| author | wenzelm | 
| Thu, 27 Apr 2017 11:26:25 +0200 | |
| changeset 65592 | f45609debe0d | 
| parent 64886 | cea327ecb8e3 | 
| child 65869 | a6ed757b8585 | 
| permissions | -rw-r--r-- | 
| 49087 | 1 | (* Title: HOL/Library/Sublist.thy | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 2 | Author: Tobias Nipkow and Markus Wenzel, TU Muenchen | 
| 49087 | 3 | Author: Christian Sternagel, JAIST | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 4 | *) | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 5 | |
| 60500 | 6 | section \<open>List prefixes, suffixes, and homeomorphic embedding\<close> | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 7 | |
| 49087 | 8 | theory Sublist | 
| 9 | imports Main | |
| 15131 | 10 | begin | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 11 | |
| 60500 | 12 | subsection \<open>Prefix order on lists\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 13 | |
| 63117 | 14 | definition prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 15 | where "prefix xs ys \<longleftrightarrow> (\<exists>zs. ys = xs @ zs)" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 16 | |
| 63117 | 17 | definition strict_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 18 | where "strict_prefix xs ys \<longleftrightarrow> prefix xs ys \<and> xs \<noteq> ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 19 | |
| 63117 | 20 | interpretation prefix_order: order prefix strict_prefix | 
| 21 | by standard (auto simp: prefix_def strict_prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 22 | |
| 63117 | 23 | interpretation prefix_bot: order_bot Nil prefix strict_prefix | 
| 24 | by standard (simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 25 | |
| 63117 | 26 | lemma prefixI [intro?]: "ys = xs @ zs \<Longrightarrow> prefix xs ys" | 
| 27 | unfolding prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 28 | |
| 63117 | 29 | lemma prefixE [elim?]: | 
| 30 | assumes "prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 31 | obtains zs where "ys = xs @ zs" | 
| 63117 | 32 | using assms unfolding prefix_def by blast | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 33 | |
| 63117 | 34 | lemma strict_prefixI' [intro?]: "ys = xs @ z # zs \<Longrightarrow> strict_prefix xs ys" | 
| 35 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 36 | |
| 63117 | 37 | lemma strict_prefixE' [elim?]: | 
| 38 | assumes "strict_prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 39 | obtains z zs where "ys = xs @ z # zs" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 40 | proof - | 
| 63117 | 41 | from \<open>strict_prefix xs ys\<close> obtain us where "ys = xs @ us" and "xs \<noteq> ys" | 
| 42 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 43 | with that show ?thesis by (auto simp add: neq_Nil_conv) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 44 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 45 | |
| 63155 | 46 | (* FIXME rm *) | 
| 63117 | 47 | lemma strict_prefixI [intro?]: "prefix xs ys \<Longrightarrow> xs \<noteq> ys \<Longrightarrow> strict_prefix xs ys" | 
| 63155 | 48 | by(fact prefix_order.le_neq_trans) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 49 | |
| 63117 | 50 | lemma strict_prefixE [elim?]: | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 51 | fixes xs ys :: "'a list" | 
| 63117 | 52 | assumes "strict_prefix xs ys" | 
| 53 | obtains "prefix xs ys" and "xs \<noteq> ys" | |
| 54 | using assms unfolding strict_prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 55 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 56 | |
| 60500 | 57 | subsection \<open>Basic properties of prefixes\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 58 | |
| 63155 | 59 | (* FIXME rm *) | 
| 63117 | 60 | theorem Nil_prefix [iff]: "prefix [] xs" | 
| 63155 | 61 | by(fact prefix_bot.bot_least) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 62 | |
| 63155 | 63 | (* FIXME rm *) | 
| 63117 | 64 | theorem prefix_Nil [simp]: "(prefix xs []) = (xs = [])" | 
| 63155 | 65 | by(fact prefix_bot.bot_unique) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 66 | |
| 63117 | 67 | lemma prefix_snoc [simp]: "prefix xs (ys @ [y]) \<longleftrightarrow> xs = ys @ [y] \<or> prefix xs ys" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 68 | proof | 
| 63117 | 69 | assume "prefix xs (ys @ [y])" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 70 | then obtain zs where zs: "ys @ [y] = xs @ zs" .. | 
| 63117 | 71 | show "xs = ys @ [y] \<or> prefix xs ys" | 
| 72 | by (metis append_Nil2 butlast_append butlast_snoc prefixI zs) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 73 | next | 
| 63117 | 74 | assume "xs = ys @ [y] \<or> prefix xs ys" | 
| 75 | then show "prefix xs (ys @ [y])" | |
| 76 | by (metis prefix_order.eq_iff prefix_order.order_trans prefixI) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 77 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 78 | |
| 63117 | 79 | lemma Cons_prefix_Cons [simp]: "prefix (x # xs) (y # ys) = (x = y \<and> prefix xs ys)" | 
| 80 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 81 | |
| 63117 | 82 | lemma prefix_code [code]: | 
| 83 | "prefix [] xs \<longleftrightarrow> True" | |
| 84 | "prefix (x # xs) [] \<longleftrightarrow> False" | |
| 85 | "prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 86 | by simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 87 | |
| 63117 | 88 | lemma same_prefix_prefix [simp]: "prefix (xs @ ys) (xs @ zs) = prefix ys zs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 89 | by (induct xs) simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 90 | |
| 63117 | 91 | lemma same_prefix_nil [iff]: "prefix (xs @ ys) xs = (ys = [])" | 
| 92 | by (metis append_Nil2 append_self_conv prefix_order.eq_iff prefixI) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 93 | |
| 63117 | 94 | lemma prefix_prefix [simp]: "prefix xs ys \<Longrightarrow> prefix xs (ys @ zs)" | 
| 64886 | 95 | unfolding prefix_def by fastforce | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 96 | |
| 63117 | 97 | lemma append_prefixD: "prefix (xs @ ys) zs \<Longrightarrow> prefix xs zs" | 
| 98 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 99 | |
| 63117 | 100 | theorem prefix_Cons: "prefix xs (y # ys) = (xs = [] \<or> (\<exists>zs. xs = y # zs \<and> prefix zs ys))" | 
| 101 | by (cases xs) (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 102 | |
