author | huffman |
Sun, 07 Mar 2010 16:39:31 -0800 | |
changeset 35642 | f478d5a9d238 |
parent 35028 | 108662d50512 |
child 36350 | bc7982c54e37 |
permissions | -rw-r--r-- |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
1 |
(* Title: HOL/Decision_Procs/Polynomial_List.thy |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
2 |
Author: Amine Chaieb |
33153 | 3 |
*) |
4 |
||
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
5 |
header {* Univariate Polynomials as Lists *} |
33153 | 6 |
|
7 |
theory Polynomial_List |
|
8 |
imports Main |
|
9 |
begin |
|
10 |
||
11 |
text{* Application of polynomial as a real function. *} |
|
12 |
||
13 |
consts poly :: "'a list => 'a => ('a::{comm_ring})" |
|
14 |
primrec |
|
15 |
poly_Nil: "poly [] x = 0" |
|
16 |
poly_Cons: "poly (h#t) x = h + x * poly t x" |
|
17 |
||
18 |
||
19 |
subsection{*Arithmetic Operations on Polynomials*} |
|
20 |
||
21 |
text{*addition*} |
|
22 |
consts padd :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "+++" 65) |
|
23 |
primrec |
|
24 |
padd_Nil: "[] +++ l2 = l2" |
|
25 |
padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t |
|
26 |
else (h + hd l2)#(t +++ tl l2))" |
|
27 |
||
28 |
text{*Multiplication by a constant*} |
|
29 |
consts cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) |
|
30 |
primrec |
|
31 |
cmult_Nil: "c %* [] = []" |
|
32 |
cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" |
|
33 |
||
34 |
text{*Multiplication by a polynomial*} |
|
35 |
consts pmult :: "['a list, 'a list] => ('a::comm_ring_1) list" (infixl "***" 70) |
|
36 |
primrec |
|
37 |
pmult_Nil: "[] *** l2 = []" |
|
38 |
pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 |
|
39 |
else (h %* l2) +++ ((0) # (t *** l2)))" |
|
40 |
||
41 |
text{*Repeated multiplication by a polynomial*} |
|
42 |
consts mulexp :: "[nat, 'a list, 'a list] => ('a ::comm_ring_1) list" |
|
43 |
primrec |
|
44 |
mulexp_zero: "mulexp 0 p q = q" |
|
45 |
mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" |
|
46 |
||
47 |
text{*Exponential*} |
|
48 |
consts pexp :: "['a list, nat] => ('a::comm_ring_1) list" (infixl "%^" 80) |
|
49 |
primrec |
|
50 |
pexp_0: "p %^ 0 = [1]" |
|
51 |
pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" |
|
52 |
||
53 |
text{*Quotient related value of dividing a polynomial by x + a*} |
|
54 |
(* Useful for divisor properties in inductive proofs *) |
|
55 |
consts "pquot" :: "['a list, 'a::field] => 'a list" |
|
56 |
primrec |
|
57 |
pquot_Nil: "pquot [] a= []" |
|
58 |
pquot_Cons: "pquot (h#t) a = (if t = [] then [h] |
|
59 |
else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" |
|
60 |
||
61 |
||
62 |
text{*normalization of polynomials (remove extra 0 coeff)*} |
|
63 |
consts pnormalize :: "('a::comm_ring_1) list => 'a list" |
|
64 |
primrec |
|
65 |
pnormalize_Nil: "pnormalize [] = []" |
|
66 |
pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = []) |
|
67 |
then (if (h = 0) then [] else [h]) |
|
68 |
else (h#(pnormalize p)))" |
|
69 |
||
70 |
definition "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])" |
|
71 |
definition "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))" |
|
72 |
text{*Other definitions*} |
|
73 |
||
74 |
definition |
|
75 |
poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80) where |
|
76 |
"-- p = (- 1) %* p" |
|
77 |
||
78 |
definition |
|
79 |
divides :: "[('a::comm_ring_1) list, 'a list] => bool" (infixl "divides" 70) where |
|
80 |
"p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))" |
|
81 |
||
82 |
definition |
|
83 |
order :: "('a::comm_ring_1) => 'a list => nat" where |
|
84 |
--{*order of a polynomial*} |
|
85 |
"order a p = (SOME n. ([-a, 1] %^ n) divides p & |
|
86 |
~ (([-a, 1] %^ (Suc n)) divides p))" |
|
87 |
||
88 |
definition |
|
89 |
degree :: "('a::comm_ring_1) list => nat" where |
|
90 |
--{*degree of a polynomial*} |
|
91 |
"degree p = length (pnormalize p) - 1" |
|
92 |
||
93 |
definition |
|
94 |
rsquarefree :: "('a::comm_ring_1) list => bool" where |
|
95 |
--{*squarefree polynomials --- NB with respect to real roots only.*} |
|
96 |
"rsquarefree p = (poly p \<noteq> poly [] & |
|
97 |
(\<forall>a. (order a p = 0) | (order a p = 1)))" |
