author | immler |
Sun, 03 Nov 2019 19:59:56 -0500 | |
changeset 71037 | f630f2e707a6 |
parent 71035 | 6fe5a0e1fa8e |
child 71038 | bd3d4702b4f2 |
permissions | -rw-r--r-- |
71035 | 1 |
(* Title: Interval |
2 |
Author: Christoph Traut, TU Muenchen |
|
3 |
Fabian Immler, TU Muenchen |
|
4 |
*) |
|
5 |
section \<open>Interval Type\<close> |
|
6 |
theory Interval |
|
7 |
imports |
|
8 |
Complex_Main |
|
9 |
Lattice_Algebras |
|
10 |
Set_Algebras |
|
11 |
begin |
|
12 |
||
13 |
text \<open>A type of non-empty, closed intervals.\<close> |
|
14 |
||
15 |
typedef (overloaded) 'a interval = |
|
16 |
"{(a::'a::preorder, b). a \<le> b}" |
|
17 |
morphisms bounds_of_interval Interval |
|
18 |
by auto |
|
19 |
||
20 |
setup_lifting type_definition_interval |
|
21 |
||
22 |
lift_definition lower::"('a::preorder) interval \<Rightarrow> 'a" is fst . |
|
23 |
||
24 |
lift_definition upper::"('a::preorder) interval \<Rightarrow> 'a" is snd . |
|
25 |
||
26 |
lemma interval_eq_iff: "a = b \<longleftrightarrow> lower a = lower b \<and> upper a = upper b" |
|
27 |
by transfer auto |
|
28 |
||
29 |
lemma interval_eqI: "lower a = lower b \<Longrightarrow> upper a = upper b \<Longrightarrow> a = b" |
|
30 |
by (auto simp: interval_eq_iff) |
|
31 |
||
32 |
lemma lower_le_upper[simp]: "lower i \<le> upper i" |
|
33 |
by transfer auto |
|
34 |
||
35 |
lift_definition set_of :: "'a::preorder interval \<Rightarrow> 'a set" is "\<lambda>x. {fst x .. snd x}" . |
|
36 |
||
37 |
lemma set_of_eq: "set_of x = {lower x .. upper x}" |
|
38 |
by transfer simp |
|
39 |
||
40 |
context notes [[typedef_overloaded]] begin |
|
41 |
||
42 |
lift_definition(code_dt) Interval'::"'a::preorder \<Rightarrow> 'a::preorder \<Rightarrow> 'a interval option" |
|
43 |
is "\<lambda>a b. if a \<le> b then Some (a, b) else None" |
|
44 |
by auto |
|
45 |
||
46 |
end |
|
47 |
||
48 |
instantiation "interval" :: ("{preorder,equal}") equal |
|
49 |
begin |
|
50 |
||
51 |
definition "equal_class.equal a b \<equiv> (lower a = lower b) \<and> (upper a = upper b)" |
|
52 |
||
53 |
instance proof qed (simp add: equal_interval_def interval_eq_iff) |
|
54 |
end |
|
55 |
||
56 |
instantiation interval :: ("preorder") ord begin |
|
57 |
||
58 |
definition less_eq_interval :: "'a interval \<Rightarrow> 'a interval \<Rightarrow> bool" |
|
59 |
where "less_eq_interval a b \<longleftrightarrow> lower b \<le> lower a \<and> upper a \<le> upper b" |
|
60 |
||
61 |
definition less_interval :: "'a interval \<Rightarrow> 'a interval \<Rightarrow> bool" |
|
62 |
where "less_interval x y = (x \<le> y \<and> \<not> y \<le> x)" |
|
63 |
||
64 |
instance proof qed |
|
65 |
end |
|
66 |
||
67 |
instantiation interval :: ("lattice") semilattice_sup |
|
68 |
begin |
|
69 |
||
70 |
lift_definition sup_interval :: "'a interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" |
|
71 |
is "\<lambda>(a, b) (c, d). (inf a c, sup b d)" |
|
72 |
by (auto simp: le_infI1 le_supI1) |
|
73 |
||
74 |
lemma lower_sup[simp]: "lower (sup A B) = inf (lower A) (lower B)" |
|
75 |
by transfer auto |
|
76 |
||
77 |
lemma upper_sup[simp]: "upper (sup A B) = sup (upper A) (upper B)" |
|
78 |
by transfer auto |
|
79 |
||
80 |
instance proof qed (auto simp: less_eq_interval_def less_interval_def interval_eq_iff) |
|
81 |
end |
|
82 |
||
83 |
lemma set_of_interval_union: "set_of A \<union> set_of B \<subseteq> set_of (sup A B)" for A::"'a::lattice interval" |
|
84 |
by (auto simp: set_of_eq) |
|
85 |
||
86 |
lemma interval_union_commute: "sup A B = sup B A" for A::"'a::lattice interval" |
|
87 |
by (auto simp add: interval_eq_iff inf.commute sup.commute) |
|
88 |
||
89 |
lemma interval_union_mono1: "set_of a \<subseteq> set_of (sup a A)" for A :: "'a::lattice interval" |
|
90 |
using set_of_interval_union by blast |
|
91 |
||
92 |
lemma interval_union_mono2: "set_of A \<subseteq> set_of (sup a A)" for A :: "'a::lattice interval" |
|
93 |
using set_of_interval_union by blast |
|
94 |
||
95 |
lift_definition interval_of :: "'a::preorder \<Rightarrow> 'a interval" is "\<lambda>x. (x, x)" |
|
96 |
by auto |
|
97 |
||
98 |
lemma lower_interval_of[simp]: "lower (interval_of a) = a" |
|
99 |
by transfer auto |
|
100 |
||
101 |
lemma upper_interval_of[simp]: "upper (interval_of a) = a" |
|
102 |
by transfer auto |
|
103 |
||
104 |
definition width :: "'a::{preorder,minus} interval \<Rightarrow> 'a" |
|
105 |
where "width i = upper i - lower i" |
|
106 |
||
107 |
||
108 |
instantiation "interval" :: ("ordered_ab_semigroup_add") ab_semigroup_add |
|
109 |
begin |
|
110 |
||
111 |
lift_definition plus_interval::"'a interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" |
|
112 |
is "\<lambda>(a, b). \<lambda>(c, d). (a + c, b + d)" |
|
113 |
by (auto intro!: add_mono) |
|
114 |
lemma lower_plus[simp]: "lower (plus A B) = plus (lower A) (lower B)" |
|
115 |
by transfer auto |
|
116 |
lemma upper_plus[simp]: "upper (plus A B) = plus (upper A) (upper B)" |