| 63117 | 103 | theorem prefix_append: | 
| 104 | "prefix xs (ys @ zs) = (prefix xs ys \<or> (\<exists>us. xs = ys @ us \<and> prefix us zs))" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 105 | apply (induct zs rule: rev_induct) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 106 | apply force | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 107 | apply (simp del: append_assoc add: append_assoc [symmetric]) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 108 | apply (metis append_eq_appendI) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 109 | done | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 110 | |
| 63117 | 111 | lemma append_one_prefix: | 
| 112 | "prefix xs ys \<Longrightarrow> length xs < length ys \<Longrightarrow> prefix (xs @ [ys ! length xs]) ys" | |
| 113 | proof (unfold prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 114 | assume a1: "\<exists>zs. ys = xs @ zs" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 115 | then obtain sk :: "'a list" where sk: "ys = xs @ sk" by fastforce | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 116 | assume a2: "length xs < length ys" | 
| 61076 | 117 | have f1: "\<And>v. ([]::'a list) @ v = v" using append_Nil2 by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 118 | have "[] \<noteq> sk" using a1 a2 sk less_not_refl by force | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 119 | hence "\<exists>v. xs @ hd sk # v = ys" using sk by (metis hd_Cons_tl) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 120 | thus "\<exists>zs. ys = (xs @ [ys ! length xs]) @ zs" using f1 by fastforce | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 121 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 122 | |
| 63117 | 123 | theorem prefix_length_le: "prefix xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 124 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 125 | |
| 63117 | 126 | lemma prefix_same_cases: | 
| 127 | "prefix (xs\<^sub>1::'a list) ys \<Longrightarrow> prefix xs\<^sub>2 ys \<Longrightarrow> prefix xs\<^sub>1 xs\<^sub>2 \<or> prefix xs\<^sub>2 xs\<^sub>1" | |
| 128 | unfolding prefix_def by (force simp: append_eq_append_conv2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 129 | |
| 63173 | 130 | lemma prefix_length_prefix: | 
| 131 | "prefix ps xs \<Longrightarrow> prefix qs xs \<Longrightarrow> length ps \<le> length qs \<Longrightarrow> prefix ps qs" | |
| 132 | by (auto simp: prefix_def) (metis append_Nil2 append_eq_append_conv_if) | |
| 133 | ||
| 63117 | 134 | lemma set_mono_prefix: "prefix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 135 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 136 | |
| 63117 | 137 | lemma take_is_prefix: "prefix (take n xs) xs" | 
| 138 | unfolding prefix_def by (metis append_take_drop_id) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 139 | |
| 63155 | 140 | lemma prefixeq_butlast: "prefix (butlast xs) xs" | 
| 141 | by (simp add: butlast_conv_take take_is_prefix) | |
| 142 | ||
| 63117 | 143 | lemma map_prefixI: "prefix xs ys \<Longrightarrow> prefix (map f xs) (map f ys)" | 
| 144 | by (auto simp: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 145 | |
| 63117 | 146 | lemma prefix_length_less: "strict_prefix xs ys \<Longrightarrow> length xs < length ys" | 
| 147 | by (auto simp: strict_prefix_def prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 148 | |
| 63155 | 149 | lemma prefix_snocD: "prefix (xs@[x]) ys \<Longrightarrow> strict_prefix xs ys" | 
| 150 | by (simp add: strict_prefixI' prefix_order.dual_order.strict_trans1) | |
| 151 | ||
| 63117 | 152 | lemma strict_prefix_simps [simp, code]: | 
| 153 | "strict_prefix xs [] \<longleftrightarrow> False" | |
| 154 | "strict_prefix [] (x # xs) \<longleftrightarrow> True" | |
| 155 | "strict_prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> strict_prefix xs ys" | |
| 156 | by (simp_all add: strict_prefix_def cong: conj_cong) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 157 | |
| 63117 | 158 | lemma take_strict_prefix: "strict_prefix xs ys \<Longrightarrow> strict_prefix (take n xs) ys" | 
| 63649 | 159 | proof (induct n arbitrary: xs ys) | 
| 160 | case 0 | |
| 161 | then show ?case by (cases ys) simp_all | |
| 162 | next | |
| 163 | case (Suc n) | |
| 164 | then show ?case by (metis prefix_order.less_trans strict_prefixI take_is_prefix) | |
| 165 | qed | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 166 | |
| 63117 | 167 | lemma not_prefix_cases: | 
| 168 | assumes pfx: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 169 | obtains | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 170 | (c1) "ps \<noteq> []" and "ls = []" | 
| 63117 | 171 | | (c2) a as x xs where "ps = a#as" and "ls = x#xs" and "x = a" and "\<not> prefix as xs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 172 | | (c3) a as x xs where "ps = a#as" and "ls = x#xs" and "x \<noteq> a" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 173 | proof (cases ps) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 174 | case Nil | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 175 | then show ?thesis using pfx by simp | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 176 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 177 | case (Cons a as) | 
| 60500 | 178 | note c = \<open>ps = a#as\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 179 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 180 | proof (cases ls) | 
| 63117 | 181 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_prefix_nil) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 182 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 183 | case (Cons x xs) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 184 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 185 | proof (cases "x = a") | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 186 | case True | 
| 63117 | 187 | have "\<not> prefix as xs" using pfx c Cons True by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 188 | with c Cons True show ?thesis by (rule c2) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 189 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 190 | case False | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 191 | with c Cons show ?thesis by (rule c3) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 192 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 193 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 194 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 195 | |