|
98 |
||
99 |
lemma padd_Nil2: "p +++ [] = p" |
|
100 |
by (induct p) auto |
|
101 |
declare padd_Nil2 [simp] |
|
102 |
||
103 |
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" |
|
104 |
by auto |
|
105 |
||
106 |
lemma pminus_Nil: "-- [] = []" |
|
107 |
by (simp add: poly_minus_def) |
|
108 |
declare pminus_Nil [simp] |
|
109 |
||
110 |
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" |
|
111 |
by simp |
|
112 |
||
113 |
lemma poly_ident_mult: "1 %* t = t" |
|
114 |
by (induct "t", auto) |
|
115 |
declare poly_ident_mult [simp] |
|
116 |
||
117 |
lemma poly_simple_add_Cons: "[a] +++ ((0)#t) = (a#t)" |
|
118 |
by simp |
|
119 |
declare poly_simple_add_Cons [simp] |
|
120 |
||
121 |
text{*Handy general properties*} |
|
122 |
||
123 |
lemma padd_commut: "b +++ a = a +++ b" |
|
124 |
apply (subgoal_tac "\<forall>a. b +++ a = a +++ b") |
|
125 |
apply (induct_tac [2] "b", auto) |
|
126 |
apply (rule padd_Cons [THEN ssubst]) |
|
127 |
apply (case_tac "aa", auto) |
|
128 |
done |
|
129 |
||
130 |
lemma padd_assoc [rule_format]: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)" |
|
131 |
apply (induct "a", simp, clarify) |
|
132 |
apply (case_tac b, simp_all) |
|
133 |
done |
|
134 |
||
135 |
lemma poly_cmult_distr [rule_format]: |
|
136 |
"\<forall>q. a %* ( p +++ q) = (a %* p +++ a %* q)" |
|
137 |
apply (induct "p", simp, clarify) |
|
138 |
apply (case_tac "q") |
|
139 |
apply (simp_all add: right_distrib) |
|
140 |
done |
|
141 |
||
142 |
lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" |
|
143 |
apply (induct "t", simp) |
|
144 |
by (auto simp add: mult_zero_left poly_ident_mult padd_commut) |
|
145 |
||
146 |
||
147 |
text{*properties of evaluation of polynomials.*} |
|
148 |
||
149 |
lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" |
|
150 |
apply (subgoal_tac "\<forall>p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x") |
|
151 |
apply (induct_tac [2] "p1", auto) |
|
152 |
apply (case_tac "p2") |
|
153 |
apply (auto simp add: right_distrib) |
|
154 |
done |
|
155 |
||
156 |
lemma poly_cmult: "poly (c %* p) x = c * poly p x" |
|
157 |
apply (induct "p") |
|
158 |
apply (case_tac [2] "x=0") |
|
159 |
apply (auto simp add: right_distrib mult_ac) |
|
160 |
done |
|
161 |
||
162 |
lemma poly_minus: "poly (-- p) x = - (poly p x)" |
|
163 |
apply (simp add: poly_minus_def) |
|
164 |
apply (auto simp add: poly_cmult) |
|
165 |
done |
|
166 |
||
167 |
lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" |
|
168 |
apply (subgoal_tac "\<forall>p2. poly (p1 *** p2) x = poly p1 x * poly p2 x") |
|
169 |
apply (simp (no_asm_simp)) |
|
170 |
apply (induct "p1") |
|
171 |
apply (auto simp add: poly_cmult) |
|
172 |
apply (case_tac p1) |
|
173 |
apply (auto simp add: poly_cmult poly_add left_distrib right_distrib mult_ac) |
|
174 |
done |
|
175 |
||
176 |
lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n" |
|
177 |
apply (induct "n") |
|
178 |
apply (auto simp add: poly_cmult poly_mult power_Suc) |
|
179 |
done |
|
180 |
||
181 |
text{*More Polynomial Evaluation Lemmas*} |
|
182 |
||
183 |
lemma poly_add_rzero: "poly (a +++ []) x = poly a x" |
|
184 |
by simp |
|
185 |
declare poly_add_rzero [simp] |
|
186 |
||
187 |
lemma poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" |
|
188 |
by (simp add: poly_mult mult_assoc) |
|
189 |
||
190 |
lemma poly_mult_Nil2: "poly (p *** []) x = 0" |
|
191 |
by (induct "p", auto) |
|
192 |
declare poly_mult_Nil2 [simp] |
|
193 |
||
194 |
lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" |
|
195 |
apply (induct "n") |
|
196 |
apply (auto simp add: poly_mult mult_assoc) |
|
197 |
done |
|
198 |
||
199 |
subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides |
|
200 |
@{term "p(x)"} *} |
|
201 |
||
202 |
lemma lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
|
203 |
apply (induct "t", safe) |
|
204 |
apply (rule_tac x = "[]" in exI) |
|
205 |
apply (rule_tac x = h in exI, simp) |
|
206 |
apply (drule_tac x = aa in spec, safe) |
|
207 |
apply (rule_tac x = "r#q" in exI) |
|
208 |
apply (rule_tac x = "a*r + h" in exI) |
|
209 |
apply (case_tac "q", auto) |
|
210 |
done |
|
211 |
||
212 |
