| 0 |      1 | (*  Title: 	ZF/ex/prop-log.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Tobias Nipkow & Lawrence C Paulson
 | 
|  |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Inductive definition of propositional logic.
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | PropLog = Prop + Fin +
 | 
|  |     10 | consts
 | 
|  |     11 |   (*semantics*)
 | 
|  |     12 |   prop_rec :: "[i, i, i=>i, [i,i,i,i]=>i] => i"
 | 
|  |     13 |   is_true  :: "[i,i] => o"
 | 
|  |     14 |   "|="     :: "[i,i] => o"    			(infixl 50)
 | 
|  |     15 |   hyps     :: "[i,i] => i"
 | 
|  |     16 | 
 | 
|  |     17 |   (*proof theory*)
 | 
|  |     18 |   thms     :: "i => i"
 | 
|  |     19 |   "|-"     :: "[i,i] => o"    			(infixl 50)
 | 
|  |     20 | 
 | 
|  |     21 | translations
 | 
|  |     22 |   "H |- p" == "p : thms(H)"
 | 
|  |     23 | 
 | 
|  |     24 | rules
 | 
|  |     25 | 
 | 
|  |     26 |   prop_rec_def
 | 
|  |     27 |    "prop_rec(p,b,c,h) == \
 | 
|  |     28 | \   Vrec(p, %p g.prop_case(b, c, %x y. h(x, y, g`x, g`y), p))"
 | 
|  |     29 | 
 | 
|  |     30 |   (** Semantics of propositional logic **)
 | 
|  |     31 |   is_true_def
 | 
|  |     32 |    "is_true(p,t) == prop_rec(p, 0,  %v. if(v:t, 1, 0), \
 | 
|  |     33 | \                               %p q tp tq. if(tp=1,tq,1))         =  1"
 | 
|  |     34 | 
 | 
|  |     35 |   (*For every valuation, if all elements of H are true then so is p*)
 | 
|  |     36 |   sat_def     "H |= p == ALL t. (ALL q:H. is_true(q,t)) --> is_true(p,t)"
 | 
|  |     37 | 
 | 
|  |     38 |   (** A finite set of hypotheses from t and the Vars in p **)
 | 
|  |     39 |   hyps_def
 | 
|  |     40 |    "hyps(p,t) == prop_rec(p, 0,  %v. {if(v:t, #v, #v=>Fls)}, \
 | 
|  |     41 | \                            %p q Hp Hq. Hp Un Hq)"
 | 
|  |     42 | 
 | 
|  |     43 | end
 |