| 
27468
 | 
     1  | 
(*  Title       : NatStar.thy
  | 
| 
 | 
     2  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright   : 1998  University of Cambridge
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
Converted to Isar and polished by lcp
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
header{*Star-transforms for the Hypernaturals*}
 | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
theory NatStar
  | 
| 
 | 
    11  | 
imports Star
  | 
| 
 | 
    12  | 
begin
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"
  | 
| 
 | 
    15  | 
by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma starset_n_Un: "*sn* (%n. (A n) Un (B n)) = *sn* A Un *sn* B"
  | 
| 
 | 
    18  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Un_def)
  | 
| 
 | 
    19  | 
apply (rule_tac x=whn in spec, transfer, simp)
  | 
| 
 | 
    20  | 
done
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
lemma InternalSets_Un:
  | 
| 
 | 
    23  | 
     "[| X \<in> InternalSets; Y \<in> InternalSets |]
  | 
| 
 | 
    24  | 
      ==> (X Un Y) \<in> InternalSets"
  | 
| 
 | 
    25  | 
by (auto simp add: InternalSets_def starset_n_Un [symmetric])
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma starset_n_Int:
  | 
| 
 | 
    28  | 
      "*sn* (%n. (A n) Int (B n)) = *sn* A Int *sn* B"
  | 
| 
 | 
    29  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Int_def)
  | 
| 
 | 
    30  | 
apply (rule_tac x=whn in spec, transfer, simp)
  | 
| 
 | 
    31  | 
done
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma InternalSets_Int:
  | 
| 
 | 
    34  | 
     "[| X \<in> InternalSets; Y \<in> InternalSets |]
  | 
| 
 | 
    35  | 
      ==> (X Int Y) \<in> InternalSets"
  | 
| 
 | 
    36  | 
by (auto simp add: InternalSets_def starset_n_Int [symmetric])
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lemma starset_n_Compl: "*sn* ((%n. - A n)) = -( *sn* A)"
  | 
| 
 | 
    39  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)
  | 
| 
 | 
    40  | 
apply (rule_tac x=whn in spec, transfer, simp)
  | 
| 
 | 
    41  | 
done
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma InternalSets_Compl: "X \<in> InternalSets ==> -X \<in> InternalSets"
  | 
| 
 | 
    44  | 
by (auto simp add: InternalSets_def starset_n_Compl [symmetric])
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma starset_n_diff: "*sn* (%n. (A n) - (B n)) = *sn* A - *sn* B"
  | 
| 
 | 
    47  | 
apply (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)
  | 
| 
 | 
    48  | 
apply (rule_tac x=whn in spec, transfer, simp)
  | 
| 
 | 
    49  | 
done
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma InternalSets_diff:
  | 
| 
 | 
    52  | 
     "[| X \<in> InternalSets; Y \<in> InternalSets |]
  | 
| 
 | 
    53  | 
      ==> (X - Y) \<in> InternalSets"
  | 
| 
 | 
    54  | 
by (auto simp add: InternalSets_def starset_n_diff [symmetric])
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"
  | 
| 
 | 
    57  | 
by simp
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma NatStar_hypreal_of_real_Int:
  | 
| 
 | 
    60  | 
     "*s* X Int Nats = hypnat_of_nat ` X"
  | 
| 
 | 
    61  | 
by (auto simp add: SHNat_eq)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)"
  | 
| 
 | 
    64  | 
by (simp add: starset_n_starset)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"
  | 
| 
 | 
    67  | 
by (auto simp add: InternalSets_def starset_starset_n_eq)
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
lemma InternalSets_UNIV_diff:
  | 
| 
 | 
    70  | 
     "X \<in> InternalSets ==> UNIV - X \<in> InternalSets"
  | 
| 
 | 
    71  | 
apply (subgoal_tac "UNIV - X = - X")
  | 
| 
 | 
    72  | 
by (auto intro: InternalSets_Compl)
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
subsection{*Nonstandard Extensions of Functions*}
 | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
text{* Example of transfer of a property from reals to hyperreals
 | 
| 
 | 
    78  | 
    --- used for limit comparison of sequences*}
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma starfun_le_mono:
  | 
| 
 | 
    81  | 
     "\<forall>n. N \<le> n --> f n \<le> g n
  | 
| 
 | 
    82  | 
      ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n \<le> ( *f* g) n"
  | 
| 
 | 
    83  | 
