| author | bulwahn | 
| Wed, 21 Apr 2010 12:10:52 +0200 | |
| changeset 36258 | f459a0cc3241 | 
| parent 36176 | 3fe7e97ccca8 | 
| child 37751 | 89e16802b6cc | 
| permissions | -rw-r--r-- | 
| 1475 | 1  | 
(* Title: HOL/Fun.thy  | 
2  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
|
| 923 | 3  | 
Copyright 1994 University of Cambridge  | 
| 18154 | 4  | 
*)  | 
| 923 | 5  | 
|
| 18154 | 6  | 
header {* Notions about functions *}
 | 
| 923 | 7  | 
|
| 15510 | 8  | 
theory Fun  | 
| 32139 | 9  | 
imports Complete_Lattice  | 
| 15131 | 10  | 
begin  | 
| 2912 | 11  | 
|
| 26147 | 12  | 
text{*As a simplification rule, it replaces all function equalities by
 | 
13  | 
first-order equalities.*}  | 
|
14  | 
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"  | 
|
15  | 
apply (rule iffI)  | 
|
16  | 
apply (simp (no_asm_simp))  | 
|
17  | 
apply (rule ext)  | 
|
18  | 
apply (simp (no_asm_simp))  | 
|
19  | 
done  | 
|
| 5305 | 20  | 
|
| 26147 | 21  | 
lemma apply_inverse:  | 
| 26357 | 22  | 
"f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"  | 
| 26147 | 23  | 
by auto  | 
| 2912 | 24  | 
|
| 12258 | 25  | 
|
| 26147 | 26  | 
subsection {* The Identity Function @{text id} *}
 | 
| 6171 | 27  | 
|
| 
22744
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
28  | 
definition  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
29  | 
id :: "'a \<Rightarrow> 'a"  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
30  | 
where  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
31  | 
"id = (\<lambda>x. x)"  | 
| 13910 | 32  | 
|
| 26147 | 33  | 
lemma id_apply [simp]: "id x = x"  | 
34  | 
by (simp add: id_def)  | 
|
35  | 
||
36  | 
lemma image_ident [simp]: "(%x. x) ` Y = Y"  | 
|
37  | 
by blast  | 
|
38  | 
||
39  | 
lemma image_id [simp]: "id ` Y = Y"  | 
|
40  | 
by (simp add: id_def)  | 
|
41  | 
||
42  | 
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"  | 
|
43  | 
by blast  | 
|
44  | 
||
45  | 
lemma vimage_id [simp]: "id -` A = A"  | 
|
46  | 
by (simp add: id_def)  | 
|
47  | 
||
48  | 
||
49  | 
subsection {* The Composition Operator @{text "f \<circ> g"} *}
 | 
|
50  | 
||
| 
22744
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
51  | 
definition  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
52  | 
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
 | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
53  | 
where  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
54  | 
"f o g = (\<lambda>x. f (g x))"  | 
| 11123 | 55  | 
|
| 21210 | 56  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
57  | 
comp (infixl "\<circ>" 55)  | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
58  | 
|
| 21210 | 59  | 
notation (HTML output)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
60  | 
comp (infixl "\<circ>" 55)  | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
61  | 
|
| 13585 | 62  | 
text{*compatibility*}
 | 
63  | 
lemmas o_def = comp_def  | 
|
| 2912 | 64  | 
|
| 13585 | 65  | 
lemma o_apply [simp]: "(f o g) x = f (g x)"  | 
66  | 
by (simp add: comp_def)  | 
|
67  | 
||
68  | 
lemma o_assoc: "f o (g o h) = f o g o h"  | 
|
69  | 
by (simp add: comp_def)  | 
|
70  | 
||
71  | 
lemma id_o [simp]: "id o g = g"  | 
|
72  | 
by (simp add: comp_def)  | 
|
73  | 
||
74  | 
lemma o_id [simp]: "f o id = f"  | 
|
75  | 
by (simp add: comp_def)  | 
|
76  | 
||
| 34150 | 77  | 
lemma o_eq_dest:  | 
78  | 
"a o b = c o d \<Longrightarrow> a (b v) = c (d v)"  | 
|
79  | 
by (simp only: o_def) (fact fun_cong)  | 
|
80  | 
||
81  | 
lemma o_eq_elim:  | 
|
82  | 
"a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"  | 
|
83  | 
by (erule meta_mp) (fact o_eq_dest)  | 
|
84  | 
||
| 13585 | 85  | 
lemma image_compose: "(f o g) ` r = f`(g`r)"  | 
86  | 
by (simp add: comp_def, blast)  | 
|
87  | 
||
| 33044 | 88  | 
lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)"  | 
89  | 
by auto  | 
|
90  | 
||
| 13585 | 91  | 
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"  | 
92  | 