|
117 |
by transfer auto |
|
118 |
||
119 |
instance proof qed (auto simp: interval_eq_iff less_eq_interval_def ac_simps) |
|
120 |
end |
|
121 |
||
122 |
instance "interval" :: ("{ordered_ab_semigroup_add, lattice}") ordered_ab_semigroup_add |
|
123 |
proof qed (auto simp: less_eq_interval_def intro!: add_mono) |
|
124 |
||
125 |
instantiation "interval" :: ("{preorder,zero}") zero |
|
126 |
begin |
|
127 |
||
128 |
lift_definition zero_interval::"'a interval" is "(0, 0)" by auto |
|
129 |
lemma lower_zero[simp]: "lower 0 = 0" |
|
130 |
by transfer auto |
|
131 |
lemma upper_zero[simp]: "upper 0 = 0" |
|
132 |
by transfer auto |
|
133 |
instance proof qed |
|
134 |
end |
|
135 |
||
136 |
instance "interval" :: ("{ordered_comm_monoid_add}") comm_monoid_add |
|
137 |
proof qed (auto simp: interval_eq_iff) |
|
138 |
||
139 |
instance "interval" :: ("{ordered_comm_monoid_add,lattice}") ordered_comm_monoid_add .. |
|
140 |
||
141 |
instantiation "interval" :: ("{ordered_ab_group_add}") uminus |
|
142 |
begin |
|
143 |
||
144 |
lift_definition uminus_interval::"'a interval \<Rightarrow> 'a interval" is "\<lambda>(a, b). (-b, -a)" by auto |
|
145 |
lemma lower_uminus[simp]: "lower (- A) = - upper A" |
|
146 |
by transfer auto |
|
147 |
lemma upper_uminus[simp]: "upper (- A) = - lower A" |
|
148 |
by transfer auto |
|
149 |
instance .. |
|
150 |
end |
|
151 |
||
152 |
instantiation "interval" :: ("{ordered_ab_group_add}") minus |
|
153 |
begin |
|
154 |
||
155 |
definition minus_interval::"'a interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" |
|
156 |
where "minus_interval a b = a + - b" |
|
157 |
lemma lower_minus[simp]: "lower (minus A B) = minus (lower A) (upper B)" |
|
158 |
by (auto simp: minus_interval_def) |
|
159 |
lemma upper_minus[simp]: "upper (minus A B) = minus (upper A) (lower B)" |
|
160 |
by (auto simp: minus_interval_def) |
|
161 |
||
162 |
instance .. |
|
163 |
end |
|
164 |
||
165 |
instantiation "interval" :: (linordered_semiring) times |
|
166 |
begin |
|
167 |
||
168 |
lift_definition times_interval :: "'a interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" |
|
169 |
is "\<lambda>(a1, a2). \<lambda>(b1, b2). |
|
170 |
(let x1 = a1 * b1; x2 = a1 * b2; x3 = a2 * b1; x4 = a2 * b2 |
|
171 |
in (min x1 (min x2 (min x3 x4)), max x1 (max x2 (max x3 x4))))" |
|
172 |
by (auto simp: Let_def intro!: min.coboundedI1 max.coboundedI1) |
|
173 |
||
174 |
lemma lower_times: |
|
175 |
"lower (times A B) = Min {lower A * lower B, lower A * upper B, upper A * lower B, upper A * upper B}" |
|
176 |
by transfer (auto simp: Let_def) |
|
177 |
||
178 |
lemma upper_times: |
|
179 |
"upper (times A B) = Max {lower A * lower B, lower A * upper B, upper A * lower B, upper A * upper B}" |
|
180 |
by transfer (auto simp: Let_def) |
|
181 |
||
182 |
instance .. |
|
183 |
end |
|
184 |
||
185 |
lemma interval_eq_set_of_iff: "X = Y \<longleftrightarrow> set_of X = set_of Y" for X Y::"'a::order interval" |
|
186 |
by (auto simp: set_of_eq interval_eq_iff) |
|
187 |
||
188 |
||
189 |
subsection \<open>Membership\<close> |
|
190 |
||
191 |
abbreviation (in preorder) in_interval ("(_/ \<in>\<^sub>i _)" [51, 51] 50) |
|
192 |
where "in_interval x X \<equiv> x \<in> set_of X" |
|
193 |
||
194 |
lemma in_interval_to_interval[intro!]: "a \<in>\<^sub>i interval_of a" |
|
195 |
by (auto simp: set_of_eq) |
|
196 |
||
197 |
lemma plus_in_intervalI: |
|
198 |
fixes x y :: "'a :: ordered_ab_semigroup_add" |
|
199 |
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x + y \<in>\<^sub>i X + Y" |
|
200 |
by (simp add: add_mono_thms_linordered_semiring(1) set_of_eq) |
|
201 |
||
202 |
lemma connected_set_of[intro, simp]: |
|
203 |
"connected (set_of X)" for X::"'a::linear_continuum_topology interval" |
|
204 |
by (auto simp: set_of_eq ) |
|
205 |
||
206 |
lemma ex_sum_in_interval_lemma: "\<exists>xa\<in>{la .. ua}. \<exists>xb\<in>{lb .. ub}. x = xa + xb" |
|
207 |
if "la \<le> ua" "lb \<le> ub" "la + lb \<le> x" "x \<le> ua + ub" |
|
208 |
"ua - la \<le> ub - lb" |
|
209 |
for la b c d::"'a::linordered_ab_group_add" |
|
210 |
proof - |
|
211 |
define wa where "wa = ua - la" |
|
212 |
define wb where "wb = ub - lb" |
|
213 |
define w where "w = wa + wb" |
|
214 |
define d where "d = x - la - lb" |
|
215 |
define da where "da = max 0 (min wa (d - wa))" |
|
216 |
define db where "db = d - da" |
|
217 |
from that have nonneg: "0 \<le> wa" "0 \<le> wb" "0 \<le> w" "0 \<le> d" "d \<le> w" |
|
218 |
by (auto simp add: wa_def wb_def w_def d_def add.commute le_diff_eq) |
|
219 |
have "0 \<le> db" |
|
220 |
by (auto simp: da_def nonneg db_def intro!: min.coboundedI2) |
|
221 |
have "x = (la + da) + (lb + db)" |
|
222 |
by (simp add: da_def db_def d_def) |
|
223 |
moreover |
|
224 |
have "x - la - ub \<le> da" |
|
225 |
using that |
|
226 |
unfolding da_def |
|
227 |
by (intro max.coboundedI2) (auto simp: wa_def d_def diff_le_eq diff_add_eq) |
