thy x |
|
242 |
val thm2 = make_nnf_thm thy (HOLogic.Not $ x) |
|
243 |
val thm3 = make_nnf_thm thy y |
|
244 |
val thm4 = make_nnf_thm thy (HOLogic.Not $ y) |
|
245 |
in |
|
246 |
make_nnf_not_iff OF [thm1, thm2, thm3, thm4] |
|
247 |
end |
|
38558 | 248 |
| make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name Not}, _) $ x)) = |
41447 | 249 |
let |
250 |
val thm1 = make_nnf_thm thy x |
|
251 |
in |
|
252 |
make_nnf_not_not OF [thm1] |
|
253 |
end |
|
254 |
| make_nnf_thm thy t = inst_thm thy [t] iff_refl; |
|
17618 | 255 |
|
42335 | 256 |
val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq} |
257 |
val eq_reflection = @{thm eq_reflection} |
|
258 |
||
259 |
fun make_under_quantifiers ctxt make t = |
|
260 |
let |
|
42361 | 261 |
val thy = Proof_Context.theory_of ctxt |
42335 | 262 |
fun conv ctxt ct = |
263 |
case term_of ct of |
|
45511
9b0f8ca4388e
continued implementation of lambda-lifting in Metis
blanchet
parents:
44121
diff
changeset
|
264 |
Const _ $ Abs _ => Conv.comb_conv (conv ctxt) ct |
42335 | 265 |
| Abs _ => Conv.abs_conv (conv o snd) ctxt ct |
266 |
| Const _ => Conv.all_conv ct |
|
267 |
| t => make t RS eq_reflection |
|
268 |
in conv ctxt (cterm_of thy t) RS meta_eq_to_obj_eq end |
|
269 |
||
270 |
fun make_nnf_thm_under_quantifiers ctxt = |
|
42361 | 271 |
make_under_quantifiers ctxt (make_nnf_thm (Proof_Context.theory_of ctxt)) |
42335 | 272 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
273 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
274 |
(* simp_True_False_thm: produces a theorem t = t', where t' is equivalent to *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
275 |
(* t, but simplified wrt. the following theorems: *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
276 |
(* (True & x) = x *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
277 |
(* (x & True) = x *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
278 |
(* (False & x) = False *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
279 |
(* (x & False) = False *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
280 |
(* (True | x) = True *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
281 |
(* (x | True) = True *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
282 |
(* (False | x) = x *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
283 |
(* (x | False) = x *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
284 |
(* No simplification is performed below connectives other than & and |. *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
285 |
(* Optimization: The right-hand side of a conjunction (disjunction) is *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
286 |
(* simplified only if the left-hand side does not simplify to False *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
287 |
(* (True, respectively). *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
288 |
(* ------------------------------------------------------------------------- *) |
17618 | 289 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
290 |
(* Theory.theory -> Term.term -> Thm.thm *) |
17618 | 291 |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
292 |
fun simp_True_False_thm thy (Const (@{const_name HOL.conj}, _) $ x $ y) = |
41447 | 293 |
let |
294 |
val thm1 = simp_True_False_thm thy x |
|
295 |
val x'= (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 |
|
296 |
in |
|
45740 | 297 |
if x' = @{term False} then |
41447 | 298 |
simp_TF_conj_False_l OF [thm1] (* (x & y) = False *) |
299 |
else |
|
300 |
let |
|
301 |
val thm2 = simp_True_False_thm thy y |
|
302 |
val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 |
|
303 |
in |
|
45740 | 304 |
if x' = @{term True} then |
41447 | 305 |
simp_TF_conj_True_l OF [thm1, thm2] (* (x & y) = y' *) |