by (unfold comp_def, blast)  | 
|
93  | 
||
94  | 
||
| 
26588
 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 
haftmann 
parents: 
26357 
diff
changeset
 | 
95  | 
subsection {* The Forward Composition Operator @{text fcomp} *}
 | 
| 26357 | 96  | 
|
97  | 
definition  | 
|
98  | 
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
 | 
|
99  | 
where  | 
|
100  | 
"f o> g = (\<lambda>x. g (f x))"  | 
|
101  | 
||
102  | 
lemma fcomp_apply: "(f o> g) x = g (f x)"  | 
|
103  | 
by (simp add: fcomp_def)  | 
|
104  | 
||
105  | 
lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)"  | 
|
106  | 
by (simp add: fcomp_def)  | 
|
107  | 
||
108  | 
lemma id_fcomp [simp]: "id o> g = g"  | 
|
109  | 
by (simp add: fcomp_def)  | 
|
110  | 
||
111  | 
lemma fcomp_id [simp]: "f o> id = f"  | 
|
112  | 
by (simp add: fcomp_def)  | 
|
113  | 
||
| 
31202
 
52d332f8f909
pretty printing of functional combinators for evaluation code
 
haftmann 
parents: 
31080 
diff
changeset
 | 
114  | 
code_const fcomp  | 
| 
 
52d332f8f909
pretty printing of functional combinators for evaluation code
 
haftmann 
parents: 
31080 
diff
changeset
 | 
115  | 
(Eval infixl 1 "#>")  | 
| 
 
52d332f8f909
pretty printing of functional combinators for evaluation code
 
haftmann 
parents: 
31080 
diff
changeset
 | 
116  | 
|
| 
26588
 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 
haftmann 
parents: 
26357 
diff
changeset
 | 
117  | 
no_notation fcomp (infixl "o>" 60)  | 
| 
 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 
haftmann 
parents: 
26357 
diff
changeset
 | 
118  | 
|
| 26357 | 119  | 
|
| 26147 | 120  | 
subsection {* Injectivity and Surjectivity *}
 | 
121  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
122  | 
definition  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
123  | 
inj_on :: "['a => 'b, 'a set] => bool" where  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
124  | 
-- "injective"  | 
| 26147 | 125  | 
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"  | 
126  | 
||
127  | 
text{*A common special case: functions injective over the entire domain type.*}
 | 
|
128  | 
||
129  | 
abbreviation  | 
|
130  | 
"inj f == inj_on f UNIV"  | 
|
| 13585 | 131  | 
|
| 26147 | 132  | 
definition  | 
133  | 
  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
 | 
|
| 28562 | 134  | 
[code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"  | 
| 26147 | 135  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
136  | 
definition  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
137  | 
  surj :: "('a => 'b) => bool" where
 | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
138  | 
-- "surjective"  | 
| 26147 | 139  | 
"surj f == ! y. ? x. y=f(x)"  | 
| 13585 | 140  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
141  | 
definition  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
142  | 
  bij :: "('a => 'b) => bool" where
 | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
143  | 
-- "bijective"  | 
| 26147 | 144  | 
"bij f == inj f & surj f"  | 
145  | 
||
146  | 
lemma injI:  | 
|
147  | 
assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
|
148  | 
shows "inj f"  | 
|
149  | 
using assms unfolding inj_on_def by auto  | 
|
| 13585 | 150  | 
|
| 31775 | 151  | 
text{*For Proofs in @{text "Tools/Datatype/datatype_rep_proofs"}*}
 | 
| 13585 | 152  | 
lemma datatype_injI:  | 
153  | 
"(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"  | 
|
154  | 
by (simp add: inj_on_def)  | 
|
155  | 
||
| 13637 | 156  | 
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"  | 
157  | 
by (unfold inj_on_def, blast)  | 
|
158  | 
||
| 13585 | 159  | 
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"  | 
160  | 
by (simp add: inj_on_def)  | 
|
161  | 
||
| 32988 | 162  | 
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"  | 
| 13585 | 163  | 
by (force simp add: inj_on_def)  | 
164  | 
||
| 32988 | 165  | 
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"  | 
166  | 
by (simp add: inj_on_eq_iff)  | 
|
167  | 
||
| 26147 | 168  | 