by transfer
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
(*****----- and another -----*****)
  | 
| 
 | 
    86  | 
lemma starfun_less_mono:
  | 
| 
 | 
    87  | 
     "\<forall>n. N \<le> n --> f n < g n
  | 
| 
 | 
    88  | 
      ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n < ( *f* g) n"
  | 
| 
 | 
    89  | 
by transfer
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
text{*Nonstandard extension when we increment the argument by one*}
 | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma starfun_shift_one:
  | 
| 
 | 
    94  | 
     "!!N. ( *f* (%n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"
  | 
| 
 | 
    95  | 
by (transfer, simp)
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
text{*Nonstandard extension with absolute value*}
 | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
lemma starfun_abs: "!!N. ( *f* (%n. abs (f n))) N = abs(( *f* f) N)"
  | 
| 
 | 
   100  | 
by (transfer, rule refl)
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
text{*The hyperpow function as a nonstandard extension of realpow*}
 | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
lemma starfun_pow: "!!N. ( *f* (%n. r ^ n)) N = (hypreal_of_real r) pow N"
  | 
| 
 | 
   105  | 
by (transfer, rule refl)
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma starfun_pow2:
  | 
| 
 | 
   108  | 
     "!!N. ( *f* (%n. (X n) ^ m)) N = ( *f* X) N pow hypnat_of_nat m"
  | 
| 
 | 
   109  | 
by (transfer, rule refl)
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
lemma starfun_pow3: "!!R. ( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n"
  | 
| 
 | 
   112  | 
by (transfer, rule refl)
  | 
| 
 | 
   113  | 
  | 
| 
 | 
   114  | 
text{*The @{term hypreal_of_hypnat} function as a nonstandard extension of
 | 
| 
 | 
   115  | 
  @{term real_of_nat} *}
 | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
  | 
| 
 | 
   118  | 
by transfer (simp add: expand_fun_eq real_of_nat_def)
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
lemma starfun_inverse_real_of_nat_eq:
  | 
| 
 | 
   121  | 
     "N \<in> HNatInfinite
  | 
| 
 | 
   122  | 
   ==> ( *f* (%x::nat. inverse(real x))) N = inverse(hypreal_of_hypnat N)"
  | 
| 
 | 
   123  | 
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
  | 
| 
 | 
   124  | 
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
  | 
| 
 | 
   125  | 
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat starfun_inverse_inverse)
  | 
| 
 | 
   126  | 
done
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
text{*Internal functions - some redundancy with *f* now*}
 | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
lemma starfun_n: "( *fn* f) (star_n X) = star_n (%n. f n (X n))"
  | 
| 
 | 
   131  | 
by (simp add: starfun_n_def Ifun_star_n)
  | 
| 
 | 
   132  | 
  | 
| 
 | 
   133  | 
text{*Multiplication: @{text "( *fn) x ( *gn) = *(fn x gn)"}*}
 | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
lemma starfun_n_mult:
  | 
| 
 | 
   136  | 
     "( *fn* f) z * ( *fn* g) z = ( *fn* (% i x. f i x * g i x)) z"
  | 
| 
 | 
   137  | 
apply (cases z)
  | 
| 
 | 
   138  | 
apply (simp add: starfun_n star_n_mult)
  | 
| 
 | 
   139  | 
done
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
text{*Addition: @{text "( *fn) + ( *gn) = *(fn + gn)"}*}
 | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
lemma starfun_n_add:
  | 
| 
 | 
   144  | 
     "( *fn* f) z + ( *fn* g) z = ( *fn* (%i x. f i x + g i x)) z"
  | 
| 
 | 
   145  | 
apply (cases z)
  | 
| 
 | 
   146  | 
apply (simp add: starfun_n star_n_add)
  | 
| 
 | 
   147  | 
done
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
text{*Subtraction: @{text "( *fn) - ( *gn) = *(fn + - gn)"}*}
 | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
lemma starfun_n_add_minus:
  | 
| 
 | 
   152  | 
     "( *fn* f) z + -( *fn* g) z = ( *fn* (%i x. f i x + -g i x)) z"
  | 
| 
 | 
   153  | 
apply (cases z)
  | 
| 
 | 
   154  | 
apply (simp add: starfun_n star_n_minus star_n_add)
  | 
| 
 | 
   155  | 
done
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
text{*Composition: @{text "( *fn) o ( *gn) = *(fn o gn)"}*}
 | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
lemma starfun_n_const_fun [simp]:
  | 
| 
 | 
   161  | 
     "( *fn* (%i x. k)) z = star_of k"