| 63117 | 196 | lemma not_prefix_induct [consumes 1, case_names Nil Neq Eq]: | 
| 197 | assumes np: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 198 | and base: "\<And>x xs. P (x#xs) []" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 199 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (x#xs) (y#ys)" | 
| 63117 | 200 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> prefix xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 201 | shows "P ps ls" using np | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 202 | proof (induct ls arbitrary: ps) | 
| 63649 | 203 | case Nil | 
| 204 | then show ?case | |
| 63117 | 205 | by (auto simp: neq_Nil_conv elim!: not_prefix_cases intro!: base) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 206 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 207 | case (Cons y ys) | 
| 63117 | 208 | then have npfx: "\<not> prefix ps (y # ys)" by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 209 | then obtain x xs where pv: "ps = x # xs" | 
| 63117 | 210 | by (rule not_prefix_cases) auto | 
| 211 | show ?case by (metis Cons.hyps Cons_prefix_Cons npfx pv r1 r2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 212 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 213 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 214 | |
| 63155 | 215 | subsection \<open>Prefixes\<close> | 
| 216 | ||
| 217 | fun prefixes where | |
| 218 | "prefixes [] = [[]]" | | |
| 219 | "prefixes (x#xs) = [] # map (op # x) (prefixes xs)" | |
| 220 | ||
| 221 | lemma in_set_prefixes[simp]: "xs \<in> set (prefixes ys) \<longleftrightarrow> prefix xs ys" | |
| 63649 | 222 | proof (induct xs arbitrary: ys) | 
| 223 | case Nil | |
| 224 | then show ?case by (cases ys) auto | |
| 225 | next | |
| 226 | case (Cons a xs) | |
| 227 | then show ?case by (cases ys) auto | |
| 228 | qed | |
| 63155 | 229 | |
| 230 | lemma length_prefixes[simp]: "length (prefixes xs) = length xs+1" | |
| 231 | by (induction xs) auto | |
| 232 | ||
| 233 | lemma prefixes_snoc[simp]: | |
| 234 | "prefixes (xs@[x]) = prefixes xs @ [xs@[x]]" | |
| 235 | by (induction xs) auto | |
| 236 | ||
| 237 | lemma prefixes_eq_Snoc: | |
| 238 | "prefixes ys = xs @ [x] \<longleftrightarrow> | |
| 239 | (ys = [] \<and> xs = [] \<or> (\<exists>z zs. ys = zs@[z] \<and> xs = prefixes zs)) \<and> x = ys" | |
| 240 | by (cases ys rule: rev_cases) auto | |
| 241 | ||
| 242 | ||
| 63173 | 243 | subsection \<open>Longest Common Prefix\<close> | 
| 244 | ||
| 245 | definition Longest_common_prefix :: "'a list set \<Rightarrow> 'a list" where | |
| 246 | "Longest_common_prefix L = (GREATEST ps WRT length. \<forall>xs \<in> L. prefix ps xs)" | |
| 247 | ||
| 248 | lemma Longest_common_prefix_ex: "L \<noteq> {} \<Longrightarrow>
 | |
| 249 | \<exists>ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps)" | |
| 250 | (is "_ \<Longrightarrow> \<exists>ps. ?P L ps") | |
| 251 | proof(induction "LEAST n. \<exists>xs \<in>L. n = length xs" arbitrary: L) | |
| 252 | case 0 | |
| 253 |   have "[] : L" using "0.hyps" LeastI[of "\<lambda>n. \<exists>xs\<in>L. n = length xs"] \<open>L \<noteq> {}\<close>
 | |
| 254 | by auto | |
| 255 | hence "?P L []" by(auto) | |
| 256 | thus ?case .. | |
| 257 | next | |
| 258 | case (Suc n) | |
| 259 | let ?EX = "\<lambda>n. \<exists>xs\<in>L. n = length xs" | |
| 260 | obtain x xs where xxs: "x#xs \<in> L" "size xs = n" using Suc.prems Suc.hyps(2) | |
| 261 | by(metis LeastI_ex[of ?EX] Suc_length_conv ex_in_conv) | |
| 262 | hence "[] \<notin> L" using Suc.hyps(2) by auto | |
| 263 | show ?case | |
| 264 | proof (cases "\<forall>xs \<in> L. \<exists>ys. xs = x#ys") | |
| 265 | case True | |
| 266 |     let ?L = "{ys. x#ys \<in> L}"
 | |
| 267 | have 1: "(LEAST n. \<exists>xs \<in> ?L. n = length xs) = n" | |
| 268 | using xxs Suc.prems Suc.hyps(2) Least_le[of "?EX"] | |
| 269 | by - (rule Least_equality, fastforce+) | |
| 270 |     have 2: "?L \<noteq> {}" using \<open>x # xs \<in> L\<close> by auto
 | |
| 271 | from Suc.hyps(1)[OF 1[symmetric] 2] obtain ps where IH: "?P ?L ps" .. | |
| 272 |     { fix qs
 | |
| 273 | assume "\<forall>qs. (\<forall>xa. x # xa \<in> L \<longrightarrow> prefix qs xa) \<longrightarrow> length qs \<le> length ps" | |
| 274 | and "\<forall>xs\<in>L. prefix qs xs" | |
| 275 | hence "length (tl qs) \<le> length ps" | |
| 276 | by (metis Cons_prefix_Cons hd_Cons_tl list.sel(2) Nil_prefix) | |
| 277 | hence "length qs \<le> Suc (length ps)" by auto | |
| 278 | } | |
| 279 | hence "?P L (x#ps)" using True IH by auto | |
| 280 | thus ?thesis .. | |
| 281 | next | |
| 282 | case False | |
| 283 | then obtain y ys where yys: "x\<noteq>y" "y#ys \<in> L" using \<open>[] \<notin> L\<close> | |
| 284 | by (auto) (metis list.exhaust) | |
| 285 | have "\<forall>qs. (\<forall>xs\<in>L. prefix qs xs) \<longrightarrow> qs = []" using yys \<open>x#xs \<in> L\<close> | |
| 286 | by auto (metis Cons_prefix_Cons prefix_Cons) | |
| 287 | hence "?P L []" by auto | |
| 288 | thus ?thesis .. | |
| 289 | qed | |
| 290 | qed | |
| 291 | ||
| 292 | lemma Longest_common_prefix_unique: "L \<noteq> {} \<Longrightarrow>
 | |
| 293 | \<exists>! ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps)" | |
| 294 | by(rule ex_ex1I[OF Longest_common_prefix_ex]; | |
| 295 | meson equals0I prefix_length_prefix prefix_order.antisym) | |
| 296 | ||
| 297 | lemma Longest_common_prefix_eq: | |
| 298 |  "\<lbrakk> L \<noteq> {};  \<forall>xs \<in> L. prefix ps xs;
 | |
| 299 | \<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps \<rbrakk> | |
| 300 | \<Longrightarrow> Longest_common_prefix L = ps" | |
| 301 | unfolding Longest_common_prefix_def GreatestM_def | |
| 302 | by(rule some1_equality[OF Longest_common_prefix_unique]) auto | |
| 303 | ||
| 304 | lemma Longest_common_prefix_prefix: | |
| 305 | "xs \<in> L \<Longrightarrow> prefix (Longest_common_prefix L) xs" | |
| 306 | unfolding Longest_common_prefix_def GreatestM_def | |
| 307 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | |
| 308 | ||
| 309 | lemma Longest_common_prefix_longest: | |
| 310 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> length ps \<le> length(Longest_common_prefix L)"
 | |
| 311 | unfolding Longest_common_prefix_def GreatestM_def | |
| 312 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | |
| 313 | ||
| 314 | lemma Longest_common_prefix_max_prefix: | |