45740 | 306 |
else if y' = @{term False} then |
41447 | 307 |
simp_TF_conj_False_r OF [thm2] (* (x & y) = False *) |
45740 | 308 |
else if y' = @{term True} then |
41447 | 309 |
simp_TF_conj_True_r OF [thm1, thm2] (* (x & y) = x' *) |
310 |
else |
|
311 |
conj_cong OF [thm1, thm2] (* (x & y) = (x' & y') *) |
|
312 |
end |
|
313 |
end |
|
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
314 |
| simp_True_False_thm thy (Const (@{const_name HOL.disj}, _) $ x $ y) = |
41447 | 315 |
let |
316 |
val thm1 = simp_True_False_thm thy x |
|
317 |
val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 |
|
318 |
in |
|
45740 | 319 |
if x' = @{term True} then |
41447 | 320 |
simp_TF_disj_True_l OF [thm1] (* (x | y) = True *) |
321 |
else |
|
322 |
let |
|
323 |
val thm2 = simp_True_False_thm thy y |
|
324 |
val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 |
|
325 |
in |
|
45740 | 326 |
if x' = @{term False} then |
41447 | 327 |
simp_TF_disj_False_l OF [thm1, thm2] (* (x | y) = y' *) |
45740 | 328 |
else if y' = @{term True} then |
41447 | 329 |
simp_TF_disj_True_r OF [thm2] (* (x | y) = True *) |
45740 | 330 |
else if y' = @{term False} then |
41447 | 331 |
simp_TF_disj_False_r OF [thm1, thm2] (* (x | y) = x' *) |
332 |
else |
|
333 |
disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) |
|
334 |
end |
|
335 |
end |
|
336 |
| simp_True_False_thm thy t = inst_thm thy [t] iff_refl; (* t = t *) |
|
17618 | 337 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
338 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
339 |
(* make_cnf_thm: given any HOL term 't', produces a theorem t = t', where t' *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
340 |
(* is in conjunction normal form. May cause an exponential blowup *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
341 |
(* in the length of the term. *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
342 |
(* ------------------------------------------------------------------------- *) |
17618 | 343 |
|
42335 | 344 |
fun make_cnf_thm ctxt t = |
41447 | 345 |
let |
42361 | 346 |
val thy = Proof_Context.theory_of ctxt |
41447 | 347 |
fun make_cnf_thm_from_nnf (Const (@{const_name HOL.conj}, _) $ x $ y) = |
348 |
let |
|
349 |
val thm1 = make_cnf_thm_from_nnf x |
|
350 |
val thm2 = make_cnf_thm_from_nnf y |
|
351 |
in |
|
352 |
conj_cong OF [thm1, thm2] |
|
353 |
end |
|
354 |
| make_cnf_thm_from_nnf (Const (@{const_name HOL.disj}, _) $ x $ y) = |
|
355 |
let |
|
356 |
(* produces a theorem "(x' | y') = t'", where x', y', and t' are in CNF *) |
|
357 |
fun make_cnf_disj_thm (Const (@{const_name HOL.conj}, _) $ x1 $ x2) y' = |
|
358 |
let |
|
359 |
val thm1 = make_cnf_disj_thm x1 y' |
|
360 |
val thm2 = make_cnf_disj_thm x2 y' |
|
361 |
in |
|
362 |
make_cnf_disj_conj_l OF [thm1, thm2] (* ((x1 & x2) | y') = ((x1 | y')' & (x2 | y')') *) |
|
363 |
end |
|
364 |
| make_cnf_disj_thm x' (Const (@{const_name HOL.conj}, _) $ y1 $ y2) = |
|
365 |
let |
|
366 |
val thm1 = make_cnf_disj_thm x' y1 |
|
367 |
val thm2 = make_cnf_disj_thm x' y2 |
|
368 |
in |
|
369 |
make_cnf_disj_conj_r OF [thm1, thm2] (* (x' | (y1 & y2)) = ((x' | y1)' & (x' | y2)') *) |
|
370 |
end |
|
371 |
| make_cnf_disj_thm x' y' = |
|
372 |
inst_thm thy [HOLogic.mk_disj (x', y')] iff_refl (* (x' | y') = (x' | y') *) |
|
373 |
val thm1 = make_cnf_thm_from_nnf x |
|
374 |
val thm2 = make_cnf_thm_from_nnf y |
|
375 |
val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 |
|
376 |
val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 |
|
377 |
val disj_thm = disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) |
|
378 |
in |
|
379 |
iff_trans OF [disj_thm, make_cnf_disj_thm x' y'] |
|
380 |
end |
|
381 |
| make_cnf_thm_from_nnf t = inst_thm thy [t] iff_refl |
|
382 |
(* convert 't' to NNF first *) |
