| author | wenzelm | 
| Sat, 18 Mar 2000 19:10:02 +0100 | |
| changeset 8516 | f5f6a97ee43f | 
| parent 7825 | 1be9b63e7d93 | 
| child 12018 | ec054019c910 | 
| permissions | -rw-r--r-- | 
| 7219 | 1 | (* Title : PReal.thy | 
| 2 | ID : $Id$ | |
| 5078 | 3 | Author : Jacques D. Fleuriot | 
| 4 | Copyright : 1998 University of Cambridge | |
| 5 | Description : The positive reals as Dedekind sections of positive | |
| 6 | rationals. Fundamentals of Abstract Analysis [Gleason- p. 121] | |
| 7 | provides some of the definitions. | |
| 8 | *) | |
| 9 | ||
| 10 | PReal = PRat + | |
| 11 | ||
| 7825 
1be9b63e7d93
replaced {x. True} by UNIV to work with the new simprule, Collect_const
 paulson parents: 
7219diff
changeset | 12 | typedef preal = "{A::prat set. {} < A & A < UNIV &
 | 
| 5078 | 13 | (!y: A. ((!z. z < y --> z: A) & | 
| 14 | (? u: A. y < u)))}" (preal_1) | |
| 15 | instance | |
| 16 |    preal :: {ord, plus, times}
 | |
| 17 | ||
| 18 | constdefs | |
| 7077 
60b098bb8b8a
heavily revised by Jacques: coercions have alphabetic names;
 paulson parents: 
5078diff
changeset | 19 | preal_of_prat :: prat => preal | 
| 
60b098bb8b8a
heavily revised by Jacques: coercions have alphabetic names;
 paulson parents: 
5078diff
changeset | 20 |    "preal_of_prat q     == Abs_preal({x::prat. x < q})"
 | 
| 5078 | 21 | |
| 22 | pinv :: preal => preal | |
| 23 |   "pinv(R)   == Abs_preal({w. ? y. w < y & qinv y ~: Rep_preal(R)})" 
 | |
| 24 | ||
| 25 | psup :: preal set => preal | |
| 26 |   "psup(P)   == Abs_preal({w. ? X: P. w: Rep_preal(X)})"
 | |
| 27 | ||
| 28 | defs | |
| 29 | ||
| 30 | preal_add_def | |
| 31 |         "R + S == Abs_preal({w. ? x: Rep_preal(R). ? y: Rep_preal(S). w = x + y})"
 | |
| 32 | ||
| 33 | preal_mult_def | |
| 34 |         "R * S == Abs_preal({w. ? x: Rep_preal(R). ? y: Rep_preal(S). w = x * y})"
 | |
| 35 | ||
| 36 | preal_less_def | |
| 37 | "R < (S::preal) == Rep_preal(R) < Rep_preal(S)" | |
| 38 | ||
| 39 | preal_le_def | |
| 40 | "R <= (S::preal) == Rep_preal(R) <= Rep_preal(S)" | |
| 41 | ||
| 42 | end | |
| 43 |