lemma poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
|
213 |
by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto) |
|
214 |
||
215 |
||
216 |
lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))" |
|
217 |
apply (auto simp add: poly_add poly_cmult right_distrib) |
|
218 |
apply (case_tac "p", simp) |
|
219 |
apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe) |
|
220 |
apply (case_tac "q", auto) |
|
221 |
apply (drule_tac x = "[]" in spec, simp) |
|
222 |
apply (auto simp add: poly_add poly_cmult add_assoc) |
|
223 |
apply (drule_tac x = "aa#lista" in spec, auto) |
|
224 |
done |
|
225 |
||
226 |
lemma lemma_poly_length_mult: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" |
|
227 |
by (induct "p", auto) |
|
228 |
declare lemma_poly_length_mult [simp] |
|
229 |
||
230 |
lemma lemma_poly_length_mult2: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)" |
|
231 |
by (induct "p", auto) |
|
232 |
declare lemma_poly_length_mult2 [simp] |
|
233 |
||
234 |
lemma poly_length_mult: "length([-a,1] *** q) = Suc (length q)" |
|
235 |
by auto |
|
236 |
declare poly_length_mult [simp] |
|
237 |
||
238 |
||
239 |
subsection{*Polynomial length*} |
|
240 |
||
241 |
lemma poly_cmult_length: "length (a %* p) = length p" |
|
242 |
by (induct "p", auto) |
|
243 |
declare poly_cmult_length [simp] |
|
244 |
||
245 |
lemma poly_add_length [rule_format]: |
|
246 |
"\<forall>p2. length (p1 +++ p2) = |
|
247 |
(if (length p1 < length p2) then length p2 else length p1)" |
|
248 |
apply (induct "p1", simp_all) |
|
249 |
apply arith |
|
250 |
done |
|
251 |
||
252 |
lemma poly_root_mult_length: "length([a,b] *** p) = Suc (length p)" |
|
253 |
by (simp add: poly_cmult_length poly_add_length) |
|
254 |
declare poly_root_mult_length [simp] |
|
255 |
||
256 |
lemma poly_mult_not_eq_poly_Nil: "(poly (p *** q) x \<noteq> poly [] x) = |
|
257 |
(poly p x \<noteq> poly [] x & poly q x \<noteq> poly [] (x::'a::idom))" |
|
258 |
apply (auto simp add: poly_mult) |
|
259 |
done |
|
260 |
declare poly_mult_not_eq_poly_Nil [simp] |
|
261 |
||
262 |
lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)" |
|
263 |
by (auto simp add: poly_mult) |
|
264 |
||
265 |
text{*Normalisation Properties*} |
|
266 |
||
267 |
lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" |
|
268 |
by (induct "p", auto) |
|
269 |
||
270 |
text{*A nontrivial polynomial of degree n has no more than n roots*} |
|
271 |
||
272 |
lemma poly_roots_index_lemma0 [rule_format]: |
|
273 |
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n |
|
274 |
--> (\<exists>i. \<forall>x. (poly p x = (0::'a::idom)) --> (\<exists>m. (m \<le> n & x = i m)))" |
|
275 |
apply (induct "n", safe) |
|
276 |
apply (rule ccontr) |
|
277 |
apply (subgoal_tac "\<exists>a. poly p a = 0", safe) |
|
278 |
apply (drule poly_linear_divides [THEN iffD1], safe) |
|
279 |
apply (drule_tac x = q in spec) |
|
280 |
apply (drule_tac x = x in spec) |
|
281 |
apply (simp del: poly_Nil pmult_Cons) |
|
282 |
apply (erule exE) |
|
283 |
apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe) |
|
284 |
apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe) |
|
285 |
apply (drule_tac x = "Suc (length q)" in spec) |
|
286 |
apply (auto simp add: ring_simps) |
|
287 |
apply (drule_tac x = xa in spec) |
|
288 |
apply (clarsimp simp add: ring_simps) |
|
289 |
apply (drule_tac x = m in spec) |
|
290 |
apply (auto simp add:ring_simps) |
|
291 |
done |
|
292 |
lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0, standard] |
|
293 |
||
294 |
lemma poly_roots_index_length0: "poly p (x::'a::idom) \<noteq> poly [] x ==> |
|
295 |
\<exists>i. \<forall>x. (poly p x = 0) --> (\<exists>n. n \<le> length p & x = i n)" |
|
296 |
by (blast intro: poly_roots_index_lemma1) |
|
297 |
||
298 |
lemma poly_roots_finite_lemma: "poly p (x::'a::idom) \<noteq> poly [] x ==> |
|
299 |
\<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)" |
|
300 |
apply (drule poly_roots_index_length0, safe) |
|
301 |
apply (rule_tac x = "Suc (length p)" in exI) |
|
302 |
apply (rule_tac x = i in exI) |
|
303 |
apply (simp add: less_Suc_eq_le) |
|
304 |
done |
|
305 |
||
306 |
||
307 |
lemma real_finite_lemma: |
|
308 |
assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)" |
|
309 |
shows "finite {(x::'a::idom). P x}" |
|
310 |
proof- |
|
311 |
let ?M = "{x. P x}" |
|
312 |
let ?N = "set j" |
|
313 |
have "?M \<subseteq> ?N" using P by auto |
|
314 |
thus ?thesis using finite_subset by auto |
|
315 |
qed |
|
316 |
||
317 |
lemma poly_roots_index_lemma [rule_format]: |
|
318 |
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n |
|
319 |
--> (\<exists>i. \<forall>x. (poly p x = (0::'a::{idom})) --> x \<in> set i)" |
|
320 |
apply (induct "n", safe) |
|
321 |
apply (rule ccontr) |
|
322 |
apply (subgoal_tac "\<exists>a. poly p a = 0", safe) |
|
323 |
apply (drule poly_linear_divides [THEN iffD1], safe) |
|
324 |
apply (drule_tac x = q in spec) |
|
325 |
apply (drule_tac x = x in spec) |
|
326 |
apply (auto simp del: poly_Nil pmult_Cons) |
|
327 |
apply (drule_tac x = "a#i" in spec) |
|
328 |
apply (auto simp only: poly_mult List.list.size) |
|
329 |
apply (drule_tac x = xa in spec) |
|
330 |
apply (clarsimp simp add: ring_simps) |
|
331 |
done |
|
332 |
||
333 |
lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma, standard] |
|
334 |
||
335 |
lemma poly_roots_index_length: "poly p (x::'a::idom) \<noteq> poly [] x ==> |
|
336 |
\<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i" |
|
337 |
by (blast intro: poly_roots_index_lemma2) |
|
338 |
||
339 |
lemma poly_roots_finite_lemma': "poly p (x::'a::idom) \<noteq> poly [] x ==> |
|
340 |
\<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i" |
|
341 |
by (drule poly_roots_index_length, safe) |
|
342 |
||
343 |
lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)" |
|
344 |
unfolding finite_conv_nat_seg_image |
|
345 |
proof(auto simp add: expand_set_eq image_iff) |
|
346 |
fix n::nat and f:: "nat \<Rightarrow> nat" |
|
347 |
let ?N = "{i. i < n}" |
|
348 |
let ?fN = "f ` ?N" |
|
349 |
let ?y = "Max ?fN + 1" |
|
350 |
from nat_seg_image_imp_finite[of "?fN" "f" n] |
|
351 |
have thfN: "finite ?fN" by simp |
|
352 |
{assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto} |
|
353 |
moreover |
|
354 |
{assume nz: "n \<noteq> 0" |
|
355 |
hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv) |
|
356 |
have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto |
|
357 |
hence "\<forall>x\<in> ?fN. ?y > x" by (auto simp add: less_Suc_eq_le) |
|
358 |
hence "?y \<notin> ?fN" by auto |
|
359 |
hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto } |
|
360 |
ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast |
|
361 |
qed |
|
362 |
||
363 |
lemma UNIV_ring_char_0_infinte: "\<not> finite (UNIV:: ('a::ring_char_0) set)" |
|
364 |
proof |
|
365 |
assume F: "finite (UNIV :: 'a set)" |
|
366 |
have th0: "of_nat ` UNIV \<subseteq> (UNIV:: 'a set)" by simp |
|
367 |
from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" . |
|
368 |
have th': "inj_on (of_nat::nat \<Rightarrow> 'a) (UNIV)" |
|
369 |
unfolding inj_on_def by auto |
|
370 |
from finite_imageD[OF th th'] UNIV_nat_infinite |
|
371 |
show False by blast |
|
372 |
qed |
|
373 |
||
374 |
lemma poly_roots_finite: "(poly p \<noteq> poly []) = |
|
375 |
finite {x. poly p x = (0::'a::{idom, ring_char_0})}" |
|
376 |
proof |
|
377 |
assume H: "poly p \<noteq> poly []" |
|
378 |
show "finite {x. poly p x = (0::'a)}" |
|
379 |
using H |
|
380 |
apply - |
|
381 |
apply (erule contrapos_np, rule ext) |
|
382 |
apply (rule ccontr) |
|
383 |
apply (clarify dest!: poly_roots_finite_lemma') |
|
384 |
using finite_subset |
|
385 |
proof- |
|
386 |
fix x i |
|
387 |
assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}" |
|
388 |
and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i" |
|
389 |
let ?M= "{x. poly p x = (0\<Colon>'a)}" |
|
390 |
from P have "?M \<subseteq> set i" by auto |
|
391 |
with finite_subset F show False by auto |
|
392 |
qed |
|
393 |
next |
|
394 |
assume F: "finite {x. poly p x = (0\<Colon>'a)}" |
|
395 |
show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto |
|
396 |
qed |
|
397 |
||
398 |
text{*Entirety and Cancellation for polynomials*} |
|
399 |
||
400 |
lemma poly_entire_lemma: "[| poly (p:: ('a::{idom,ring_char_0}) list) \<noteq> poly [] ; poly q \<noteq> poly [] |] |
|
401 |