|
228 |
then have "db \<le> wb" |
|
229 |
by (auto simp: db_def d_def wb_def algebra_simps) |
|
230 |
with \<open>0 \<le> db\<close> that nonneg have "lb + db \<in> {lb..ub}" |
|
231 |
by (auto simp: wb_def algebra_simps) |
|
232 |
moreover |
|
233 |
have "da \<le> wa" |
|
234 |
by (auto simp: da_def nonneg) |
|
235 |
then have "la + da \<in> {la..ua}" |
|
236 |
by (auto simp: da_def wa_def algebra_simps) |
|
237 |
ultimately show ?thesis |
|
238 |
by force |
|
239 |
qed |
|
240 |
||
241 |
||
242 |
lemma ex_sum_in_interval: "\<exists>xa\<ge>la. xa \<le> ua \<and> (\<exists>xb\<ge>lb. xb \<le> ub \<and> x = xa + xb)" |
|
243 |
if a: "la \<le> ua" and b: "lb \<le> ub" and x: "la + lb \<le> x" "x \<le> ua + ub" |
|
244 |
for la b c d::"'a::linordered_ab_group_add" |
|
245 |
proof - |
|
246 |
from linear consider "ua - la \<le> ub - lb" | "ub - lb \<le> ua - la" |
|
247 |
by blast |
|
248 |
then show ?thesis |
|
249 |
proof cases |
|
250 |
case 1 |
|
251 |
from ex_sum_in_interval_lemma[OF that 1] |
|
252 |
show ?thesis by auto |
|
253 |
next |
|
254 |
case 2 |
|
255 |
from x have "lb + la \<le> x" "x \<le> ub + ua" by (simp_all add: ac_simps) |
|
256 |
from ex_sum_in_interval_lemma[OF b a this 2] |
|
257 |
show ?thesis by auto |
|
258 |
qed |
|
259 |
qed |
|
260 |
||
261 |
lemma Icc_plus_Icc: |
|
262 |
"{a .. b} + {c .. d} = {a + c .. b + d}" |
|
263 |
if "a \<le> b" "c \<le> d" |
|
264 |
for a b c d::"'a::linordered_ab_group_add" |
|
265 |
using ex_sum_in_interval[OF that] |
|
266 |
by (auto intro: add_mono simp: atLeastAtMost_iff Bex_def set_plus_def) |
|
267 |
||
268 |
lemma set_of_plus: |
|
269 |
fixes A :: "'a::linordered_ab_group_add interval" |
|
270 |
shows "set_of (A + B) = set_of A + set_of B" |
|
271 |
using Icc_plus_Icc[of "lower A" "upper A" "lower B" "upper B"] |
|
272 |
by (auto simp: set_of_eq) |
|
273 |
||
274 |
lemma plus_in_intervalE: |
|
275 |
fixes xy :: "'a :: linordered_ab_group_add" |
|
276 |
assumes "xy \<in>\<^sub>i X + Y" |
|
277 |
obtains x y where "xy = x + y" "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y" |
|
278 |
using assms |
|
279 |
unfolding set_of_plus set_plus_def |
|
280 |
by auto |
|
281 |
||
282 |
lemma set_of_uminus: "set_of (-X) = {- x | x. x \<in> set_of X}" |
|
283 |
for X :: "'a :: ordered_ab_group_add interval" |
|
284 |
by (auto simp: set_of_eq simp: le_minus_iff minus_le_iff |
|
285 |
intro!: exI[where x="-x" for x]) |
|
286 |
||
287 |
lemma uminus_in_intervalI: |
|
288 |
fixes x :: "'a :: ordered_ab_group_add" |
|
289 |
shows "x \<in>\<^sub>i X \<Longrightarrow> -x \<in>\<^sub>i -X" |
|
290 |
by (auto simp: set_of_uminus) |
|
291 |
||
292 |
lemma uminus_in_intervalD: |
|
293 |
fixes x :: "'a :: ordered_ab_group_add" |
|
294 |
shows "x \<in>\<^sub>i - X \<Longrightarrow> - x \<in>\<^sub>i X" |
|
295 |
by (auto simp: set_of_uminus) |
|
296 |
||
297 |
lemma minus_in_intervalI: |
|
298 |
fixes x y :: "'a :: ordered_ab_group_add" |
|
299 |
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x - y \<in>\<^sub>i X - Y" |
|
300 |
by (metis diff_conv_add_uminus minus_interval_def plus_in_intervalI uminus_in_intervalI) |
|
301 |
||
302 |
lemma set_of_minus: "set_of (X - Y) = {x - y | x y . x \<in> set_of X \<and> y \<in> set_of Y}" |
|
303 |
for X Y :: "'a :: linordered_ab_group_add interval" |
|
304 |
unfolding minus_interval_def set_of_plus set_of_uminus set_plus_def |
|
305 |
by force |
|
306 |
||
307 |
lemma times_in_intervalI: |
|
308 |
fixes x y::"'a::linordered_ring" |
|
309 |
assumes "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y" |
|
310 |
shows "x * y \<in>\<^sub>i X * Y" |
|
311 |
proof - |
|
312 |
define X1 where "X1 \<equiv> lower X" |
|
313 |
define X2 where "X2 \<equiv> upper X" |
|
314 |
define Y1 where "Y1 \<equiv> lower Y" |
|
315 |
define Y2 where "Y2 \<equiv> upper Y" |
|
316 |
from assms have assms: "X1 \<le> x" "x \<le> X2" "Y1 \<le> y" "y \<le> Y2" |
|
317 |
by (auto simp: X1_def X2_def Y1_def Y2_def set_of_eq) |
|
318 |
have "(X1 * Y1 \<le> x * y \<or> X1 * Y2 \<le> x * y \<or> X2 * Y1 \<le> x * y \<or> X2 * Y2 \<le> x * y) \<and> |
|
319 |
(X1 * Y1 \<ge> x * y \<or> X1 * Y2 \<ge> x * y \<or> X2 * Y1 \<ge> x * y \<or> X2 * Y2 \<ge> x * y)" |
|
320 |
proof (cases x "0::'a" rule: linorder_cases) |
|
321 |
case x0: less |
|
322 |
show ?thesis |
|
323 |
proof (cases "y < 0") |
|
324 |
case y0: True |
|
325 |
from y0 x0 assms have "x * y \<le> X1 * y" by (intro mult_right_mono_neg, auto) |
|
326 |
also from x0 y0 assms have "X1 * y \<le> X1 * Y1" by (intro mult_left_mono_neg, auto) |
|
327 |
finally have 1: "x * y \<le> X1 * Y1". |
|
328 |
show ?thesis proof(cases "X2 \<le> 0") |
|
329 |
case True |
|
330 |
with assms have "X2 * Y2 \<le> X2 * y" by (auto intro: mult_left_mono_neg) |
|
331 |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg) |
|
332 |
finally have "X2 * Y2 \<le> x * y". |
|
333 |
with 1 show ?thesis by auto |
|
334 |
next |
|
335 |