|
42335 | 383 |
val nnf_thm = make_nnf_thm_under_quantifiers ctxt t |
384 |
(*### |
|
41447 | 385 |
val nnf_thm = make_nnf_thm thy t |
42335 | 386 |
*) |
41447 | 387 |
val nnf = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) nnf_thm |
388 |
(* then simplify wrt. True/False (this should preserve NNF) *) |
|
389 |
val simp_thm = simp_True_False_thm thy nnf |
|
390 |
val simp = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) simp_thm |
|
391 |
(* finally, convert to CNF (this should preserve the simplification) *) |
|
42335 | 392 |
val cnf_thm = make_under_quantifiers ctxt make_cnf_thm_from_nnf simp |
393 |
(* ### |
|
41447 | 394 |
val cnf_thm = make_cnf_thm_from_nnf simp |
42335 | 395 |
*) |
41447 | 396 |
in |
397 |
iff_trans OF [iff_trans OF [nnf_thm, simp_thm], cnf_thm] |
|
398 |
end; |
|
17618 | 399 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
400 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
401 |
(* CNF transformation by introducing new literals *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
402 |
(* ------------------------------------------------------------------------- *) |
17618 | 403 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
404 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
405 |
(* make_cnfx_thm: given any HOL term 't', produces a theorem t = t', where *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
406 |
(* t' is almost in conjunction normal form, except that conjunctions *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
407 |
(* and existential quantifiers may be nested. (Use e.g. 'REPEAT_DETERM *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
408 |
(* (etac exE i ORELSE etac conjE i)' afterwards to normalize.) May *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
409 |
(* introduce new (existentially bound) literals. Note: the current *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
410 |
(* implementation calls 'make_nnf_thm', causing an exponential blowup *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
411 |
(* in the case of nested equivalences. *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
412 |
(* ------------------------------------------------------------------------- *) |
17618 | 413 |
|
42335 | 414 |
fun make_cnfx_thm ctxt t = |
41447 | 415 |
let |
42361 | 416 |
val thy = Proof_Context.theory_of ctxt |
41447 | 417 |
val var_id = Unsynchronized.ref 0 (* properly initialized below *) |
418 |
fun new_free () = |
|
419 |
Free ("cnfx_" ^ string_of_int (Unsynchronized.inc var_id), HOLogic.boolT) |
|
420 |
fun make_cnfx_thm_from_nnf (Const (@{const_name HOL.conj}, _) $ x $ y) : thm = |
|
421 |
let |
|
422 |
val thm1 = make_cnfx_thm_from_nnf x |
|
423 |
val thm2 = make_cnfx_thm_from_nnf y |
|
424 |
in |
|
425 |
conj_cong OF [thm1, thm2] |
|
426 |
end |
|
427 |
| make_cnfx_thm_from_nnf (Const (@{const_name HOL.disj}, _) $ x $ y) = |
|
428 |
if is_clause x andalso is_clause y then |
|
429 |
inst_thm thy [HOLogic.mk_disj (x, y)] iff_refl |
|
430 |
else if is_literal y orelse is_literal x then |
|
431 |
let |
|
432 |
(* produces a theorem "(x' | y') = t'", where x', y', and t' are *) |
|
433 |
(* almost in CNF, and x' or y' is a literal *) |
|
434 |
fun make_cnfx_disj_thm (Const (@{const_name HOL.conj}, _) $ x1 $ x2) y' = |
|
435 |
let |
|
436 |
val thm1 = make_cnfx_disj_thm x1 y' |
|
437 |
val thm2 = make_cnfx_disj_thm x2 y' |
|
438 |
in |
|
439 |
make_cnf_disj_conj_l OF [thm1, thm2] (* ((x1 & x2) | y') = ((x1 | y')' & (x2 | y')') *) |
|
440 |
end |
|
441 |
| make_cnfx_disj_thm x' (Const (@{const_name HOL.conj}, _) $ y1 $ y2) = |
|
442 |
let |
|
443 |
val thm1 = make_cnfx_disj_thm x' y1 |
|
444 |
val thm2 = make_cnfx_disj_thm x' y2 |
|
445 |
in |
|
446 |