==> poly (p *** q) \<noteq> poly []" |
|
402 |
by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) |
|
403 |
||
404 |
lemma poly_entire: "(poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))" |
|
405 |
apply (auto intro: ext dest: fun_cong simp add: poly_entire_lemma poly_mult) |
|
406 |
apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) |
|
407 |
done |
|
408 |
||
409 |
lemma poly_entire_neg: "(poly (p *** q) \<noteq> poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))" |
|
410 |
by (simp add: poly_entire) |
|
411 |
||
412 |
lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)" |
|
413 |
by (auto intro!: ext) |
|
414 |
||
415 |
lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)" |
|
416 |
by (auto simp add: ring_simps poly_add poly_minus_def fun_eq poly_cmult) |
|
417 |
||
418 |
lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" |
|
419 |
by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult right_distrib) |
|
420 |
||
421 |
lemma poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)" |
|
422 |
apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) |
|
423 |
apply (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) |
|
424 |
done |
|
425 |
||
426 |
lemma poly_exp_eq_zero: |
|
427 |
"(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \<noteq> 0)" |
|
428 |
apply (simp only: fun_eq add: all_simps [symmetric]) |
|
429 |
apply (rule arg_cong [where f = All]) |
|
430 |
apply (rule ext) |
|
431 |
apply (induct_tac "n") |
|
432 |
apply (auto simp add: poly_mult) |
|
433 |
done |
|
434 |
declare poly_exp_eq_zero [simp] |
|
435 |
||
436 |
lemma poly_prime_eq_zero: "poly [a,(1::'a::comm_ring_1)] \<noteq> poly []" |
|
437 |
apply (simp add: fun_eq) |
|
438 |
apply (rule_tac x = "1 - a" in exI, simp) |
|
439 |
done |
|
440 |
declare poly_prime_eq_zero [simp] |
|
441 |
||
442 |
lemma poly_exp_prime_eq_zero: "(poly ([a, (1::'a::idom)] %^ n) \<noteq> poly [])" |
|
443 |
by auto |
|
444 |
declare poly_exp_prime_eq_zero [simp] |
|
445 |
||
446 |
text{*A more constructive notion of polynomials being trivial*} |
|
447 |
||
448 |
lemma poly_zero_lemma': "poly (h # t) = poly [] ==> h = (0::'a::{idom,ring_char_0}) & poly t = poly []" |
|
449 |
apply(simp add: fun_eq) |
|
450 |
apply (case_tac "h = 0") |
|
451 |
apply (drule_tac [2] x = 0 in spec, auto) |
|
452 |
apply (case_tac "poly t = poly []", simp) |
|
453 |
proof- |
|
454 |
fix x |
|
455 |
assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []" |
|
456 |
let ?S = "{x. poly t x = 0}" |
|
457 |
from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast |
|
458 |
hence th: "?S \<supseteq> UNIV - {0}" by auto |
|
459 |
from poly_roots_finite pnz have th': "finite ?S" by blast |
|
460 |
from finite_subset[OF th th'] UNIV_ring_char_0_infinte[where ?'a = 'a] |
|
461 |
show "poly t x = (0\<Colon>'a)" by simp |
|
462 |
qed |
|
463 |
||
464 |
lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p" |
|
465 |
apply (induct "p", simp) |
|
466 |
apply (rule iffI) |
|
467 |
apply (drule poly_zero_lemma', auto) |
|
468 |
done |
|
469 |
||
470 |
||
471 |
||
472 |
text{*Basics of divisibility.*} |
|
473 |
||
474 |
lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)" |
|
475 |
apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult left_distrib [symmetric]) |
|
476 |
apply (drule_tac x = "-a" in spec) |
|
477 |
apply (auto simp add: poly_linear_divides poly_add poly_cmult left_distrib [symmetric]) |
|
478 |
apply (rule_tac x = "qa *** q" in exI) |
|
479 |
apply (rule_tac [2] x = "p *** qa" in exI) |
|
480 |
apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) |
|
481 |
done |
|
482 |
||
483 |
lemma poly_divides_refl: "p divides p" |
|
484 |
apply (simp add: divides_def) |
|
485 |
apply (rule_tac x = "[1]" in exI) |
|
486 |
apply (auto simp add: poly_mult fun_eq) |
|
487 |
done |
|
488 |
declare poly_divides_refl [simp] |
|
489 |
||
490 |
lemma poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r" |
|
491 |
apply (simp add: divides_def, safe) |
|
492 |
apply (rule_tac x = "qa *** qaa" in exI) |
|
493 |
apply (auto simp add: poly_mult fun_eq mult_assoc) |
|
494 |
done |
|
495 |
||
496 |
lemma poly_divides_exp: "m \<le> n ==> (p %^ m) divides (p %^ n)" |