case False |
|
336 |
with assms have "X2 * Y1 \<le> X2 * y" by (auto intro: mult_left_mono) |
|
337 |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg) |
|
338 |
finally have "X2 * Y1 \<le> x * y". |
|
339 |
with 1 show ?thesis by auto |
|
340 |
qed |
|
341 |
next |
|
342 |
case False |
|
343 |
then have y0: "y \<ge> 0" by auto |
|
344 |
from x0 y0 assms have "X1 * Y2 \<le> x * Y2" by (intro mult_right_mono, auto) |
|
345 |
also from y0 x0 assms have "... \<le> x * y" by (intro mult_left_mono_neg, auto) |
|
346 |
finally have 1: "X1 * Y2 \<le> x * y". |
|
347 |
show ?thesis |
|
348 |
proof(cases "X2 \<le> 0") |
|
349 |
case X2: True |
|
350 |
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono) |
|
351 |
also from assms X2 have "... \<le> X2 * Y1" by (auto intro: mult_left_mono_neg) |
|
352 |
finally have "x * y \<le> X2 * Y1". |
|
353 |
with 1 show ?thesis by auto |
|
354 |
next |
|
355 |
case X2: False |
|
356 |
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono) |
|
357 |
also from assms X2 have "... \<le> X2 * Y2" by (auto intro: mult_left_mono) |
|
358 |
finally have "x * y \<le> X2 * Y2". |
|
359 |
with 1 show ?thesis by auto |
|
360 |
qed |
|
361 |
qed |
|
362 |
next |
|
363 |
case [simp]: equal |
|
364 |
with assms show ?thesis by (cases "Y2 \<le> 0", auto intro:mult_sign_intros) |
|
365 |
next |
|
366 |
case x0: greater |
|
367 |
show ?thesis |
|
368 |
proof (cases "y < 0") |
|
369 |
case y0: True |
|
370 |
from x0 y0 assms have "X2 * Y1 \<le> X2 * y" by (intro mult_left_mono, auto) |
|
371 |
also from y0 x0 assms have "X2 * y \<le> x * y" by (intro mult_right_mono_neg, auto) |
|
372 |
finally have 1: "X2 * Y1 \<le> x * y". |
|
373 |
show ?thesis |
|
374 |
proof(cases "Y2 \<le> 0") |
|
375 |
case Y2: True |
|
376 |
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono) |
|
377 |
also from assms Y2 have "... \<le> X1 * Y2" by (auto intro: mult_right_mono_neg) |
|
378 |
finally have "x * y \<le> X1 * Y2". |
|
379 |
with 1 show ?thesis by auto |
|
380 |
next |
|
381 |
case Y2: False |
|
382 |
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono) |
|
383 |
also from assms Y2 have "... \<le> X2 * Y2" by (auto intro: mult_right_mono) |
|
384 |
finally have "x * y \<le> X2 * Y2". |
|
385 |
with 1 show ?thesis by auto |
|
386 |
qed |
|
387 |
next |
|
388 |
case y0: False |
|
389 |
from x0 y0 assms have "x * y \<le> X2 * y" by (intro mult_right_mono, auto) |
|
390 |
also from y0 x0 assms have "... \<le> X2 * Y2" by (intro mult_left_mono, auto) |
|
391 |
finally have 1: "x * y \<le> X2 * Y2". |
|
392 |
show ?thesis |
|
393 |
proof(cases "X1 \<le> 0") |
|
394 |
case True |
|
395 |
with assms have "X1 * Y2 \<le> X1 * y" by (auto intro: mult_left_mono_neg) |
|
396 |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono) |
|
397 |
finally have "X1 * Y2 \<le> x * y". |
|
398 |
with 1 show ?thesis by auto |
|
399 |
next |
|
400 |
case False |
|
401 |
with assms have "X1 * Y1 \<le> X1 * y" by (auto intro: mult_left_mono) |
|
402 |
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono) |
|
403 |
finally have "X1 * Y1 \<le> x * y". |
|
404 |
with 1 show ?thesis by auto |
|
405 |
qed |
|
406 |
qed |
|
407 |
qed |
|
408 |
hence min:"min (X1 * Y1) (min (X1 * Y2) (min (X2 * Y1) (X2 * Y2))) \<le> x * y" |
|
409 |
and max:"x * y \<le> max (X1 * Y1) (max (X1 * Y2) (max (X2 * Y1) (X2 * Y2)))" |
|
410 |
by (auto simp:min_le_iff_disj le_max_iff_disj) |
|
411 |
show ?thesis using min max |
|
412 |
by (auto simp: Let_def X1_def X2_def Y1_def Y2_def set_of_eq lower_times upper_times) |
|
413 |
qed |
|
414 |
||
415 |
lemma times_in_intervalE: |
|
416 |
fixes xy :: "'a :: {linordered_semiring, real_normed_algebra, linear_continuum_topology}" |
|
417 |
\<comment> \<open>TODO: linear continuum topology is pretty strong\<close> |
|
418 |
assumes "xy \<in>\<^sub>i X * Y" |
|
419 |
obtains x y where "xy = x * y" "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y" |
|
420 |
proof - |
|
421 |
let ?mult = "\<lambda>(x, y). x * y" |
|
422 |
let ?XY = "set_of X \<times> set_of Y" |
|
423 |
have cont: "continuous_on ?XY ?mult" |
|
424 |
by (auto intro!: tendsto_eq_intros simp: continuous_on_def split_beta') |
|
425 |
have conn: "connected (?mult ` ?XY)" |
|
426 |
by (rule connected_continuous_image[OF cont]) auto |
|
427 |
have "lower (X * Y) \<in> ?mult ` ?XY" "upper (X * Y) \<in> ?mult ` ?XY" |
|
428 |
by (auto simp: set_of_eq lower_times upper_times min_def max_def split: if_splits) |
|
429 |
from connectedD_interval[OF conn this, of xy] assms |
|
430 |
obtain x y where "xy = x * y" "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y" by (auto simp: set_of_eq) |
|
431 |
then show ?thesis .. |
|
432 |
qed |
|
433 |
||
434 |
lemma set_of_times: "set_of (X * Y) = {x * y | x y. x \<in> set_of X \<and> y \<in> set_of Y}" |
|
435 |
for X Y::"'a :: {linordered_ring, real_normed_algebra, linear_continuum_topology} interval" |
|
436 |