| 315 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> prefix ps (Longest_common_prefix L)"
 | |
| 316 | by(metis Longest_common_prefix_prefix Longest_common_prefix_longest | |
| 317 | prefix_length_prefix ex_in_conv) | |
| 318 | ||
| 319 | lemma Longest_common_prefix_Nil: "[] \<in> L \<Longrightarrow> Longest_common_prefix L = []" | |
| 320 | using Longest_common_prefix_prefix prefix_Nil by blast | |
| 321 | ||
| 322 | lemma Longest_common_prefix_image_Cons: "L \<noteq> {} \<Longrightarrow>
 | |
| 323 | Longest_common_prefix (op # x ` L) = x # Longest_common_prefix L" | |
| 324 | apply(rule Longest_common_prefix_eq) | |
| 325 | apply(simp) | |
| 326 | apply (simp add: Longest_common_prefix_prefix) | |
| 327 | apply simp | |
| 328 | by(metis Longest_common_prefix_longest[of L] Cons_prefix_Cons Nitpick.size_list_simp(2) | |
| 329 | Suc_le_mono hd_Cons_tl order.strict_implies_order zero_less_Suc) | |
| 330 | ||
| 331 | lemma Longest_common_prefix_eq_Cons: assumes "L \<noteq> {}" "[] \<notin> L"  "\<forall>xs\<in>L. hd xs = x"
 | |
| 332 | shows "Longest_common_prefix L = x # Longest_common_prefix {ys. x#ys \<in> L}"
 | |
| 333 | proof - | |
| 334 |   have "L = op # x ` {ys. x#ys \<in> L}" using assms(2,3)
 | |
| 335 | by (auto simp: image_def)(metis hd_Cons_tl) | |
| 336 | thus ?thesis | |
| 337 | by (metis Longest_common_prefix_image_Cons image_is_empty assms(1)) | |
| 338 | qed | |
| 339 | ||
| 340 | lemma Longest_common_prefix_eq_Nil: | |
| 341 | "\<lbrakk>x#ys \<in> L; y#zs \<in> L; x \<noteq> y \<rbrakk> \<Longrightarrow> Longest_common_prefix L = []" | |
| 342 | by (metis Longest_common_prefix_prefix list.inject prefix_Cons) | |
| 343 | ||
| 344 | ||
| 345 | fun longest_common_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 346 | "longest_common_prefix (x#xs) (y#ys) = | |
| 347 | (if x=y then x # longest_common_prefix xs ys else [])" | | |
| 348 | "longest_common_prefix _ _ = []" | |
| 349 | ||
| 350 | lemma longest_common_prefix_prefix1: | |
| 351 | "prefix (longest_common_prefix xs ys) xs" | |
| 352 | by(induction xs ys rule: longest_common_prefix.induct) auto | |
| 353 | ||
| 354 | lemma longest_common_prefix_prefix2: | |
| 355 | "prefix (longest_common_prefix xs ys) ys" | |
| 356 | by(induction xs ys rule: longest_common_prefix.induct) auto | |
| 357 | ||
| 358 | lemma longest_common_prefix_max_prefix: | |
| 359 | "\<lbrakk> prefix ps xs; prefix ps ys \<rbrakk> | |
| 360 | \<Longrightarrow> prefix ps (longest_common_prefix xs ys)" | |
| 361 | by(induction xs ys arbitrary: ps rule: longest_common_prefix.induct) | |
| 362 | (auto simp: prefix_Cons) | |
| 363 | ||
| 364 | ||
| 60500 | 365 | subsection \<open>Parallel lists\<close> | 
| 10389 | 366 | |
| 50516 | 367 | definition parallel :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "\<parallel>" 50) | 
| 63117 | 368 | where "(xs \<parallel> ys) = (\<not> prefix xs ys \<and> \<not> prefix ys xs)" | 
| 10389 | 369 | |
| 63117 | 370 | lemma parallelI [intro]: "\<not> prefix xs ys \<Longrightarrow> \<not> prefix ys xs \<Longrightarrow> xs \<parallel> ys" | 
| 25692 | 371 | unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 372 | |
| 10389 | 373 | lemma parallelE [elim]: | 
| 25692 | 374 | assumes "xs \<parallel> ys" | 
| 63117 | 375 | obtains "\<not> prefix xs ys \<and> \<not> prefix ys xs" | 
| 25692 | 376 | using assms unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 377 | |
| 63117 | 378 | theorem prefix_cases: | 
| 379 | obtains "prefix xs ys" | "strict_prefix ys xs" | "xs \<parallel> ys" | |
| 380 | unfolding parallel_def strict_prefix_def by blast | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 381 | |
| 10389 | 382 | theorem parallel_decomp: | 
| 50516 | 383 | "xs \<parallel> ys \<Longrightarrow> \<exists>as b bs c cs. b \<noteq> c \<and> xs = as @ b # bs \<and> ys = as @ c # cs" | 
| 10408 | 384 | proof (induct xs rule: rev_induct) | 
| 11987 | 385 | case Nil | 
| 23254 | 386 | then have False by auto | 
| 387 | then show ?case .. | |
| 10408 | 388 | next | 
| 11987 | 389 | case (snoc x xs) | 
| 390 | show ?case | |
| 63117 | 391 | proof (rule prefix_cases) | 
| 392 | assume le: "prefix xs ys" | |
| 10408 | 393 | then obtain ys' where ys: "ys = xs @ ys'" .. | 
| 394 | show ?thesis | |
| 395 | proof (cases ys') | |
| 25564 | 396 | assume "ys' = []" | 
| 63117 | 397 | then show ?thesis by (metis append_Nil2 parallelE prefixI snoc.prems ys) | 
| 10389 | 398 | next | 
| 10408 | 399 | fix c cs assume ys': "ys' = c # cs" | 
| 54483 | 400 | have "x \<noteq> c" using snoc.prems ys ys' by fastforce | 
| 401 | thus "\<exists>as b bs c cs. b \<noteq> c \<and> xs @ [x] = as @ b # bs \<and> ys = as @ c # cs" | |
| 402 | using ys ys' by blast | |
| 10389 | 403 | qed | 
| 10408 | 404 | next | 
| 63117 | 405 | assume "strict_prefix ys xs" | 
| 406 | then have "prefix ys (xs @ [x])" by (simp add: strict_prefix_def) | |
| 11987 | 407 | with snoc have False by blast | 
| 23254 | 408 | then show ?thesis .. | 
| 10408 | 409 | next | 
| 410 | assume "xs \<parallel> ys" | |
| 11987 | 411 | with snoc obtain as b bs c cs where neq: "(b::'a) \<noteq> c" | 
| 10408 | 412 | and xs: "xs = as @ b # bs" and ys: "ys = as @ c # cs" | 
| 413 | by blast | |
| 414 | from xs have "xs @ [x] = as @ b # (bs @ [x])" by simp | |
| 415 | with neq ys show ?thesis by blast | |
| 10389 | 416 | qed | 
| 417 | qed | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 418 | |
| 25564 | 419 | lemma parallel_append: "a \<parallel> b \<Longrightarrow> a @ c \<parallel> b @ d" | 
| 25692 | 420 | apply (rule parallelI) | 
| 421 | apply (erule parallelE, erule conjE, | |
| 63117 | 422 | induct rule: not_prefix_induct, simp+)+ | 
| 25692 | 423 | done | 
| 25299 | 424 | |
| 25692 | 425 | lemma parallel_appendI: "xs \<parallel> ys \<Longrightarrow> x = xs @ xs' \<Longrightarrow> y = ys @ ys' \<Longrightarrow> x \<parallel> y" | 
| 426 | by (simp add: parallel_append) | |
| 25299 | 427 | |
| 25692 | 428 | lemma parallel_commute: "a \<parallel> b \<longleftrightarrow> b \<parallel> a" | 
| 429 | unfolding parallel_def by auto | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 430 | |
| 25356 | 431 | |
| 60500 | 432 | subsection \<open>Suffix order on lists\<close> | 
| 17201 | 433 | |
| 63149 | 434 | definition suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 435 | where "suffix xs ys = (\<exists>zs. ys = zs @ xs)" | |
| 49087 | 436 | |