|
497 |
apply (auto simp add: le_iff_add) |
|
498 |
apply (induct_tac k) |
|
499 |
apply (rule_tac [2] poly_divides_trans) |
|
500 |
apply (auto simp add: divides_def) |
|
501 |
apply (rule_tac x = p in exI) |
|
502 |
apply (auto simp add: poly_mult fun_eq mult_ac) |
|
503 |
done |
|
504 |
||
505 |
lemma poly_exp_divides: "[| (p %^ n) divides q; m\<le>n |] ==> (p %^ m) divides q" |
|
506 |
by (blast intro: poly_divides_exp poly_divides_trans) |
|
507 |
||
508 |
lemma poly_divides_add: |
|
509 |
"[| p divides q; p divides r |] ==> p divides (q +++ r)" |
|
510 |
apply (simp add: divides_def, auto) |
|
511 |
apply (rule_tac x = "qa +++ qaa" in exI) |
|
512 |
apply (auto simp add: poly_add fun_eq poly_mult right_distrib) |
|
513 |
done |
|
514 |
||
515 |
lemma poly_divides_diff: |
|
516 |
"[| p divides q; p divides (q +++ r) |] ==> p divides r" |
|
517 |
apply (simp add: divides_def, auto) |
|
518 |
apply (rule_tac x = "qaa +++ -- qa" in exI) |
|
519 |
apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib algebra_simps) |
|
520 |
done |
|
521 |
||
522 |
lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q" |
|
523 |
apply (erule poly_divides_diff) |
|
524 |
apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) |
|
525 |
done |
|
526 |
||
527 |
lemma poly_divides_zero: "poly p = poly [] ==> q divides p" |
|
528 |
apply (simp add: divides_def) |
|
529 |
apply (rule exI[where x="[]"]) |
|
530 |
apply (auto simp add: fun_eq poly_mult) |
|
531 |
done |
|
532 |
||
533 |
lemma poly_divides_zero2: "q divides []" |
|
534 |
apply (simp add: divides_def) |
|
535 |
apply (rule_tac x = "[]" in exI) |
|
536 |
apply (auto simp add: fun_eq) |
|
537 |
done |
|
538 |
declare poly_divides_zero2 [simp] |
|
539 |
||
540 |
text{*At last, we can consider the order of a root.*} |
|
541 |
||
542 |
||
543 |
lemma poly_order_exists_lemma [rule_format]: |
|
544 |
"\<forall>p. length p = d --> poly p \<noteq> poly [] |
|
545 |
--> (\<exists>n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \<noteq> 0)" |
|
546 |
apply (induct "d") |
|
547 |
apply (simp add: fun_eq, safe) |
|
548 |
apply (case_tac "poly p a = 0") |
|
549 |
apply (drule_tac poly_linear_divides [THEN iffD1], safe) |
|
550 |
apply (drule_tac x = q in spec) |
|
551 |
apply (drule_tac poly_entire_neg [THEN iffD1], safe, force) |
|
552 |
apply (rule_tac x = "Suc n" in exI) |
|
553 |
apply (rule_tac x = qa in exI) |
|
554 |
apply (simp del: pmult_Cons) |
|
555 |
apply (rule_tac x = 0 in exI, force) |
|
556 |
done |
|
557 |
||
558 |
(* FIXME: Tidy up *) |
|
559 |
lemma poly_order_exists: |
|
560 |
"[| length p = d; poly p \<noteq> poly [] |] |
|
561 |
==> \<exists>n. ([-a, 1] %^ n) divides p & |
|
562 |
~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)" |
|
563 |
apply (drule poly_order_exists_lemma [where a=a], assumption, clarify) |
|
564 |
apply (rule_tac x = n in exI, safe) |
|
565 |
apply (unfold divides_def) |
|
566 |
apply (rule_tac x = q in exI) |
|
567 |
apply (induct_tac "n", simp) |
|
568 |
apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac) |
|
569 |
apply safe |
|
570 |
apply (subgoal_tac "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** qa)") |
|
571 |
apply simp |
|
572 |
apply (induct_tac "n") |
|
573 |
apply (simp del: pmult_Cons pexp_Suc) |
|
574 |
apply (erule_tac Q = "poly q a = 0" in contrapos_np) |
|
575 |
apply (simp add: poly_add poly_cmult) |
|
576 |
apply (rule pexp_Suc [THEN ssubst]) |
|
577 |
apply (rule ccontr) |
|
578 |
apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc) |
|
579 |
done |
|
580 |
||
581 |
lemma poly_one_divides: "[1] divides p" |
|
582 |
by (simp add: divides_def, auto) |
|
583 |
declare poly_one_divides [simp] |
|
584 |
||
585 |
lemma poly_order: "poly p \<noteq> poly [] |
|
586 |
==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & |
|
587 |
~(([-a, 1] %^ (Suc n)) divides p)" |
|
588 |
apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) |
|
589 |
apply (cut_tac x = y and y = n in less_linear) |
|
590 |
apply (drule_tac m = n in poly_exp_divides) |
|
591 |
apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] |
|
592 |
simp del: pmult_Cons pexp_Suc) |