make_cnf_disj_conj_r OF [thm1, thm2] (* (x' | (y1 & y2)) = ((x' | y1)' & (x' | y2)') *) |
|
447 |
end |
|
448 |
| make_cnfx_disj_thm (@{term "Ex::(bool => bool) => bool"} $ x') y' = |
|
449 |
let |
|
450 |
val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_l (* ((Ex x') | y') = (Ex (x' | y')) *) |
|
451 |
val var = new_free () |
|
452 |
val thm2 = make_cnfx_disj_thm (betapply (x', var)) y' (* (x' | y') = body' *) |
|
453 |
val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x' | y') = body' *) |
|
454 |
val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x' | y') = body' *) |
|
455 |
val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x' | y')) = (EX v. body') *) |
|
456 |
in |
|
457 |
iff_trans OF [thm1, thm5] (* ((Ex x') | y') = (Ex v. body') *) |
|
458 |
end |
|
459 |
| make_cnfx_disj_thm x' (@{term "Ex::(bool => bool) => bool"} $ y') = |
|
460 |
let |
|
461 |
val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_r (* (x' | (Ex y')) = (Ex (x' | y')) *) |
|
462 |
val var = new_free () |
|
463 |
val thm2 = make_cnfx_disj_thm x' (betapply (y', var)) (* (x' | y') = body' *) |
|
464 |
val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x' | y') = body' *) |
|
465 |
val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x' | y') = body' *) |
|
466 |
val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x' | y')) = (EX v. body') *) |
|
467 |
in |
|
468 |
iff_trans OF [thm1, thm5] (* (x' | (Ex y')) = (EX v. body') *) |
|
469 |
end |
|
470 |
| make_cnfx_disj_thm x' y' = |
|
471 |
inst_thm thy [HOLogic.mk_disj (x', y')] iff_refl (* (x' | y') = (x' | y') *) |
|
472 |
val thm1 = make_cnfx_thm_from_nnf x |
|
473 |
val thm2 = make_cnfx_thm_from_nnf y |
|
474 |
val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 |
|
475 |
val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 |
|
476 |
val disj_thm = disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) |
|
477 |
in |
|
478 |
iff_trans OF [disj_thm, make_cnfx_disj_thm x' y'] |
|
479 |
end |
|
480 |
else |
|
481 |
let (* neither 'x' nor 'y' is a literal: introduce a fresh variable *) |
|
482 |
val thm1 = inst_thm thy [x, y] make_cnfx_newlit (* (x | y) = EX v. (x | v) & (y | ~v) *) |
|
483 |
val var = new_free () |
|
484 |
val body = HOLogic.mk_conj (HOLogic.mk_disj (x, var), HOLogic.mk_disj (y, HOLogic.Not $ var)) |
|
485 |
val thm2 = make_cnfx_thm_from_nnf body (* (x | v) & (y | ~v) = body' *) |
|
486 |
val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x | v) & (y | ~v) = body' *) |
|
487 |
val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x | v) & (y | ~v) = body' *) |
|
488 |
val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x | v) & (y | ~v)) = (EX v. body') *) |
|
489 |
in |
|
490 |
iff_trans OF [thm1, thm5] |
|
491 |
end |
|
492 |
| make_cnfx_thm_from_nnf t = inst_thm thy [t] iff_refl |
|
493 |
(* convert 't' to NNF first *) |
|
42335 | 494 |
val nnf_thm = make_nnf_thm_under_quantifiers ctxt t |
495 |
(* ### |
|
41447 | 496 |
val nnf_thm = make_nnf_thm thy t |
42335 | 497 |
*) |
41447 | 498 |
val nnf = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) nnf_thm |
499 |
(* then simplify wrt. True/False (this should preserve NNF) *) |
|
500 |
val simp_thm = simp_True_False_thm thy nnf |
|
501 |
val simp = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) simp_thm |
|
502 |
(* initialize var_id, in case the term already contains variables of the form "cnfx_<int>" *) |
|
503 |
val _ = (var_id := fold (fn free => fn max => |
|
504 |
let |
|
505 |
val (name, _) = dest_Free free |
|
506 |
val idx = |
|
507 |
if String.isPrefix "cnfx_" name then |
|
508 |
(Int.fromString o String.extract) (name, String.size "cnfx_", NONE) |
|
509 |
else |
|
510 |
NONE |
|
511 |
in |
|
512 |
Int.max (max, the_default 0 idx) |
|
44121 | 513 |
end) (Misc_Legacy.term_frees simp) 0) |