by (auto intro!: times_in_intervalI elim!: times_in_intervalE) |
|
437 |
||
438 |
instance "interval" :: (linordered_idom) cancel_semigroup_add |
|
439 |
proof qed (auto simp: interval_eq_iff) |
|
440 |
||
441 |
lemma interval_mul_commute: "A * B = B * A" for A B:: "'a::linordered_idom interval" |
|
442 |
by (simp add: interval_eq_iff lower_times upper_times ac_simps) |
|
443 |
||
444 |
lemma interval_times_zero_right[simp]: "A * 0 = 0" for A :: "'a::linordered_ring interval" |
|
445 |
by (simp add: interval_eq_iff lower_times upper_times ac_simps) |
|
446 |
||
447 |
lemma interval_times_zero_left[simp]: |
|
448 |
"0 * A = 0" for A :: "'a::linordered_ring interval" |
|
449 |
by (simp add: interval_eq_iff lower_times upper_times ac_simps) |
|
450 |
||
451 |
instantiation "interval" :: ("{preorder,one}") one |
|
452 |
begin |
|
453 |
||
454 |
lift_definition one_interval::"'a interval" is "(1, 1)" by auto |
|
455 |
lemma lower_one[simp]: "lower 1 = 1" |
|
456 |
by transfer auto |
|
457 |
lemma upper_one[simp]: "upper 1 = 1" |
|
458 |
by transfer auto |
|
459 |
instance proof qed |
|
460 |
end |
|
461 |
||
462 |
instance interval :: ("{one, preorder, linordered_semiring}") power |
|
463 |
proof qed |
|
464 |
||
465 |
lemma set_of_one[simp]: "set_of (1::'a::{one, order} interval) = {1}" |
|
466 |
by (auto simp: set_of_eq) |
|
467 |
||
468 |
instance "interval" :: |
|
469 |
("{linordered_idom,linordered_ring, real_normed_algebra, linear_continuum_topology}") monoid_mult |
|
470 |
apply standard |
|
471 |
unfolding interval_eq_set_of_iff set_of_times |
|
472 |
subgoal |
|
473 |
by (auto simp: interval_eq_set_of_iff set_of_times; metis mult.assoc) |
|
474 |
by auto |
|
475 |
||
476 |
lemma one_times_ivl_left[simp]: "1 * A = A" for A :: "'a::linordered_idom interval" |
|
477 |
by (simp add: interval_eq_iff lower_times upper_times ac_simps min_def max_def) |
|
478 |
||
479 |
lemma one_times_ivl_right[simp]: "A * 1 = A" for A :: "'a::linordered_idom interval" |
|
480 |
by (metis interval_mul_commute one_times_ivl_left) |
|
481 |
||
482 |
lemma set_of_power_mono: "a^n \<in> set_of (A^n)" if "a \<in> set_of A" |
|
483 |
for a :: "'a::linordered_idom" |
|
484 |
using that |
|
485 |
by (induction n) (auto intro!: times_in_intervalI) |
|
486 |
||
487 |
lemma set_of_add_cong: |
|
488 |
"set_of (A + B) = set_of (A' + B')" |
|
489 |
if "set_of A = set_of A'" "set_of B = set_of B'" |
|
490 |
for A :: "'a::linordered_ab_group_add interval" |
|
491 |
unfolding set_of_plus that .. |
|
492 |
||
493 |
lemma set_of_add_inc_left: |
|
494 |
"set_of (A + B) \<subseteq> set_of (A' + B)" |
|
495 |
if "set_of A \<subseteq> set_of A'" |
|
496 |
for A :: "'a::linordered_ab_group_add interval" |
|
497 |
unfolding set_of_plus using that by (auto simp: set_plus_def) |
|
498 |
||
499 |
lemma set_of_add_inc_right: |
|
500 |
"set_of (A + B) \<subseteq> set_of (A + B')" |
|
501 |
if "set_of B \<subseteq> set_of B'" |
|
502 |
for A :: "'a::linordered_ab_group_add interval" |
|
503 |
using set_of_add_inc_left[OF that] |
|
504 |
by (simp add: add.commute) |
|
505 |
||
506 |
lemma set_of_add_inc: |
|
507 |
"set_of (A + B) \<subseteq> set_of (A' + B')" |
|
508 |
if "set_of A \<subseteq> set_of A'" "set_of B \<subseteq> set_of B'" |
|
509 |
for A :: "'a::linordered_ab_group_add interval" |
|
510 |
using set_of_add_inc_left[OF that(1)] set_of_add_inc_right[OF that(2)] |
|
511 |
by auto |
|
512 |
||
513 |
lemma set_of_neg_inc: |
|
514 |
"set_of (-A) \<subseteq> set_of (-A')" |
|
515 |
if "set_of A \<subseteq> set_of A'" |
|
516 |
for A :: "'a::ordered_ab_group_add interval" |
|
517 |
using that |
|
518 |
unfolding set_of_uminus |
|
519 |
by auto |
|
520 |
||
521 |
lemma set_of_sub_inc_left: |
|
522 |
"set_of (A - B) \<subseteq> set_of (A' - B)" |
|
523 |
if "set_of A \<subseteq> set_of A'" |
|
524 |
for A :: "'a::linordered_ab_group_add interval" |
|
525 |
using that |
|
526 |
unfolding set_of_minus |
|
527 |
by auto |
|
528 |
||
529 |
lemma set_of_sub_inc_right: |
|
530 |
"set_of (A - B) \<subseteq> set_of (A - B')" |
|
531 |
if "set_of B \<subseteq> set_of B'" |
|
532 |
for A :: "'a::linordered_ab_group_add interval" |
|
533 |
using that |
|
534 |
unfolding set_of_minus |
|
535 |
by auto |
|
536 |
||
537 |
lemma set_of_sub_inc: |
|
538 |
"set_of (A - B) \<subseteq> set_of (A' - B')" |
|
539 |
if "set_of A \<subseteq> set_of A'" "set_of B \<subseteq> set_of B'" |
|
540 |
for A :: "'a::linordered_idom interval" |
|
541 |
using set_of_sub_inc_left[OF that(1)] set_of_sub_inc_right[OF that(2)] |
|
542 |
by auto |
|
543 |
||
544 |
lemma set_of_mul_inc_right: |
|
545 |
"set_of (A * B) \<subseteq> set_of (A * B')" |
|
546 |
if "set_of B \<subseteq> set_of B'" |
|
547 |
for A :: "'a::linordered_ring interval" |
|
548 |
using that |
|
549 |
apply transfer |
|
550 |
apply (clarsimp simp add: Let_def) |
|
551 |
apply (intro conjI) |
|
552 |