| 63149 | 437 | definition strict_suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 438 | where "strict_suffix xs ys \<longleftrightarrow> (\<exists>us. ys = us @ xs \<and> us \<noteq> [])" | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 439 | |
| 63149 | 440 | lemma strict_suffix_imp_suffix: | 
| 441 | "strict_suffix xs ys \<Longrightarrow> suffix xs ys" | |
| 442 | by (auto simp: suffix_def strict_suffix_def) | |
| 49087 | 443 | |
| 63149 | 444 | lemma suffixI [intro?]: "ys = zs @ xs \<Longrightarrow> suffix xs ys" | 
| 445 | unfolding suffix_def by blast | |
| 21305 | 446 | |
| 63149 | 447 | lemma suffixE [elim?]: | 
| 448 | assumes "suffix xs ys" | |
| 49087 | 449 | obtains zs where "ys = zs @ xs" | 
| 63149 | 450 | using assms unfolding suffix_def by blast | 
| 21305 | 451 | |
| 63149 | 452 | lemma suffix_refl [iff]: "suffix xs xs" | 
| 453 | by (auto simp add: suffix_def) | |
| 454 | ||
| 49087 | 455 | lemma suffix_trans: | 
| 456 | "suffix xs ys \<Longrightarrow> suffix ys zs \<Longrightarrow> suffix xs zs" | |
| 457 | by (auto simp: suffix_def) | |
| 63149 | 458 | |
| 459 | lemma strict_suffix_trans: | |
| 460 | "\<lbrakk>strict_suffix xs ys; strict_suffix ys zs\<rbrakk> \<Longrightarrow> strict_suffix xs zs" | |
| 461 | by (auto simp add: strict_suffix_def) | |
| 49087 | 462 | |
| 63149 | 463 | lemma suffix_antisym: "\<lbrakk>suffix xs ys; suffix ys xs\<rbrakk> \<Longrightarrow> xs = ys" | 
| 464 | by (auto simp add: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 465 | |
| 63149 | 466 | lemma suffix_tl [simp]: "suffix (tl xs) xs" | 
| 49087 | 467 | by (induct xs) (auto simp: suffix_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 468 | |
| 63149 | 469 | lemma strict_suffix_tl [simp]: "xs \<noteq> [] \<Longrightarrow> strict_suffix (tl xs) xs" | 
| 470 | by (induct xs) (auto simp: strict_suffix_def) | |
| 471 | ||
| 472 | lemma Nil_suffix [iff]: "suffix [] xs" | |
| 473 | by (simp add: suffix_def) | |
| 49087 | 474 | |
| 63149 | 475 | lemma suffix_Nil [simp]: "(suffix xs []) = (xs = [])" | 
| 476 | by (auto simp add: suffix_def) | |
| 477 | ||
| 478 | lemma suffix_ConsI: "suffix xs ys \<Longrightarrow> suffix xs (y # ys)" | |
| 479 | by (auto simp add: suffix_def) | |
| 480 | ||
| 481 | lemma suffix_ConsD: "suffix (x # xs) ys \<Longrightarrow> suffix xs ys" | |
| 482 | by (auto simp add: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 483 | |
| 63149 | 484 | lemma suffix_appendI: "suffix xs ys \<Longrightarrow> suffix xs (zs @ ys)" | 
| 485 | by (auto simp add: suffix_def) | |
| 486 | ||
| 487 | lemma suffix_appendD: "suffix (zs @ xs) ys \<Longrightarrow> suffix xs ys" | |
| 488 | by (auto simp add: suffix_def) | |
| 49087 | 489 | |
| 63149 | 490 | lemma strict_suffix_set_subset: "strict_suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 491 | by (auto simp: strict_suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 492 | |
| 63149 | 493 | lemma suffix_set_subset: "suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 494 | by (auto simp: suffix_def) | |
| 49087 | 495 | |
| 63149 | 496 | lemma suffix_ConsD2: "suffix (x # xs) (y # ys) \<Longrightarrow> suffix xs ys" | 
| 21305 | 497 | proof - | 
| 63149 | 498 | assume "suffix (x # xs) (y # ys)" | 
| 49107 | 499 | then obtain zs where "y # ys = zs @ x # xs" .. | 
| 49087 | 500 | then show ?thesis | 
| 63149 | 501 | by (induct zs) (auto intro!: suffix_appendI suffix_ConsI) | 
| 21305 | 502 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 503 | |
| 63149 | 504 | lemma suffix_to_prefix [code]: "suffix xs ys \<longleftrightarrow> prefix (rev xs) (rev ys)" | 
| 49087 | 505 | proof | 
| 63149 | 506 | assume "suffix xs ys" | 
| 49087 | 507 | then obtain zs where "ys = zs @ xs" .. | 
| 508 | then have "rev ys = rev xs @ rev zs" by simp | |
| 63117 | 509 | then show "prefix (rev xs) (rev ys)" .. | 
| 49087 | 510 | next | 
| 63117 | 511 | assume "prefix (rev xs) (rev ys)" | 
| 49087 | 512 | then obtain zs where "rev ys = rev xs @ zs" .. | 
| 513 | then have "rev (rev ys) = rev zs @ rev (rev xs)" by simp | |
| 514 | then have "ys = rev zs @ xs" by simp | |
| 63149 | 515 | then show "suffix xs ys" .. | 
| 21305 | 516 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 517 | |
| 63149 | 518 | lemma distinct_suffix: "distinct ys \<Longrightarrow> suffix xs ys \<Longrightarrow> distinct xs" | 
| 519 | by (clarsimp elim!: suffixE) | |
| 17201 | 520 | |
| 63149 | 521 | lemma suffix_map: "suffix xs ys \<Longrightarrow> suffix (map f xs) (map f ys)" | 
| 522 | by (auto elim!: suffixE intro: suffixI) | |
| 25299 | 523 | |
| 63149 | 524 | lemma suffix_drop: "suffix (drop n as) as" | 
| 525 | unfolding suffix_def | |
| 25692 | 526 | apply (rule exI [where x = "take n as"]) | 
| 527 | apply simp | |
| 528 | done | |
| 25299 | 529 | |
| 63149 | 530 | lemma suffix_take: "suffix xs ys \<Longrightarrow> ys = take (length ys - length xs) ys @ xs" | 
| 531 | by (auto elim!: suffixE) | |
| 25299 | 532 | |
| 63149 | 533 | lemma strict_suffix_reflclp_conv: "strict_suffix\<^sup>=\<^sup>= = suffix" | 
| 534 | by (intro ext) (auto simp: suffix_def strict_suffix_def) | |
| 535 | ||
| 536 | lemma suffix_lists: "suffix xs ys \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A" | |
| 537 | unfolding suffix_def by auto | |
| 49087 | 538 | |
| 63117 | 539 | lemma parallelD1: "x \<parallel> y \<Longrightarrow> \<not> prefix x y" | 
| 25692 | 540 | by blast | 
| 25299 | 541 | |
| 63117 | 542 | lemma parallelD2: "x \<parallel> y \<Longrightarrow> \<not> prefix y x" | 
| 25692 | 543 | by blast | 
| 25355 | 544 | |
| 545 | lemma parallel_Nil1 [simp]: "\<not> x \<parallel> []" | |
| 25692 | 546 | unfolding parallel_def by simp | 
| 25355 | 547 | |
| 25299 | 548 | lemma parallel_Nil2 [simp]: "\<not> [] \<parallel> x" | 
| 25692 | 549 | unfolding parallel_def by simp | 
| 25299 | 550 | |
| 25564 | 551 | lemma Cons_parallelI1: "a \<noteq> b \<Longrightarrow> a # as \<parallel> b # bs" | 
| 25692 | 552 | by auto | 
| 25299 | 553 | |
| 25564 | 554 | lemma Cons_parallelI2: "\<lbrakk> a = b; as \<parallel> bs \<rbrakk> \<Longrightarrow> a # as \<parallel> b # bs" | 
| 63117 | 555 | by (metis Cons_prefix_Cons parallelE parallelI) | 
| 25665 | 556 | |
| 25299 | 557 | lemma not_equal_is_parallel: | 
| 558 | assumes neq: "xs \<noteq> ys" | |
| 25356 | 559 | and len: "length xs = length ys" | 
| 560 | shows "xs \<parallel> ys" | |
| 25299 | 561 | using len neq | 
| 25355 | 562 | proof (induct rule: list_induct2) | 
| 26445 | 563 | case Nil | 
| 25356 | 564 | then show ?case by simp | 