|
593 |
done |
|
594 |
||
595 |
text{*Order*} |
|
596 |
||
597 |
lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n" |
|
598 |
by (blast intro: someI2) |
|
599 |
||
600 |
lemma order: |
|
601 |
"(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & |
|
602 |
~(([-a, 1] %^ (Suc n)) divides p)) = |
|
603 |
((n = order a p) & ~(poly p = poly []))" |
|
604 |
apply (unfold order_def) |
|
605 |
apply (rule iffI) |
|
606 |
apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) |
|
607 |
apply (blast intro!: poly_order [THEN [2] some1_equalityD]) |
|
608 |
done |
|
609 |
||
610 |
lemma order2: "[| poly p \<noteq> poly [] |] |
|
611 |
==> ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p & |
|
612 |
~(([-a, 1] %^ (Suc(order a p))) divides p)" |
|
613 |
by (simp add: order del: pexp_Suc) |
|
614 |
||
615 |
lemma order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p; |
|
616 |
~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) |
|
617 |
|] ==> (n = order a p)" |
|
618 |
by (insert order [of a n p], auto) |
|
619 |
||
620 |
lemma order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p & |
|
621 |
~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) |
|
622 |
==> (n = order a p)" |
|
623 |
by (blast intro: order_unique) |
|
624 |
||
625 |
lemma order_poly: "poly p = poly q ==> order a p = order a q" |
|
626 |
by (auto simp add: fun_eq divides_def poly_mult order_def) |
|
627 |
||
628 |
lemma pexp_one: "p %^ (Suc 0) = p" |
|
629 |
apply (induct "p") |
|
630 |
apply (auto simp add: numeral_1_eq_1) |
|
631 |
done |
|
632 |
declare pexp_one [simp] |
|
633 |
||
634 |
lemma lemma_order_root [rule_format]: |
|
635 |
"\<forall>p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p |
|
636 |
--> poly p a = 0" |
|
637 |
apply (induct "n", blast) |
|
638 |
apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) |
|
639 |
done |
|
640 |
||
641 |
lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \<noteq> 0)" |
|
642 |
apply (case_tac "poly p = poly []", auto) |
|
643 |
apply (simp add: poly_linear_divides del: pmult_Cons, safe) |
|
644 |
apply (drule_tac [!] a = a in order2) |
|
645 |
apply (rule ccontr) |
|
646 |
apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) |
|
647 |
using neq0_conv |
|
648 |
apply (blast intro: lemma_order_root) |
|
649 |
done |
|
650 |
||
651 |
lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)" |
|
652 |
apply (case_tac "poly p = poly []", auto) |
|
653 |
apply (simp add: divides_def fun_eq poly_mult) |
|
654 |
apply (rule_tac x = "[]" in exI) |
|
655 |
apply (auto dest!: order2 [where a=a] |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
656 |
intro: poly_exp_divides simp del: pexp_Suc) |
33153 | 657 |
done |
658 |
||
659 |
lemma order_decomp: |
|
660 |
"poly p \<noteq> poly [] |
|
661 |
==> \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & |
|
662 |
~([-a, 1::'a::{idom,ring_char_0}] divides q)" |
|
663 |
apply (unfold divides_def) |
|
664 |
apply (drule order2 [where a = a]) |
|
665 |
apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) |
|
666 |
apply (rule_tac x = q in exI, safe) |
|
667 |
apply (drule_tac x = qa in spec) |
|
668 |
apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) |
|
669 |
done |
|
670 |
||
671 |
text{*Important composition properties of orders.*} |
|
672 |
||
673 |
lemma order_mult: "poly (p *** q) \<noteq> poly [] |
|
674 |
==> order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q" |
|
675 |
apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order) |
|
676 |
apply (auto simp add: poly_entire simp del: pmult_Cons) |
|
677 |
apply (drule_tac a = a in order2)+ |
|
678 |
apply safe |
|
679 |
apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) |
|
680 |
apply (rule_tac x = "qa *** qaa" in exI) |
|
681 |
apply (simp add: poly_mult mult_ac del: pmult_Cons) |
|
682 |
apply (drule_tac a = a in order_decomp)+ |
|
683 |
apply safe |
|
684 |
apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") |
|
685 |
apply (simp add: poly_primes del: pmult_Cons) |
|
686 |
apply (auto simp add: divides_def simp del: pmult_Cons) |
|
687 |
apply (rule_tac x = qb in exI) |
|
688 |
apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") |