apply (metis linear min.coboundedI1 min.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
553 |
apply (metis linear min.coboundedI1 min.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
554 |
apply (metis linear min.coboundedI1 min.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
555 |
apply (metis linear min.coboundedI1 min.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
556 |
apply (metis linear max.coboundedI1 max.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
557 |
apply (metis linear max.coboundedI1 max.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
558 |
apply (metis linear max.coboundedI1 max.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
559 |
apply (metis linear max.coboundedI1 max.coboundedI2 mult_left_mono mult_left_mono_neg order_trans) |
|
560 |
done |
|
561 |
||
562 |
lemma set_of_distrib_left: |
|
563 |
"set_of (B * (A1 + A2)) \<subseteq> set_of (B * A1 + B * A2)" |
|
564 |
for A1 :: "'a::linordered_ring interval" |
|
565 |
apply transfer |
|
566 |
apply (clarsimp simp: Let_def distrib_left distrib_right) |
|
567 |
apply (intro conjI) |
|
568 |
apply (metis add_mono min.cobounded1 min.left_commute) |
|
569 |
apply (metis add_mono min.cobounded1 min.left_commute) |
|
570 |
apply (metis add_mono min.cobounded1 min.left_commute) |
|
571 |
apply (metis add_mono min.assoc min.cobounded2) |
|
572 |
apply (meson add_mono order.trans max.cobounded1 max.cobounded2) |
|
573 |
apply (meson add_mono order.trans max.cobounded1 max.cobounded2) |
|
574 |
apply (meson add_mono order.trans max.cobounded1 max.cobounded2) |
|
575 |
apply (meson add_mono order.trans max.cobounded1 max.cobounded2) |
|
576 |
done |
|
577 |
||
578 |
lemma set_of_distrib_right: |
|
579 |
"set_of ((A1 + A2) * B) \<subseteq> set_of (A1 * B + A2 * B)" |
|
580 |
for A1 A2 B :: "'a::{linordered_ring, real_normed_algebra, linear_continuum_topology} interval" |
|
581 |
unfolding set_of_times set_of_plus set_plus_def |
|
582 |
apply clarsimp |
|
583 |
subgoal for b a1 a2 |
|
584 |
apply (rule exI[where x="a1 * b"]) |
|
585 |
apply (rule conjI) |
|
586 |
subgoal by force |
|
587 |
subgoal |
|
588 |
apply (rule exI[where x="a2 * b"]) |
|
589 |
apply (rule conjI) |
|
590 |
subgoal by force |
|
591 |
subgoal by (simp add: algebra_simps) |
|
592 |
done |
|
593 |
done |
|
594 |
done |
|
595 |
||
596 |
lemma set_of_mul_inc_left: |
|
597 |
"set_of (A * B) \<subseteq> set_of (A' * B)" |
|
598 |
if "set_of A \<subseteq> set_of A'" |
|
599 |
for A :: "'a::{linordered_ring, real_normed_algebra, linear_continuum_topology} interval" |
|
600 |
using that |
|
601 |
unfolding set_of_times |
|
602 |
by auto |
|
603 |
||
604 |
lemma set_of_mul_inc: |
|
605 |
"set_of (A * B) \<subseteq> set_of (A' * B')" |
|
606 |
if "set_of A \<subseteq> set_of A'" "set_of B \<subseteq> set_of B'" |
|
607 |
for A :: "'a::{linordered_ring, real_normed_algebra, linear_continuum_topology} interval" |
|
608 |
using that unfolding set_of_times by auto |
|
609 |
||
610 |
lemma set_of_pow_inc: |
|
611 |
"set_of (A^n) \<subseteq> set_of (A'^n)" |
|
612 |
if "set_of A \<subseteq> set_of A'" |
|
613 |
for A :: "'a::{linordered_idom, real_normed_algebra, linear_continuum_topology} interval" |
|
614 |
using that |
|
615 |
by (induction n, simp_all add: set_of_mul_inc) |
|
616 |
||
617 |
lemma set_of_distrib_right_left: |
|
618 |
"set_of ((A1 + A2) * (B1 + B2)) \<subseteq> set_of (A1 * B1 + A1 * B2 + A2 * B1 + A2 * B2)" |
|
619 |
for A1 :: "'a::{linordered_idom, real_normed_algebra, linear_continuum_topology} interval" |
|
620 |
proof- |
|
621 |
have "set_of ((A1 + A2) * (B1 + B2)) \<subseteq> set_of (A1 * (B1 + B2) + A2 * (B1 + B2))" |
|
622 |
by (rule set_of_distrib_right) |
|
623 |
also have "... \<subseteq> set_of ((A1 * B1 + A1 * B2) + A2 * (B1 + B2))" |
|
624 |
by (rule set_of_add_inc_left[OF set_of_distrib_left]) |
|
625 |
also have "... \<subseteq> set_of ((A1 * B1 + A1 * B2) + (A2 * B1 + A2 * B2))" |
|
626 |
by (rule set_of_add_inc_right[OF set_of_distrib_left]) |
|
627 |
finally show ?thesis |
|
628 |
by (simp add: add.assoc) |
|
629 |
qed |
|
630 |
||
631 |
lemma mult_bounds_enclose_zero1: |
|
632 |
"min (la * lb) (min (la * ub) (min (lb * ua) (ua * ub))) \<le> 0" |
|
633 |
"0 \<le> max (la * lb) (max (la * ub) (max (lb * ua) (ua * ub)))" |
|
634 |
if "la \<le> 0" "0 \<le> ua" |
|
635 |
for la lb ua ub:: "'a::linordered_idom" |
|
636 |
subgoal by (metis (no_types, hide_lams) that eq_iff min_le_iff_disj mult_zero_left mult_zero_right |
|
637 |
zero_le_mult_iff) |
|
638 |
subgoal by (metis that le_max_iff_disj mult_zero_right order_refl zero_le_mult_iff) |
|
639 |
done |
|
640 |
||
641 |
lemma mult_bounds_enclose_zero2: |
|
642 |
"min (la * lb) (min (la * ub) (min (lb * ua) (ua * ub))) \<le> 0" |
|
643 |
"0 \<le> max (la * lb) (max (la * ub) (max (lb * ua) (ua * ub)))" |
|
644 |
if "lb \<le> 0" "0 \<le> ub" |
|
645 |
for la lb ua ub:: "'a::linordered_idom" |
|
646 |
using mult_bounds_enclose_zero1[OF that, of la ua] |