| 25299 | 565 | next | 
| 26445 | 566 | case (Cons a as b bs) | 
| 25355 | 567 | have ih: "as \<noteq> bs \<Longrightarrow> as \<parallel> bs" by fact | 
| 25299 | 568 | show ?case | 
| 569 | proof (cases "a = b") | |
| 25355 | 570 | case True | 
| 26445 | 571 | then have "as \<noteq> bs" using Cons by simp | 
| 25355 | 572 | then show ?thesis by (rule Cons_parallelI2 [OF True ih]) | 
| 25299 | 573 | next | 
| 574 | case False | |
| 25355 | 575 | then show ?thesis by (rule Cons_parallelI1) | 
| 25299 | 576 | qed | 
| 577 | qed | |
| 22178 | 578 | |
| 49087 | 579 | |
| 60500 | 580 | subsection \<open>Homeomorphic embedding on lists\<close> | 
| 49087 | 581 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 582 | inductive list_emb :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 49087 | 583 |   for P :: "('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 584 | where | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 585 | list_emb_Nil [intro, simp]: "list_emb P [] ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 586 | | list_emb_Cons [intro] : "list_emb P xs ys \<Longrightarrow> list_emb P xs (y#ys)" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 587 | | list_emb_Cons2 [intro]: "P x y \<Longrightarrow> list_emb P xs ys \<Longrightarrow> list_emb P (x#xs) (y#ys)" | 
| 50516 | 588 | |
| 57499 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 589 | lemma list_emb_mono: | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 590 | assumes "\<And>x y. P x y \<longrightarrow> Q x y" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 591 | shows "list_emb P xs ys \<longrightarrow> list_emb Q xs ys" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 592 | proof | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 593 | assume "list_emb P xs ys" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 594 | then show "list_emb Q xs ys" by (induct) (auto simp: assms) | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 595 | qed | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 596 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 597 | lemma list_emb_Nil2 [simp]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 598 | assumes "list_emb P xs []" shows "xs = []" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 599 | using assms by (cases rule: list_emb.cases) auto | 
| 49087 | 600 | |
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 601 | lemma list_emb_refl: | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 602 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> P x x" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 603 | shows "list_emb P xs xs" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 604 | using assms by (induct xs) auto | 
| 49087 | 605 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 606 | lemma list_emb_Cons_Nil [simp]: "list_emb P (x#xs) [] = False" | 
| 49087 | 607 | proof - | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 608 |   { assume "list_emb P (x#xs) []"
 | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 609 | from list_emb_Nil2 [OF this] have False by simp | 
| 49087 | 610 |   } moreover {
 | 
| 611 | assume False | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 612 | then have "list_emb P (x#xs) []" by simp | 
| 49087 | 613 | } ultimately show ?thesis by blast | 
| 614 | qed | |
| 615 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 616 | lemma list_emb_append2 [intro]: "list_emb P xs ys \<Longrightarrow> list_emb P xs (zs @ ys)" | 
| 49087 | 617 | by (induct zs) auto | 
| 618 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 619 | lemma list_emb_prefix [intro]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 620 | assumes "list_emb P xs ys" shows "list_emb P xs (ys @ zs)" | 
| 49087 | 621 | using assms | 
| 622 | by (induct arbitrary: zs) auto | |
| 623 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 624 | lemma list_emb_ConsD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 625 | assumes "list_emb P (x#xs) ys" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 626 | shows "\<exists>us v vs. ys = us @ v # vs \<and> P x v \<and> list_emb P xs vs" | 
| 49087 | 627 | using assms | 
| 49107 | 628 | proof (induct x \<equiv> "x # xs" ys arbitrary: x xs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 629 | case list_emb_Cons | 
| 49107 | 630 | then show ?case by (metis append_Cons) | 
| 49087 | 631 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 632 | case (list_emb_Cons2 x y xs ys) | 
| 54483 | 633 | then show ?case by blast | 
| 49087 | 634 | qed | 
| 635 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 636 | lemma list_emb_appendD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 637 | assumes "list_emb P (xs @ ys) zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 638 | shows "\<exists>us vs. zs = us @ vs \<and> list_emb P xs us \<and> list_emb P ys vs" | 
| 49087 | 639 | using assms | 
| 640 | proof (induction xs arbitrary: ys zs) | |
| 49107 | 641 | case Nil then show ?case by auto | 
| 49087 | 642 | next | 
| 643 | case (Cons x xs) | |
| 54483 | 644 | then obtain us v vs where | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 645 | zs: "zs = us @ v # vs" and p: "P x v" and lh: "list_emb P (xs @ ys) vs" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 646 | by (auto dest: list_emb_ConsD) | 
| 54483 | 647 | obtain sk\<^sub>0 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" and sk\<^sub>1 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 648 | sk: "\<forall>x\<^sub>0 x\<^sub>1. \<not> list_emb P (xs @ x\<^sub>0) x\<^sub>1 \<or> sk\<^sub>0 x\<^sub>0 x\<^sub>1 @ sk\<^sub>1 x\<^sub>0 x\<^sub>1 = x\<^sub>1 \<and> list_emb P xs (sk\<^sub>0 x\<^sub>0 x\<^sub>1) \<and> list_emb P x\<^sub>0 (sk\<^sub>1 x\<^sub>0 x\<^sub>1)" | 
| 54483 | 649 | using Cons(1) by (metis (no_types)) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 650 | hence "\<forall>x\<^sub>2. list_emb P (x # xs) (x\<^sub>2 @ v # sk\<^sub>0 ys vs)" using p lh by auto | 
| 54483 | 651 | thus ?case using lh zs sk by (metis (no_types) append_Cons append_assoc) | 
| 49087 | 652 | qed | 
| 653 | ||
| 63149 | 654 | lemma list_emb_strict_suffix: | 
| 655 | assumes "list_emb P xs ys" and "strict_suffix ys zs" | |
| 656 | shows "list_emb P xs zs" | |
| 657 | using assms(2) and list_emb_append2 [OF assms(1)] by (auto simp: strict_suffix_def) | |