lemma inj_on_id[simp]: "inj_on id A"  | 
169  | 
by (simp add: inj_on_def)  | 
|
| 13585 | 170  | 
|
| 26147 | 171  | 
lemma inj_on_id2[simp]: "inj_on (%x. x) A"  | 
172  | 
by (simp add: inj_on_def)  | 
|
173  | 
||
174  | 
lemma surj_id[simp]: "surj id"  | 
|
175  | 
by (simp add: surj_def)  | 
|
176  | 
||
177  | 
lemma bij_id[simp]: "bij id"  | 
|
| 34209 | 178  | 
by (simp add: bij_def)  | 
| 13585 | 179  | 
|
180  | 
lemma inj_onI:  | 
|
181  | 
"(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A"  | 
|
182  | 
by (simp add: inj_on_def)  | 
|
183  | 
||
184  | 
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"  | 
|
185  | 
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)  | 
|
186  | 
||
187  | 
lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y"  | 
|
188  | 
by (unfold inj_on_def, blast)  | 
|
189  | 
||
190  | 
lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"  | 
|
191  | 
by (blast dest!: inj_onD)  | 
|
192  | 
||
193  | 
lemma comp_inj_on:  | 
|
194  | 
"[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A"  | 
|
195  | 
by (simp add: comp_def inj_on_def)  | 
|
196  | 
||
| 15303 | 197  | 
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"  | 
198  | 
apply(simp add:inj_on_def image_def)  | 
|
199  | 
apply blast  | 
|
200  | 
done  | 
|
201  | 
||
| 15439 | 202  | 
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);  | 
203  | 
inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"  | 
|
204  | 
apply(unfold inj_on_def)  | 
|
205  | 
apply blast  | 
|
206  | 
done  | 
|
207  | 
||
| 13585 | 208  | 
lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)"  | 
209  | 
by (unfold inj_on_def, blast)  | 
|
| 12258 | 210  | 
|
| 13585 | 211  | 
lemma inj_singleton: "inj (%s. {s})"
 | 
212  | 
by (simp add: inj_on_def)  | 
|
213  | 
||
| 15111 | 214  | 
lemma inj_on_empty[iff]: "inj_on f {}"
 | 
215  | 
by(simp add: inj_on_def)  | 
|
216  | 
||
| 15303 | 217  | 
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"  | 
| 13585 | 218  | 
by (unfold inj_on_def, blast)  | 
219  | 
||
| 15111 | 220  | 
lemma inj_on_Un:  | 
221  | 
"inj_on f (A Un B) =  | 
|
222  | 
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
 | 
|
223  | 
apply(unfold inj_on_def)  | 
|
224  | 
apply (blast intro:sym)  | 
|
225  | 
done  | 
|
226  | 
||
227  | 
lemma inj_on_insert[iff]:  | 
|
228  | 
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
 | 
|
229  | 
apply(unfold inj_on_def)  | 
|
230  | 
apply (blast intro:sym)  | 
|
231  | 
done  | 
|
232  | 
||
233  | 
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"  | 
|
234  | 
apply(unfold inj_on_def)  | 
|
235  | 
apply (blast)  | 
|
236  | 
done  | 
|
237  | 
||
| 13585 | 238  | 
lemma surjI: "(!! x. g(f x) = x) ==> surj g"  | 
239  | 
apply (simp add: surj_def)  | 
|
240  | 
apply (blast intro: sym)  | 
|
241  | 
done  | 
|
242  | 
||
243  | 
lemma surj_range: "surj f ==> range f = UNIV"  | 
|
244  | 
by (auto simp add: surj_def)  | 
|
245  | 
||
246  | 
lemma surjD: "surj f ==> EX x. y = f x"  | 
|
247  | 
by (simp add: surj_def)  | 
|
248  | 
||
249  | 
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"  | 
|
250  | 
by (simp add: surj_def, blast)  | 
|
251  | 
||
252  | 
lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)"  | 
|
253  | 
apply (simp add: comp_def surj_def, clarify)  | 
|
254  | 
apply (drule_tac x = y in spec, clarify)  | 
|
255  | 
apply (drule_tac x = x in spec, blast)  | 
|
256  | 
done  | 
|
257  | 
||
258  | 
lemma bijI: "[| inj f; surj f |] ==> bij f"  | 
|
259  | 
by (simp add: bij_def)  | 
|
260  | 
||
261  | 
lemma bij_is_inj: "bij f ==> inj f"  | 
|
262  | 
by (simp add: bij_def)  | 
|
263  | 
||
264  | 
lemma bij_is_surj: "bij f ==> surj f"  | 
|
265  | 
by (simp add: bij_def)  | 
|
266  | 
||
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
267  | 
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
268  | 
by (simp add: bij_betw_def)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
269  | 
|
| 32337 | 270  | 