41447 | 514 |
(* finally, convert to definitional CNF (this should preserve the simplification) *) |
42335 | 515 |
val cnfx_thm = make_under_quantifiers ctxt make_cnfx_thm_from_nnf simp |
516 |
(*### |
|
41447 | 517 |
val cnfx_thm = make_cnfx_thm_from_nnf simp |
42335 | 518 |
*) |
41447 | 519 |
in |
520 |
iff_trans OF [iff_trans OF [nnf_thm, simp_thm], cnfx_thm] |
|
521 |
end; |
|
17618 | 522 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
523 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
524 |
(* Tactics *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
525 |
(* ------------------------------------------------------------------------- *) |
17618 | 526 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
527 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
528 |
(* weakening_tac: removes the first hypothesis of the 'i'-th subgoal *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
529 |
(* ------------------------------------------------------------------------- *) |
17618 | 530 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
531 |
fun weakening_tac i = |
41447 | 532 |
dtac weakening_thm i THEN atac (i+1); |
17618 | 533 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
534 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
535 |
(* cnf_rewrite_tac: converts all premises of the 'i'-th subgoal to CNF *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
536 |
(* (possibly causing an exponential blowup in the length of each *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
537 |
(* premise) *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
538 |
(* ------------------------------------------------------------------------- *) |
17618 | 539 |
|
32232 | 540 |
fun cnf_rewrite_tac ctxt i = |
41447 | 541 |
(* cut the CNF formulas as new premises *) |
542 |
Subgoal.FOCUS (fn {prems, ...} => |
|
543 |
let |
|
42335 | 544 |
val cnf_thms = map (make_cnf_thm ctxt o HOLogic.dest_Trueprop o Thm.prop_of) prems |
41447 | 545 |
val cut_thms = map (fn (th, pr) => cnftac_eq_imp OF [th, pr]) (cnf_thms ~~ prems) |
546 |
in |
|
547 |
cut_facts_tac cut_thms 1 |
|
548 |
end) ctxt i |
|
549 |
(* remove the original premises *) |
|
550 |
THEN SELECT_GOAL (fn thm => |
|
551 |
let |
|
552 |
val n = Logic.count_prems ((Term.strip_all_body o fst o Logic.dest_implies o prop_of) thm) |
|
553 |
in |
|
554 |
PRIMITIVE (funpow (n div 2) (Seq.hd o weakening_tac 1)) thm |
|
555 |
end) i; |
|
17618 | 556 |
|
17809
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
557 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
558 |
(* cnfx_rewrite_tac: converts all premises of the 'i'-th subgoal to CNF *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
559 |
(* (possibly introducing new literals) *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
560 |
(* ------------------------------------------------------------------------- *) |
195045659c06
Tactics sat and satx reimplemented, several improvements
webertj
parents:
17618
diff
changeset
|
561 |
|
32232 | 562 |
fun cnfx_rewrite_tac ctxt i = |
41447 | 563 |
(* cut the CNF formulas as new premises *) |
564 |
Subgoal.FOCUS (fn {prems, ...} => |
|
565 |
let |
|
42335 | 566 |
val cnfx_thms = map (make_cnfx_thm ctxt o HOLogic.dest_Trueprop o prop_of) prems |
41447 | 567 |
val cut_thms = map (fn (th, pr) => cnftac_eq_imp OF [th, pr]) (cnfx_thms ~~ prems) |
568 |
in |
|
569 |
cut_facts_tac cut_thms 1 |
|
570 |
end) ctxt i |
|
571 |
(* remove the original premises *) |
|
572 |
THEN SELECT_GOAL (fn thm => |
|
573 |
let |
|
574 |
val n = Logic.count_prems ((Term.strip_all_body o fst o Logic.dest_implies o prop_of) thm) |
|
575 |
in |
|
576 |
PRIMITIVE (funpow (n div 2) (Seq.hd o weakening_tac 1)) thm |
|
577 |
end) i; |
|
17618 | 578 |
|
41447 | 579 |
end; |