| 658 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 659 | lemma list_emb_suffix: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 660 | assumes "list_emb P xs ys" and "suffix ys zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 661 | shows "list_emb P xs zs" | 
| 63149 | 662 | using assms and list_emb_strict_suffix | 
| 663 | unfolding strict_suffix_reflclp_conv[symmetric] by auto | |
| 49087 | 664 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 665 | lemma list_emb_length: "list_emb P xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 666 | by (induct rule: list_emb.induct) auto | 
| 49087 | 667 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 668 | lemma list_emb_trans: | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 669 | assumes "\<And>x y z. \<lbrakk>x \<in> set xs; y \<in> set ys; z \<in> set zs; P x y; P y z\<rbrakk> \<Longrightarrow> P x z" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 670 | shows "\<lbrakk>list_emb P xs ys; list_emb P ys zs\<rbrakk> \<Longrightarrow> list_emb P xs zs" | 
| 50516 | 671 | proof - | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 672 | assume "list_emb P xs ys" and "list_emb P ys zs" | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 673 | then show "list_emb P xs zs" using assms | 
| 49087 | 674 | proof (induction arbitrary: zs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 675 | case list_emb_Nil show ?case by blast | 
| 49087 | 676 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 677 | case (list_emb_Cons xs ys y) | 
| 60500 | 678 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 679 | where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_emb P ys vs" by blast | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 680 | then have "list_emb P ys (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 681 | then have "list_emb P ys zs" unfolding zs by (rule list_emb_append2) | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 682 | from list_emb_Cons.IH [OF this] and list_emb_Cons.prems show ?case by auto | 
| 49087 | 683 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 684 | case (list_emb_Cons2 x y xs ys) | 
| 60500 | 685 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 686 | where zs: "zs = us @ v # vs" and "P y v" and "list_emb P ys vs" by blast | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 687 | with list_emb_Cons2 have "list_emb P xs vs" by auto | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 688 | moreover have "P x v" | 
| 49087 | 689 | proof - | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 690 | from zs have "v \<in> set zs" by auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 691 | moreover have "x \<in> set (x#xs)" and "y \<in> set (y#ys)" by simp_all | 
| 50516 | 692 | ultimately show ?thesis | 
| 60500 | 693 | using \<open>P x y\<close> and \<open>P y v\<close> and list_emb_Cons2 | 
| 50516 | 694 | by blast | 
| 49087 | 695 | qed | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 696 | ultimately have "list_emb P (x#xs) (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 697 | then show ?case unfolding zs by (rule list_emb_append2) | 
| 49087 | 698 | qed | 
| 699 | qed | |
| 700 | ||
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 701 | lemma list_emb_set: | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 702 | assumes "list_emb P xs ys" and "x \<in> set xs" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 703 | obtains y where "y \<in> set ys" and "P x y" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 704 | using assms by (induct) auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 705 | |
| 49087 | 706 | |
| 60500 | 707 | subsection \<open>Sublists (special case of homeomorphic embedding)\<close> | 
| 49087 | 708 | |
| 50516 | 709 | abbreviation sublisteq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 710 | where "sublisteq xs ys \<equiv> list_emb (op =) xs ys" | 
| 49087 | 711 | |
| 50516 | 712 | lemma sublisteq_Cons2: "sublisteq xs ys \<Longrightarrow> sublisteq (x#xs) (x#ys)" by auto | 
| 49087 | 713 | |
| 50516 | 714 | lemma sublisteq_same_length: | 
| 715 | assumes "sublisteq xs ys" and "length xs = length ys" shows "xs = ys" | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 716 | using assms by (induct) (auto dest: list_emb_length) | 
| 49087 | 717 | |
| 50516 | 718 | lemma not_sublisteq_length [simp]: "length ys < length xs \<Longrightarrow> \<not> sublisteq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 719 | by (metis list_emb_length linorder_not_less) | 
| 49087 | 720 | |
| 721 | lemma [code]: | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 722 | "list_emb P [] ys \<longleftrightarrow> True" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 723 | "list_emb P (x#xs) [] \<longleftrightarrow> False" | 
| 49087 | 724 | by (simp_all) | 
| 725 | ||
| 50516 | 726 | lemma sublisteq_Cons': "sublisteq (x#xs) ys \<Longrightarrow> sublisteq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 727 | by (induct xs, simp, blast dest: list_emb_ConsD) | 
| 49087 | 728 | |
| 50516 | 729 | lemma sublisteq_Cons2': | 
| 730 | assumes "sublisteq (x#xs) (x#ys)" shows "sublisteq xs ys" | |
| 731 | using assms by (cases) (rule sublisteq_Cons') | |
| 49087 | 732 | |
| 50516 | 733 | lemma sublisteq_Cons2_neq: | 
| 734 | assumes "sublisteq (x#xs) (y#ys)" | |
| 735 | shows "x \<noteq> y \<Longrightarrow> sublisteq (x#xs) ys" | |
| 49087 | 736 | using assms by (cases) auto | 
| 737 | ||
| 50516 | 738 | lemma sublisteq_Cons2_iff [simp, code]: | 
| 739 | "sublisteq (x#xs) (y#ys) = (if x = y then sublisteq xs ys else sublisteq (x#xs) ys)" | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 740 | by (metis list_emb_Cons sublisteq_Cons2 sublisteq_Cons2' sublisteq_Cons2_neq) | 
| 49087 | 741 | |
| 50516 | 742 | lemma sublisteq_append': "sublisteq (zs @ xs) (zs @ ys) \<longleftrightarrow> sublisteq xs ys" | 
| 49087 | 743 | by (induct zs) simp_all | 
| 744 | ||
| 50516 | 745 | lemma sublisteq_refl [simp, intro!]: "sublisteq xs xs" by (induct xs) simp_all | 
| 49087 | 746 | |
| 50516 | 747 | lemma sublisteq_antisym: | 
| 748 | assumes "sublisteq xs ys" and "sublisteq ys xs" | |
| 49087 | 749 | shows "xs = ys" | 
| 750 | using assms | |
| 751 | proof (induct) | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 752 | case list_emb_Nil | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 753 | from list_emb_Nil2 [OF this] show ?case by simp | 
| 49087 | 754 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 755 | case list_emb_Cons2 | 