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"  | 
271  | 
by(fastsimp intro: comp_inj_on comp_surj simp: bij_def surj_range)  | 
|
272  | 
||
| 31438 | 273  | 
lemma bij_betw_trans:  | 
274  | 
"bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"  | 
|
275  | 
by(auto simp add:bij_betw_def comp_inj_on)  | 
|
276  | 
||
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
277  | 
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
278  | 
proof -  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
279  | 
have i: "inj_on f A" and s: "f ` A = B"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
280  | 
using assms by(auto simp:bij_betw_def)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
281  | 
let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
282  | 
  { fix a b assume P: "?P b a"
 | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
283  | 
hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
284  | 
hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
285  | 
hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
286  | 
} note g = this  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
287  | 
have "inj_on ?g B"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
288  | 
proof(rule inj_onI)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
289  | 
fix x y assume "x:B" "y:B" "?g x = ?g y"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
290  | 
from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
291  | 
from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
292  | 
from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
293  | 
qed  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
294  | 
moreover have "?g ` B = A"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
295  | 
proof(auto simp:image_def)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
296  | 
fix b assume "b:B"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
297  | 
with s obtain a where P: "?P b a" unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
298  | 
thus "?g b \<in> A" using g[OF P] by auto  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
299  | 
next  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
300  | 
fix a assume "a:A"  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
301  | 
then obtain b where P: "?P b a" using s unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
302  | 
then have "b:B" using s unfolding image_def by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
303  | 
with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
304  | 
qed  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
305  | 
ultimately show ?thesis by(auto simp:bij_betw_def)  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
306  | 
qed  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
307  | 
|
| 13585 | 308  | 
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"  | 
309  | 
by (simp add: surj_range)  | 
|
310  | 
||
311  | 
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"  | 
|
312  | 
by (simp add: inj_on_def, blast)  | 
|
313  | 
||
314  | 
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"  | 
|
315  | 
apply (unfold surj_def)  | 
|
316  | 
apply (blast intro: sym)  | 
|
317  | 
done  | 
|
318  | 
||
319  | 
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"  | 
|
320  | 
by (unfold inj_on_def, blast)  | 
|
321  | 
||
322  | 
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"  | 
|
323  | 
apply (unfold bij_def)  | 
|
324  | 
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)  | 
|
325  | 
done  | 
|
326  | 
||
| 31438 | 327  | 
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"  | 
328  | 
by(blast dest: inj_onD)  | 
|
329  | 
||
| 13585 | 330  | 
lemma inj_on_image_Int:  | 
331  | 
"[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B"  | 
|
332  | 
apply (simp add: inj_on_def, blast)  | 
|
333  | 
done  | 
|
334  | 
||
335  | 
lemma inj_on_image_set_diff:  | 
|
336  | 
"[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B"  | 
|
337  | 
apply (simp add: inj_on_def, blast)  | 