  | 
| 
 | 
   162  | 
apply (cases z)
  | 
| 
 | 
   163  | 
apply (simp add: starfun_n star_of_def)
  | 
| 
 | 
   164  | 
done
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (%i x. - (f i) x)) x"
  | 
| 
 | 
   167  | 
apply (cases x)
  | 
| 
 | 
   168  | 
apply (simp add: starfun_n star_n_minus)
  | 
| 
 | 
   169  | 
done
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
lemma starfun_n_eq [simp]:
  | 
| 
 | 
   172  | 
     "( *fn* f) (star_of n) = star_n (%i. f i n)"
  | 
| 
 | 
   173  | 
by (simp add: starfun_n star_of_def)
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) = (f = g)"
  | 
| 
 | 
   176  | 
by (transfer, rule refl)
  | 
| 
 | 
   177  | 
  | 
| 
 | 
   178  | 
lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:
  | 
| 
 | 
   179  | 
     "N \<in> HNatInfinite ==> ( *f* (%x. inverse (real x))) N \<in> Infinitesimal"
  | 
| 
 | 
   180  | 
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
  | 
| 
 | 
   181  | 
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
  | 
| 
 | 
   182  | 
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat)
  | 
| 
 | 
   183  | 
done
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
  | 
| 
 | 
   186  | 
subsection{*Nonstandard Characterization of Induction*}
 | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
lemma hypnat_induct_obj:
  | 
| 
 | 
   189  | 
    "!!n. (( *p* P) (0::hypnat) &
  | 
| 
 | 
   190  | 
            (\<forall>n. ( *p* P)(n) --> ( *p* P)(n + 1)))
  | 
| 
 | 
   191  | 
       --> ( *p* P)(n)"
  | 
| 
 | 
   192  | 
by (transfer, induct_tac n, auto)
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
lemma hypnat_induct:
  | 
| 
 | 
   195  | 
  "!!n. [| ( *p* P) (0::hypnat);
  | 
| 
 | 
   196  | 
      !!n. ( *p* P)(n) ==> ( *p* P)(n + 1)|]
  | 
| 
 | 
   197  | 
     ==> ( *p* P)(n)"
  | 
| 
 | 
   198  | 
by (transfer, induct_tac n, auto)
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
lemma starP2_eq_iff: "( *p2* (op =)) = (op =)"
  | 
| 
 | 
   201  | 
by transfer (rule refl)
  | 
| 
 | 
   202  | 
  | 
| 
 | 
   203  | 
lemma starP2_eq_iff2: "( *p2* (%x y. x = y)) X Y = (X = Y)"
  | 
| 
 | 
   204  | 
by (simp add: starP2_eq_iff)
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
lemma nonempty_nat_set_Least_mem:
  | 
| 
 | 
   207  | 
  "c \<in> (S :: nat set) ==> (LEAST n. n \<in> S) \<in> S"
  | 
| 
 | 
   208  | 
by (erule LeastI)
  | 
| 
 | 
   209  | 
  | 
| 
 | 
   210  | 
lemma nonempty_set_star_has_least:
  | 
| 
 | 
   211  | 
    "!!S::nat set star. Iset S \<noteq> {} ==> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
 | 
| 
 | 
   212  | 
apply (transfer empty_def)
  | 
| 
 | 
   213  | 
apply (rule_tac x="LEAST n. n \<in> S" in bexI)
  | 
| 
 | 
   214  | 
apply (simp add: Least_le)
  | 
| 
 | 
   215  | 
apply (rule LeastI_ex, auto)
  | 
| 
 | 
   216  | 
done
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
lemma nonempty_InternalNatSet_has_least:
  | 
| 
 | 
   219  | 
    "[| (S::hypnat set) \<in> InternalSets; S \<noteq> {} |] ==> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
 | 
| 
 | 
   220  | 
apply (clarsimp simp add: InternalSets_def starset_n_def)
  | 
| 
 | 
   221  | 
apply (erule nonempty_set_star_has_least)
  | 
| 
 | 
   222  | 
done
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
text{* Goldblatt page 129 Thm 11.3.2*}
 | 
| 
 | 
   225  | 
lemma internal_induct_lemma:
  | 
| 
 | 
   226  | 
     "!!X::nat set star. [| (0::hypnat) \<in> Iset X; \<forall>n. n \<in> Iset X --> n + 1 \<in> Iset X |]
  | 
| 
 | 
   227  | 
      ==> Iset X = (UNIV:: hypnat set)"
  | 
| 
 | 
   228  | 
apply (transfer UNIV_def)
  | 
| 
 | 
   229  | 
apply (rule equalityI [OF subset_UNIV subsetI])
  | 
| 
 | 
   230  | 
apply (induct_tac x, auto)
  | 
| 
 | 
   231  | 
done
  | 
| 
 | 
   232  | 
  | 
| 
 | 
   233  | 
lemma internal_induct:
  | 
| 
 | 
   234  | 
     "[| X \<in> InternalSets; (0::hypnat) \<in> X; \<forall>n. n \<in> X --> n + 1 \<in> X |]
  | 
| 
 | 
   235  | 
      ==> X = (UNIV:: hypnat set)"
  | 
| 
 | 
   236  | 
apply (clarsimp simp add: InternalSets_def starset_n_def)
  | 
| 
 | 
   237  | 
apply (erule (1) internal_induct_lemma)
  | 
| 
 | 
   238  | 
done
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
end
  |