| 54483 | 756 | thus ?case by simp | 
| 49087 | 757 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 758 | case list_emb_Cons | 
| 54483 | 759 | hence False using sublisteq_Cons' by fastforce | 
| 760 | thus ?case .. | |
| 49087 | 761 | qed | 
| 762 | ||
| 50516 | 763 | lemma sublisteq_trans: "sublisteq xs ys \<Longrightarrow> sublisteq ys zs \<Longrightarrow> sublisteq xs zs" | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 764 | by (rule list_emb_trans [of _ _ _ "op ="]) auto | 
| 49087 | 765 | |
| 50516 | 766 | lemma sublisteq_append_le_same_iff: "sublisteq (xs @ ys) ys \<longleftrightarrow> xs = []" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 767 | by (auto dest: list_emb_length) | 
| 49087 | 768 | |
| 64886 | 769 | lemma sublisteq_singleton_left: "sublisteq [x] ys \<longleftrightarrow> x \<in> set ys" | 
| 770 | by (fastforce dest: list_emb_ConsD split_list_last) | |
| 771 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 772 | lemma list_emb_append_mono: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 773 | "\<lbrakk> list_emb P xs xs'; list_emb P ys ys' \<rbrakk> \<Longrightarrow> list_emb P (xs@ys) (xs'@ys')" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 774 | apply (induct rule: list_emb.induct) | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 775 | apply (metis eq_Nil_appendI list_emb_append2) | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 776 | apply (metis append_Cons list_emb_Cons) | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 777 | apply (metis append_Cons list_emb_Cons2) | 
| 49107 | 778 | done | 
| 49087 | 779 | |
| 780 | ||
| 60500 | 781 | subsection \<open>Appending elements\<close> | 
| 49087 | 782 | |
| 50516 | 783 | lemma sublisteq_append [simp]: | 
| 784 | "sublisteq (xs @ zs) (ys @ zs) \<longleftrightarrow> sublisteq xs ys" (is "?l = ?r") | |
| 49087 | 785 | proof | 
| 50516 | 786 |   { fix xs' ys' xs ys zs :: "'a list" assume "sublisteq xs' ys'"
 | 
| 787 | then have "xs' = xs @ zs & ys' = ys @ zs \<longrightarrow> sublisteq xs ys" | |
| 49087 | 788 | proof (induct arbitrary: xs ys zs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 789 | case list_emb_Nil show ?case by simp | 
| 49087 | 790 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 791 | case (list_emb_Cons xs' ys' x) | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 792 |       { assume "ys=[]" then have ?case using list_emb_Cons(1) by auto }
 | 
| 49087 | 793 | moreover | 
| 794 |       { fix us assume "ys = x#us"
 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 795 | then have ?case using list_emb_Cons(2) by(simp add: list_emb.list_emb_Cons) } | 
| 49087 | 796 | ultimately show ?case by (auto simp:Cons_eq_append_conv) | 
| 797 | next | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 798 | case (list_emb_Cons2 x y xs' ys') | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 799 |       { assume "xs=[]" then have ?case using list_emb_Cons2(1) by auto }
 | 
| 49087 | 800 | moreover | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 801 |       { fix us vs assume "xs=x#us" "ys=x#vs" then have ?case using list_emb_Cons2 by auto}
 | 
| 49087 | 802 | moreover | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 803 |       { fix us assume "xs=x#us" "ys=[]" then have ?case using list_emb_Cons2(2) by bestsimp }
 | 
| 60500 | 804 | ultimately show ?case using \<open>op = x y\<close> by (auto simp: Cons_eq_append_conv) | 
| 49087 | 805 | qed } | 
| 806 | moreover assume ?l | |
| 807 | ultimately show ?r by blast | |
| 808 | next | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 809 | assume ?r then show ?l by (metis list_emb_append_mono sublisteq_refl) | 
| 49087 | 810 | qed | 
| 811 | ||
| 50516 | 812 | lemma sublisteq_drop_many: "sublisteq xs ys \<Longrightarrow> sublisteq xs (zs @ ys)" | 
| 49087 | 813 | by (induct zs) auto | 
| 814 | ||
| 50516 | 815 | lemma sublisteq_rev_drop_many: "sublisteq xs ys \<Longrightarrow> sublisteq xs (ys @ zs)" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 816 | by (metis append_Nil2 list_emb_Nil list_emb_append_mono) | 
| 49087 | 817 | |
| 818 | ||
| 60500 | 819 | subsection \<open>Relation to standard list operations\<close> | 
| 49087 | 820 | |
| 50516 | 821 | lemma sublisteq_map: | 
| 822 | assumes "sublisteq xs ys" shows "sublisteq (map f xs) (map f ys)" | |
| 49087 | 823 | using assms by (induct) auto | 
| 824 | ||
| 50516 | 825 | lemma sublisteq_filter_left [simp]: "sublisteq (filter P xs) xs" | 
| 49087 | 826 | by (induct xs) auto | 
| 827 | ||
| 50516 | 828 | lemma sublisteq_filter [simp]: | 
| 829 | assumes "sublisteq xs ys" shows "sublisteq (filter P xs) (filter P ys)" | |
| 54483 | 830 | using assms by induct auto | 
| 49087 | 831 | |
| 50516 | 832 | lemma "sublisteq xs ys \<longleftrightarrow> (\<exists>N. xs = sublist ys N)" (is "?L = ?R") | 
| 49087 | 833 | proof | 
| 834 | assume ?L | |
| 49107 | 835 | then show ?R | 
| 49087 | 836 | proof (induct) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 837 | case list_emb_Nil show ?case by (metis sublist_empty) | 
| 49087 | 838 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 839 | case (list_emb_Cons xs ys x) | 
| 49087 | 840 | then obtain N where "xs = sublist ys N" by blast | 
| 49107 | 841 | then have "xs = sublist (x#ys) (Suc ` N)" | 
| 49087 | 842 | by (clarsimp simp add:sublist_Cons inj_image_mem_iff) | 
| 49107 | 843 | then show ?case by blast | 
| 49087 | 844 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 845 | case (list_emb_Cons2 x y xs ys) | 
| 49087 | 846 | then obtain N where "xs = sublist ys N" by blast | 
| 49107 | 847 | then have "x#xs = sublist (x#ys) (insert 0 (Suc ` N))" | 
| 49087 | 848 | by (clarsimp simp add:sublist_Cons inj_image_mem_iff) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 849 | moreover from list_emb_Cons2 have "x = y" by simp | 
| 50516 | 850 | ultimately show ?case by blast | 
| 49087 | 851 | qed | 
| 852 | next | |
| 853 | assume ?R | |
| 854 | then obtain N where "xs = sublist ys N" .. | |
| 50516 | 855 | moreover have "sublisteq (sublist ys N) ys" | 
| 49107 | 856 | proof (induct ys arbitrary: N) | 
| 49087 | 857 | case Nil show ?case by simp | 
| 858 | next | |
| 49107 | 859 | case Cons then show ?case by (auto simp: sublist_Cons) | 
| 49087 | 860 | qed | 
| 861 | ultimately show ?L by simp | |
| 862 | qed | |
| 863 | ||
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 864 | end |