|
338  | 
done  | 
|
339  | 
||
340  | 
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"  | 
|
341  | 
by (simp add: inj_on_def, blast)  | 
|
342  | 
||
343  | 
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"  | 
|
344  | 
by (simp add: inj_on_def, blast)  | 
|
345  | 
||
346  | 
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"  | 
|
347  | 
by (blast dest: injD)  | 
|
348  | 
||
349  | 
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"  | 
|
350  | 
by (simp add: inj_on_def, blast)  | 
|
351  | 
||
352  | 
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"  | 
|
353  | 
by (blast dest: injD)  | 
|
354  | 
||
355  | 
(*injectivity's required. Left-to-right inclusion holds even if A is empty*)  | 
|
356  | 
lemma image_INT:  | 
|
357  | 
"[| inj_on f C; ALL x:A. B x <= C; j:A |]  | 
|
358  | 
==> f ` (INTER A B) = (INT x:A. f ` B x)"  | 
|
359  | 
apply (simp add: inj_on_def, blast)  | 
|
360  | 
done  | 
|
361  | 
||
362  | 
(*Compare with image_INT: no use of inj_on, and if f is surjective then  | 
|
363  | 
it doesn't matter whether A is empty*)  | 
|
364  | 
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"  | 
|
365  | 
apply (simp add: bij_def)  | 
|
366  | 
apply (simp add: inj_on_def surj_def, blast)  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"  | 
|
370  | 
by (auto simp add: surj_def)  | 
|
371  | 
||
372  | 
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"  | 
|
373  | 
by (auto simp add: inj_on_def)  | 
|
| 5852 | 374  | 
|
| 13585 | 375  | 
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"  | 
376  | 
apply (simp add: bij_def)  | 
|
377  | 
apply (rule equalityI)  | 
|
378  | 
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)  | 
|
379  | 
done  | 
|
380  | 
||
| 
35584
 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 
hoelzl 
parents: 
35580 
diff
changeset
 | 
381  | 
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"  | 
| 35580 | 382  | 
by (auto intro!: inj_onI)  | 
| 13585 | 383  | 
|
| 
35584
 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 
hoelzl 
parents: 
35580 
diff
changeset
 | 
384  | 
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"  | 
| 
 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 
hoelzl 
parents: 
35580 
diff
changeset
 | 
385  | 
by (auto intro!: inj_onI dest: strict_mono_eq)  | 
| 
 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 
hoelzl 
parents: 
35580 
diff
changeset
 | 
386  | 
|
| 13585 | 387  | 
subsection{*Function Updating*}
 | 
388  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
389  | 
definition  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
390  | 
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
 | 
| 26147 | 391  | 
"fun_upd f a b == % x. if x=a then b else f x"  | 
392  | 
||
393  | 
nonterminals  | 
|
394  | 
updbinds updbind  | 
|
395  | 
syntax  | 
|
396  | 
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | 
|
397  | 
  ""         :: "updbind => updbinds"             ("_")
 | 
|
398  | 
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | 
|
| 35115 | 399  | 
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
 | 
| 26147 | 400  | 
|
401  | 
translations  | 
|
| 35115 | 402  | 
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"  | 
403  | 
"f(x:=y)" == "CONST fun_upd f x y"  | 
|
| 26147 | 404  | 
|
405  | 
(* Hint: to define the sum of two functions (or maps), use sum_case.  | 
|
406  | 
A nice infix syntax could be defined (in Datatype.thy or below) by  | 
|
| 35115 | 407  | 
notation  | 
408  | 
sum_case (infixr "'(+')"80)  | 
|
| 26147 | 409  | 
*)  | 
410  | 
||
| 13585 | 411  | 
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"  | 
412  | 
apply (simp add: fun_upd_def, safe)  | 
|
413  | 
apply (erule subst)  | 
|
414  | 
apply (rule_tac [2] ext, auto)  | 
|
415  | 
done  | 
|
416  | 
||
417  | 
(* f x = y ==> f(x:=y) = f *)  | 
|
418  | 
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]  | 
|
419  | 
||
420  | 
(* f(x := f x) = f *)  | 
|
| 
17084