|
689 |
apply (drule poly_mult_left_cancel [THEN iffD1], force) |
|
690 |
apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") |
|
691 |
apply (drule poly_mult_left_cancel [THEN iffD1], force) |
|
692 |
apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) |
|
693 |
done |
|
694 |
||
695 |
||
696 |
||
697 |
lemma order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \<noteq> 0)" |
|
698 |
by (rule order_root [THEN ssubst], auto) |
|
699 |
||
700 |
||
701 |
lemma pmult_one: "[1] *** p = p" |
|
702 |
by auto |
|
703 |
declare pmult_one [simp] |
|
704 |
||
705 |
lemma poly_Nil_zero: "poly [] = poly [0]" |
|
706 |
by (simp add: fun_eq) |
|
707 |
||
708 |
lemma rsquarefree_decomp: |
|
709 |
"[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |] |
|
710 |
==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0" |
|
711 |
apply (simp add: rsquarefree_def, safe) |
|
712 |
apply (frule_tac a = a in order_decomp) |
|
713 |
apply (drule_tac x = a in spec) |
|
714 |
apply (drule_tac a = a in order_root2 [symmetric]) |
|
715 |
apply (auto simp del: pmult_Cons) |
|
716 |
apply (rule_tac x = q in exI, safe) |
|
717 |
apply (simp add: poly_mult fun_eq) |
|
718 |
apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) |
|
719 |
apply (simp add: divides_def del: pmult_Cons, safe) |
|
720 |
apply (drule_tac x = "[]" in spec) |
|
721 |
apply (auto simp add: fun_eq) |
|
722 |
done |
|
723 |
||
724 |
||
725 |
text{*Normalization of a polynomial.*} |
|
726 |
||
727 |
lemma poly_normalize: "poly (pnormalize p) = poly p" |
|
728 |
apply (induct "p") |
|
729 |
apply (auto simp add: fun_eq) |
|
730 |
done |
|
731 |
declare poly_normalize [simp] |
|
732 |
||
733 |
||
734 |
text{*The degree of a polynomial.*} |
|
735 |
||
736 |
lemma lemma_degree_zero: |
|
737 |
"list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []" |
|
738 |
by (induct "p", auto) |
|
739 |
||
740 |
lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \<Longrightarrow> (degree p = 0)" |
|
741 |
apply (simp add: degree_def) |
|
742 |
apply (case_tac "pnormalize p = []") |
|
743 |
apply (auto simp add: poly_zero lemma_degree_zero ) |
|
744 |
done |
|
745 |
||
746 |
lemma pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp |
|
747 |
lemma pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp |
|
748 |
lemma pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)" |
|
749 |
unfolding pnormal_def by simp |
|
750 |
lemma pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p" |
|
751 |
unfolding pnormal_def |
|
752 |
apply (cases "pnormalize p = []", auto) |
|
753 |
by (cases "c = 0", auto) |
|
754 |
lemma pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0" |
|
755 |
apply (induct p, auto simp add: pnormal_def) |
|
756 |
apply (case_tac "pnormalize p = []", auto) |
|
757 |
by (case_tac "a=0", auto) |
|
758 |
lemma pnormal_length: "pnormal p \<Longrightarrow> 0 < length p" |
|
759 |
unfolding pnormal_def length_greater_0_conv by blast |
|
760 |
lemma pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p" |
|
761 |
apply (induct p, auto) |
|
762 |
apply (case_tac "p = []", auto) |
|
763 |
apply (simp add: pnormal_def) |
|
764 |
by (rule pnormal_cons, auto) |
|
765 |
lemma pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)" |
|
766 |
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast |
|
767 |
||
768 |
text{*Tidier versions of finiteness of roots.*} |
|
769 |
||
770 |
lemma poly_roots_finite_set: "poly p \<noteq> poly [] ==> finite {x::'a::{idom,ring_char_0}. poly p x = 0}" |
|
771 |
unfolding poly_roots_finite . |
|
772 |
||
773 |
text{*bound for polynomial.*} |
|
774 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33268
diff
changeset
|
775 |
lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{linordered_idom})) \<le> poly (map abs p) k" |
33153 | 776 |
apply (induct "p", auto) |
777 |
apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) |
|
778 |
apply (rule abs_triangle_ineq) |
|
779 |
apply (auto intro!: mult_mono simp add: abs_mult) |
|
780 |
done |
|
781 |
||
782 |
lemma poly_Sing: "poly [c] x = c" by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
783 |
|
33153 | 784 |
end |