|
647 |
by (simp_all add: ac_simps) |
|
648 |
||
649 |
lemma set_of_mul_contains_zero: |
|
650 |
"0 \<in> set_of (A * B)" |
|
651 |
if "0 \<in> set_of A \<or> 0 \<in> set_of B" |
|
652 |
for A :: "'a::linordered_idom interval" |
|
653 |
using that |
|
654 |
by (auto simp: set_of_eq lower_times upper_times algebra_simps mult_le_0_iff |
|
655 |
mult_bounds_enclose_zero1 mult_bounds_enclose_zero2) |
|
656 |
||
657 |
instance "interval" :: (linordered_semiring) mult_zero |
|
658 |
apply standard |
|
659 |
subgoal by transfer auto |
|
660 |
subgoal by transfer auto |
|
661 |
done |
|
662 |
||
663 |
lift_definition min_interval::"'a::linorder interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" is |
|
664 |
"\<lambda>(l1, u1). \<lambda>(l2, u2). (min l1 l2, min u1 u2)" |
|
665 |
by (auto simp: min_def) |
|
666 |
lemma lower_min_interval[simp]: "lower (min_interval x y) = min (lower x) (lower y)" |
|
667 |
by transfer auto |
|
668 |
lemma upper_min_interval[simp]: "upper (min_interval x y) = min (upper x) (upper y)" |
|
669 |
by transfer auto |
|
670 |
||
671 |
lemma min_intervalI: |
|
672 |
"a \<in>\<^sub>i A \<Longrightarrow> b \<in>\<^sub>i B \<Longrightarrow> min a b \<in>\<^sub>i min_interval A B" |
|
673 |
by (auto simp: set_of_eq min_def) |
|
674 |
||
675 |
lift_definition max_interval::"'a::linorder interval \<Rightarrow> 'a interval \<Rightarrow> 'a interval" is |
|
676 |
"\<lambda>(l1, u1). \<lambda>(l2, u2). (max l1 l2, max u1 u2)" |
|
677 |
by (auto simp: max_def) |
|
678 |
lemma lower_max_interval[simp]: "lower (max_interval x y) = max (lower x) (lower y)" |
|
679 |
by transfer auto |
|
680 |
lemma upper_max_interval[simp]: "upper (max_interval x y) = max (upper x) (upper y)" |
|
681 |
by transfer auto |
|
682 |
||
683 |
lemma max_intervalI: |
|
684 |
"a \<in>\<^sub>i A \<Longrightarrow> b \<in>\<^sub>i B \<Longrightarrow> max a b \<in>\<^sub>i max_interval A B" |
|
685 |
by (auto simp: set_of_eq max_def) |
|
686 |
||
687 |
lift_definition abs_interval::"'a::linordered_idom interval \<Rightarrow> 'a interval" is |
|
688 |
"(\<lambda>(l,u). (if l < 0 \<and> 0 < u then 0 else min \<bar>l\<bar> \<bar>u\<bar>, max \<bar>l\<bar> \<bar>u\<bar>))" |
|
689 |
by auto |
|
690 |
||
691 |
lemma lower_abs_interval[simp]: |
|
692 |
"lower (abs_interval x) = (if lower x < 0 \<and> 0 < upper x then 0 else min \<bar>lower x\<bar> \<bar>upper x\<bar>)" |
|
693 |
by transfer auto |
|
694 |
lemma upper_abs_interval[simp]: "upper (abs_interval x) = max \<bar>lower x\<bar> \<bar>upper x\<bar>" |
|
695 |
by transfer auto |
|
696 |
||
697 |
lemma in_abs_intervalI1: |
|
698 |
"lx < 0 \<Longrightarrow> 0 < ux \<Longrightarrow> 0 \<le> xa \<Longrightarrow> xa \<le> max (- lx) (ux) \<Longrightarrow> xa \<in> abs ` {lx..ux}" |
|
699 |
for xa::"'a::linordered_idom" |
|
700 |
by (metis abs_minus_cancel abs_of_nonneg atLeastAtMost_iff image_eqI le_less le_max_iff_disj |
|
701 |
le_minus_iff neg_le_0_iff_le order_trans) |
|
702 |
||
703 |
lemma in_abs_intervalI2: |
|
704 |
"min (\<bar>lx\<bar>) \<bar>ux\<bar> \<le> xa \<Longrightarrow> xa \<le> max \<bar>lx\<bar> \<bar>ux\<bar> \<Longrightarrow> lx \<le> ux \<Longrightarrow> 0 \<le> lx \<or> ux \<le> 0 \<Longrightarrow> |
|
705 |
xa \<in> abs ` {lx..ux}" |
|
706 |
for xa::"'a::linordered_idom" |
|
707 |
by (force intro: image_eqI[where x="-xa"] image_eqI[where x="xa"]) |
|
708 |
||
709 |
lemma set_of_abs_interval: "set_of (abs_interval x) = abs ` set_of x" |
|
710 |
by (auto simp: set_of_eq not_less intro: in_abs_intervalI1 in_abs_intervalI2 cong del: image_cong_simp) |
|
711 |
||
712 |
fun split_domain :: "('a::preorder interval \<Rightarrow> 'a interval list) \<Rightarrow> 'a interval list \<Rightarrow> 'a interval list list" |
|
713 |
where "split_domain split [] = [[]]" |
|
714 |
| "split_domain split (I#Is) = ( |
|
715 |
let S = split I; |
|
716 |
D = split_domain split Is |
|
717 |
in concat (map (\<lambda>d. map (\<lambda>s. s # d) S) D) |
|
718 |
)" |
|
719 |
||
720 |
context notes [[typedef_overloaded]] begin |
|
721 |
lift_definition(code_dt) split_interval::"'a::linorder interval \<Rightarrow> 'a \<Rightarrow> ('a interval \<times> 'a interval)" |
|
722 |
is "\<lambda>(l, u) x. ((min l x, max l x), (min u x, max u x))" |
|
723 |
by (auto simp: min_def) |
|
724 |
end |
|
725 |
||
726 |
lemma split_domain_nonempty: |
|
727 |
assumes "\<And>I. split I \<noteq> []" |
|
728 |
shows "split_domain split I \<noteq> []" |
|
729 |
using last_in_set assms |
|
730 |
by (induction I, auto) |
|
731 |
||
71037
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
732 |
lemma lower_split_interval1: "lower (fst (split_interval X m)) = min (lower X) m" |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
733 |
and lower_split_interval2: "lower (snd (split_interval X m)) = min (upper X) m" |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
734 |