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16973 
diff
changeset
 | 
421  | 
lemmas fun_upd_triv = refl [THEN fun_upd_idem]  | 
| 
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16973 
diff
changeset
 | 
422  | 
declare fun_upd_triv [iff]  | 
| 13585 | 423  | 
|
424  | 
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"  | 
|
| 
17084
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16973 
diff
changeset
 | 
425  | 
by (simp add: fun_upd_def)  | 
| 13585 | 426  | 
|
427  | 
(* fun_upd_apply supersedes these two, but they are useful  | 
|
428  | 
if fun_upd_apply is intentionally removed from the simpset *)  | 
|
429  | 
lemma fun_upd_same: "(f(x:=y)) x = y"  | 
|
430  | 
by simp  | 
|
431  | 
||
432  | 
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"  | 
|
433  | 
by simp  | 
|
434  | 
||
435  | 
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"  | 
|
436  | 
by (simp add: expand_fun_eq)  | 
|
437  | 
||
438  | 
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"  | 
|
439  | 
by (rule ext, auto)  | 
|
440  | 
||
| 15303 | 441  | 
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"  | 
| 34209 | 442  | 
by (fastsimp simp:inj_on_def image_def)  | 
| 15303 | 443  | 
|
| 15510 | 444  | 
lemma fun_upd_image:  | 
445  | 
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
 | 
|
446  | 
by auto  | 
|
447  | 
||
| 31080 | 448  | 
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"  | 
| 34209 | 449  | 
by (auto intro: ext)  | 
| 31080 | 450  | 
|
| 26147 | 451  | 
|
452  | 
subsection {* @{text override_on} *}
 | 
|
453  | 
||
454  | 
definition  | 
|
455  | 
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
|
456  | 
where  | 
|
457  | 
"override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"  | 
|
| 13910 | 458  | 
|
| 15691 | 459  | 
lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
460  | 
by(simp add:override_on_def)  | 
|
| 13910 | 461  | 
|
| 15691 | 462  | 
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"  | 
463  | 
by(simp add:override_on_def)  | 
|
| 13910 | 464  | 
|
| 15691 | 465  | 
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"  | 
466  | 
by(simp add:override_on_def)  | 
|
| 13910 | 467  | 
|
| 26147 | 468  | 
|
469  | 
subsection {* @{text swap} *}
 | 
|
| 15510 | 470  | 
|
| 
22744
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
471  | 
definition  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
472  | 
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
473  | 
where  | 
| 
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
474  | 
"swap a b f = f (a := f b, b:= f a)"  | 
| 15510 | 475  | 
|
| 34101 | 476  | 
lemma swap_self [simp]: "swap a a f = f"  | 
| 15691 | 477  | 
by (simp add: swap_def)  | 
| 15510 | 478  | 
|
479  | 
lemma swap_commute: "swap a b f = swap b a f"  | 
|
480  | 
by (rule ext, simp add: fun_upd_def swap_def)  | 
|
481  | 
||
482  | 
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"  | 
|
483  | 
by (rule ext, simp add: fun_upd_def swap_def)  | 
|
484  | 
||
| 34145 | 485  | 
lemma swap_triple:  | 
486  | 
assumes "a \<noteq> c" and "b \<noteq> c"  | 
|
487  | 
shows "swap a b (swap b c (swap a b f)) = swap a c f"  | 
|
488  | 
using assms by (simp add: expand_fun_eq swap_def)  | 
|
489  | 
||
| 34101 | 490  | 
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"  | 
491  | 
by (rule ext, simp add: fun_upd_def swap_def)  | 
|
492  | 
||
| 15510 | 493  | 
lemma inj_on_imp_inj_on_swap:  | 
| 
22744
 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 
haftmann 
parents: 
22577 
diff
changeset
 | 
494  | 
"[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"  | 
| 15510 | 495  | 
by (simp add: inj_on_def swap_def, blast)  | 
496  | 
||
497  | 
lemma inj_on_swap_iff [simp]:  | 
|
498  | 
assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"  | 
|
499  | 
proof  | 
|
500  | 
assume "inj_on (swap a b f) A"  | 
|
501  | 
with A have "inj_on (swap a b (swap a b f)) A"  | 
|
| 17589 | 502  | 
by (iprover intro: inj_on_imp_inj_on_swap)  | 
| 15510 | 503  | 