and upper_split_interval1: "upper (fst (split_interval X m)) = max (lower X) m" |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
735 |
and upper_split_interval2: "upper (snd (split_interval X m)) = max (upper X) m" |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
736 |
subgoal by transfer auto |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
737 |
subgoal by transfer (auto simp: min.commute) |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
738 |
subgoal by transfer (auto simp: ) |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
739 |
subgoal by transfer (auto simp: ) |
f630f2e707a6
refactor Approximation.thy to use more abstract type of intervals
immler
parents:
71035
diff
changeset
|
740 |
done |
71035 | 741 |
|
742 |
lemma split_intervalD: "split_interval X x = (A, B) \<Longrightarrow> set_of X \<subseteq> set_of A \<union> set_of B" |
|
743 |
unfolding set_of_eq |
|
744 |
by transfer (auto simp: min_def max_def split: if_splits) |
|
745 |
||
746 |
instantiation interval :: ("{topological_space, preorder}") topological_space |
|
747 |
begin |
|
748 |
||
749 |
definition open_interval_def[code del]: "open (X::'a interval set) = |
|
750 |
(\<forall>x\<in>X. |
|
751 |
\<exists>A B. |
|
752 |
open A \<and> |
|
753 |
open B \<and> |
|
754 |
lower x \<in> A \<and> upper x \<in> B \<and> Interval ` (A \<times> B) \<subseteq> X)" |
|
755 |
||
756 |
instance |
|
757 |
proof |
|
758 |
show "open (UNIV :: ('a interval) set)" |
|
759 |
unfolding open_interval_def by auto |
|
760 |
next |
|
761 |
fix S T :: "('a interval) set" |
|
762 |
assume "open S" "open T" |
|
763 |
show "open (S \<inter> T)" |
|
764 |
unfolding open_interval_def |
|
765 |
proof (safe) |
|
766 |
fix x assume "x \<in> S" "x \<in> T" |
|
767 |
from \<open>x \<in> S\<close> \<open>open S\<close> obtain Sl Su where S: |
|
768 |
"open Sl" "open Su" "lower x \<in> Sl" "upper x \<in> Su" "Interval ` (Sl \<times> Su) \<subseteq> S" |
|
769 |
by (auto simp: open_interval_def) |
|
770 |
from \<open>x \<in> T\<close> \<open>open T\<close> obtain Tl Tu where T: |
|
771 |
"open Tl" "open Tu" "lower x \<in> Tl" "upper x \<in> Tu" "Interval ` (Tl \<times> Tu) \<subseteq> T" |
|
772 |
by (auto simp: open_interval_def) |
|
773 |
||
774 |
let ?L = "Sl \<inter> Tl" and ?U = "Su \<inter> Tu" |
|
775 |
have "open ?L \<and> open ?U \<and> lower x \<in> ?L \<and> upper x \<in> ?U \<and> Interval ` (?L \<times> ?U) \<subseteq> S \<inter> T" |
|
776 |
using S T by (auto simp add: open_Int) |
|
777 |
then show "\<exists>A B. open A \<and> open B \<and> lower x \<in> A \<and> upper x \<in> B \<and> Interval ` (A \<times> B) \<subseteq> S \<inter> T" |
|
778 |
by fast |
|
779 |
qed |
|
780 |
qed (unfold open_interval_def, fast) |
|
781 |
||
782 |
end |
|
783 |
||
784 |
||
785 |
subsection \<open>Quickcheck\<close> |
|
786 |
||
787 |
lift_definition Ivl::"'a \<Rightarrow> 'a::preorder \<Rightarrow> 'a interval" is "\<lambda>a b. (min a b, b)" |
|
788 |
by (auto simp: min_def) |
|
789 |
||
790 |
instantiation interval :: ("{exhaustive,preorder}") exhaustive |
|
791 |
begin |
|
792 |
||
793 |
definition exhaustive_interval::"('a interval \<Rightarrow> (bool \<times> term list) option) |
|
794 |
\<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" |
|
795 |
where |
|
796 |
"exhaustive_interval f d = |
|
797 |
Quickcheck_Exhaustive.exhaustive (\<lambda>x. Quickcheck_Exhaustive.exhaustive (\<lambda>y. f (Ivl x y)) d) d" |
|
798 |
||
799 |
instance .. |
|
800 |
||
801 |
end |
|
802 |
||
803 |
definition (in term_syntax) [code_unfold]: |
|
804 |
"valtermify_interval x y = Code_Evaluation.valtermify (Ivl::'a::{preorder,typerep}\<Rightarrow>_) {\<cdot>} x {\<cdot>} y" |
|
805 |
||
806 |
instantiation interval :: ("{full_exhaustive,preorder,typerep}") full_exhaustive |
|
807 |
begin |
|
808 |
||
809 |
definition full_exhaustive_interval:: |
|
810 |
"('a interval \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) |
|
811 |
\<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" where |
|
812 |
"full_exhaustive_interval f d = |
|
813 |
Quickcheck_Exhaustive.full_exhaustive |
|
814 |
(\<lambda>x. Quickcheck_Exhaustive.full_exhaustive (\<lambda>y. f (valtermify_interval x y)) d) d" |
|
815 |
||
816 |
instance .. |
|
817 |
||
818 |
end |
|
819 |
||
820 |
instantiation interval :: ("{random,preorder,typerep}") random |
|
821 |
begin |
|
822 |
||
823 |
definition random_interval :: |
|
824 |
"natural |
|
825 |
\<Rightarrow> natural \<times> natural |
|
826 |
\<Rightarrow> ('a interval \<times> (unit \<Rightarrow> term)) \<times> natural \<times> natural" where |
|
827 |
"random_interval i = |
|
828 |
scomp (Quickcheck_Random.random i) |
|
829 |
(\<lambda>man. scomp (Quickcheck_Random.random i) (\<lambda>exp. Pair (valtermify_interval man exp)))" |
|
830 |
||
831 |
instance .. |
|
832 |
||
833 |
end |
|
834 |
||
835 |
lifting_update interval.lifting |
|
836 |
lifting_forget interval.lifting |
|
837 |
||
838 |
end |