thus "inj_on f A" by simp  | 
504  | 
next  | 
|
505  | 
assume "inj_on f A"  | 
|
| 34209 | 506  | 
with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)  | 
| 15510 | 507  | 
qed  | 
508  | 
||
509  | 
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"  | 
|
510  | 
apply (simp add: surj_def swap_def, clarify)  | 
|
| 27125 | 511  | 
apply (case_tac "y = f b", blast)  | 
512  | 
apply (case_tac "y = f a", auto)  | 
|
| 15510 | 513  | 
done  | 
514  | 
||
515  | 
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"  | 
|
516  | 
proof  | 
|
517  | 
assume "surj (swap a b f)"  | 
|
518  | 
hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap)  | 
|
519  | 
thus "surj f" by simp  | 
|
520  | 
next  | 
|
521  | 
assume "surj f"  | 
|
522  | 
thus "surj (swap a b f)" by (rule surj_imp_surj_swap)  | 
|
523  | 
qed  | 
|
524  | 
||
525  | 
lemma bij_swap_iff: "bij (swap a b f) = bij f"  | 
|
526  | 
by (simp add: bij_def)  | 
|
| 
21547
 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 
haftmann 
parents: 
21327 
diff
changeset
 | 
527  | 
|
| 
36176
 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 
wenzelm 
parents: 
35584 
diff
changeset
 | 
528  | 
hide_const (open) swap  | 
| 
21547
 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 
haftmann 
parents: 
21327 
diff
changeset
 | 
529  | 
|
| 31949 | 530  | 
|
531  | 
subsection {* Inversion of injective functions *}
 | 
|
532  | 
||
| 33057 | 533  | 
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
534  | 
"the_inv_into A f == %x. THE y. y : A & f y = x"  | 
|
| 32961 | 535  | 
|
| 33057 | 536  | 
lemma the_inv_into_f_f:  | 
537  | 
"[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x"  | 
|
538  | 
apply (simp add: the_inv_into_def inj_on_def)  | 
|
| 34209 | 539  | 
apply blast  | 
| 32961 | 540  | 
done  | 
541  | 
||
| 33057 | 542  | 
lemma f_the_inv_into_f:  | 
543  | 
"inj_on f A ==> y : f`A ==> f (the_inv_into A f y) = y"  | 
|
544  | 
apply (simp add: the_inv_into_def)  | 
|
| 32961 | 545  | 
apply (rule the1I2)  | 
546  | 
apply(blast dest: inj_onD)  | 
|
547  | 
apply blast  | 
|
548  | 
done  | 
|
549  | 
||
| 33057 | 550  | 
lemma the_inv_into_into:  | 
551  | 
"[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"  | 
|
552  | 
apply (simp add: the_inv_into_def)  | 
|
| 32961 | 553  | 
apply (rule the1I2)  | 
554  | 
apply(blast dest: inj_onD)  | 
|
555  | 
apply blast  | 
|
556  | 
done  | 
|
557  | 
||
| 33057 | 558  | 
lemma the_inv_into_onto[simp]:  | 
559  | 
"inj_on f A ==> the_inv_into A f ` (f ` A) = A"  | 
|
560  | 
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])  | 
|
| 32961 | 561  | 
|
| 33057 | 562  | 
lemma the_inv_into_f_eq:  | 
563  | 
"[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"  | 
|
| 32961 | 564  | 
apply (erule subst)  | 
| 33057 | 565  | 
apply (erule the_inv_into_f_f, assumption)  | 
| 32961 | 566  | 
done  | 
567  | 
||
| 33057 | 568  | 
lemma the_inv_into_comp:  | 
| 32961 | 569  | 
"[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>  | 
| 33057 | 570  | 
the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"  | 
571  | 
apply (rule the_inv_into_f_eq)  | 
|
| 32961 | 572  | 
apply (fast intro: comp_inj_on)  | 
| 33057 | 573  | 
apply (simp add: f_the_inv_into_f the_inv_into_into)  | 
574  | 
apply (simp add: the_inv_into_into)  | 
|
| 32961 | 575  | 
done  | 
576  | 
||
| 33057 | 577  | 
lemma inj_on_the_inv_into:  | 
578  | 
"inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"  | 
|
579  | 
by (auto intro: inj_onI simp: image_def the_inv_into_f_f)  | 
|
| 32961 | 580  | 
|
| 33057 | 581  | 
lemma bij_betw_the_inv_into:  | 
582  | 
"bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"  | 
|
583  | 
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)  | 
|
| 32961 | 584  | 
|
| 
32998
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
585  | 
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | 
| 33057 | 586  | 
"the_inv f \<equiv> the_inv_into UNIV f"  | 
| 
32998
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
587  | 
|
| 
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
588  | 
lemma the_inv_f_f:  | 
| 
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
589  | 
assumes "inj f"  | 
| 
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
590  | 
shows "the_inv f (f x) = x" using assms UNIV_I  | 
| 33057 | 591  | 
by (rule the_inv_into_f_f)  | 
| 
32998
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
592  | 
|
| 31949 | 593  | 
|
| 22845 | 594  | 
subsection {* Proof tool setup *} 
 | 
595  | 
||
596  | 
text {* simplifies terms of the form
 | 
|
597  | 
f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}  | 
|
598  | 
||
| 24017 | 599  | 
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
 | 
| 22845 | 600  | 
let  | 
601  | 
fun gen_fun_upd NONE T _ _ = NONE  | 
|
| 24017 | 602  | 
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
 | 
| 22845 | 603  | 
fun dest_fun_T1 (Type (_, T :: Ts)) = T  | 
604  | 
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
 | 
|
605  | 
let  | 
|
606  | 
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
 | 
|
607  | 
if v aconv x then SOME g else gen_fun_upd (find g) T v w  | 
|
608  | 
| find t = NONE  | 
|
609  | 
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end  | 
|
| 24017 | 610  | 
|
611  | 
fun proc ss ct =  | 
|
612  | 
let  | 
|
613  | 
val ctxt = Simplifier.the_context ss  | 
|
614  | 
val t = Thm.term_of ct  | 
|
615  | 
in  | 
|
616  | 
case find_double t of  | 
|
617  | 
(T, NONE) => NONE  | 
|
618  | 
| (T, SOME rhs) =>  | 
|
| 27330 | 619  | 
SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))  | 
| 24017 | 620  | 
(fn _ =>  | 
621  | 
rtac eq_reflection 1 THEN  | 
|
622  | 
rtac ext 1 THEN  | 
|
623  | 
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
 | 
|
624  | 
end  | 
|
625  | 
in proc end  | 
|
| 22845 | 626  | 
*}  | 
627  | 
||
628  | 
||
| 21870 | 629  | 
subsection {* Code generator setup *}
 | 
630  | 
||
| 
25886
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
631  | 
types_code  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
632  | 
  "fun"  ("(_ ->/ _)")
 | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
633  | 
attach (term_of) {*
 | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
634  | 
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
 | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
635  | 
*}  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
636  | 
attach (test) {*
 | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
637  | 
fun gen_fun_type aF aT bG bT i =  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
638  | 
let  | 
| 32740 | 639  | 
val tab = Unsynchronized.ref [];  | 
| 
25886
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
640  | 
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
 | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
641  | 
(aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
642  | 
in  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
643  | 
(fn x =>  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
644  | 
case AList.lookup op = (!tab) x of  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
645  | 
NONE =>  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
646  | 
let val p as (y, _) = bG i  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
647  | 
in (tab := (x, p) :: !tab; y) end  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
648  | 
| SOME (y, _) => y,  | 
| 28711 | 649  | 
     fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
 | 
| 
25886
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
650  | 
end;  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
651  | 
*}  | 
| 
 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 
berghofe 
parents: 
24286 
diff
changeset
 | 
652  | 
|
| 21870 | 653  | 
code_const "op \<circ>"  | 
654  | 
(SML infixl 5 "o")  | 
|
655  | 
(Haskell infixr 9 ".")  | 
|
656  | 
||
| 21906 | 657  | 
code_const "id"  | 
658  | 
(Haskell "id")  | 
|
659  | 
||
| 2912 | 660  | 
end  |