| author | wenzelm | 
| Tue, 27 Mar 2018 13:59:01 +0200 | |
| changeset 67953 | f646d1c826a1 | 
| parent 67443 | 3abf6a722518 | 
| child 68780 | 54fdc8bc73a3 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Cont.thy | 
| 1479 | 2 | Author: Franz Regensburger | 
| 35794 | 3 | Author: Brian Huffman | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 62175 | 6 | section \<open>Continuity and monotonicity\<close> | 
| 15577 | 7 | |
| 8 | theory Cont | |
| 67312 | 9 | imports Pcpo | 
| 15577 | 10 | begin | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | |
| 62175 | 12 | text \<open> | 
| 15588 
14e3228f18cc
arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 13 | Now we change the default class! Form now on all untyped type variables are | 
| 3323 
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
 slotosch parents: 
2838diff
changeset | 14 | of default class po | 
| 62175 | 15 | \<close> | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | |
| 36452 | 17 | default_sort po | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | |
| 62175 | 19 | subsection \<open>Definitions\<close> | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 20 | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67312diff
changeset | 21 | definition monofun :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"  \<comment> \<open>monotonicity\<close>
 | 
| 67312 | 22 | where "monofun f \<longleftrightarrow> (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> f x \<sqsubseteq> f y)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | |
| 67312 | 24 | definition cont :: "('a::cpo \<Rightarrow> 'b::cpo) \<Rightarrow> bool"
 | 
| 25 | where "cont f = (\<forall>Y. chain Y \<longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i))" | |
| 26 | ||
| 27 | lemma contI: "(\<And>Y. chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)) \<Longrightarrow> cont f" | |
| 28 | by (simp add: cont_def) | |
| 15565 | 29 | |
| 67312 | 30 | lemma contE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)" | 
| 31 | by (simp add: cont_def) | |
| 15565 | 32 | |
| 67312 | 33 | lemma monofunI: "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> monofun f" | 
| 34 | by (simp add: monofun_def) | |
| 15565 | 35 | |
| 67312 | 36 | lemma monofunE: "monofun f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" | 
| 37 | by (simp add: monofun_def) | |
| 15565 | 38 | |
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 39 | |
| 62175 | 40 | subsection \<open>Equivalence of alternate definition\<close> | 
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 41 | |
| 62175 | 42 | text \<open>monotone functions map chains to chains\<close> | 
| 15565 | 43 | |
| 67312 | 44 | lemma ch2ch_monofun: "monofun f \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. f (Y i))" | 
| 45 | apply (rule chainI) | |
| 46 | apply (erule monofunE) | |
| 47 | apply (erule chainE) | |
| 48 | done | |
| 15565 | 49 | |
| 62175 | 50 | text \<open>monotone functions map upper bound to upper bounds\<close> | 
| 15565 | 51 | |
| 67312 | 52 | lemma ub2ub_monofun: "monofun f \<Longrightarrow> range Y <| u \<Longrightarrow> range (\<lambda>i. f (Y i)) <| f u" | 
| 53 | apply (rule ub_rangeI) | |
| 54 | apply (erule monofunE) | |
| 55 | apply (erule ub_rangeD) | |
| 56 | done | |
| 15565 | 57 | |
| 62175 | 58 | text \<open>a lemma about binary chains\<close> | 
| 15565 | 59 | |
| 67312 | 60 | lemma binchain_cont: "cont f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. f (if i = 0 then x else y)) <<| f y" | 
| 61 | apply (subgoal_tac "f (\<Squnion>i::nat. if i = 0 then x else y) = f y") | |
| 62 | apply (erule subst) | |
| 63 | apply (erule contE) | |
| 64 | apply (erule bin_chain) | |
| 65 | apply (rule_tac f=f in arg_cong) | |
| 66 | apply (erule is_lub_bin_chain [THEN lub_eqI]) | |
| 67 | done | |
| 15565 | 68 | |
| 62175 | 69 | text \<open>continuity implies monotonicity\<close> | 
| 15565 | 70 | |
| 16204 
5dd79d3f0105
renamed theorems monofun, contlub, cont to monofun_def, etc.; changed intro/elim rules for these predicates into more useful rule_format; removed all MF2 lemmas (Pcpo.thy has more general versions now); cleaned up many proofs.
 huffman parents: 
16096diff
changeset | 71 | lemma cont2mono: "cont f \<Longrightarrow> monofun f" | 
| 67312 | 72 | apply (rule monofunI) | 
| 73 | apply (drule (1) binchain_cont) | |
| 74 | apply (drule_tac i=0 in is_lub_rangeD1) | |
| 75 | apply simp | |
| 76 | done | |
| 15565 | 77 | |
| 29532 | 78 | lemmas cont2monofunE = cont2mono [THEN monofunE] | 
| 79 | ||
| 16737 | 80 | lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun] | 
| 81 | ||
| 62175 | 82 | text \<open>continuity implies preservation of lubs\<close> | 
| 15565 | 83 | |
| 67312 | 84 | lemma cont2contlubE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> f (\<Squnion>i. Y i) = (\<Squnion>i. f (Y i))" | 
| 85 | apply (rule lub_eqI [symmetric]) | |
| 86 | apply (erule (1) contE) | |
| 87 | done | |
| 15565 | 88 | |
| 25896 | 89 | lemma contI2: | 
| 40736 | 90 | fixes f :: "'a::cpo \<Rightarrow> 'b::cpo" | 
| 25896 | 91 | assumes mono: "monofun f" | 
| 67312 | 92 | assumes below: "\<And>Y. \<lbrakk>chain Y; chain (\<lambda>i. f (Y i))\<rbrakk> \<Longrightarrow> f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. f (Y i))" | 
| 25896 | 93 | shows "cont f" | 
| 40736 | 94 | proof (rule contI) | 
| 95 | fix Y :: "nat \<Rightarrow> 'a" | |
| 96 | assume Y: "chain Y" | |
| 97 | with mono have fY: "chain (\<lambda>i. f (Y i))" | |
| 98 | by (rule ch2ch_monofun) | |
| 99 | have "(\<Squnion>i. f (Y i)) = f (\<Squnion>i. Y i)" | |
| 100 | apply (rule below_antisym) | |
| 67312 | 101 | apply (rule lub_below [OF fY]) | 
| 102 | apply (rule monofunE [OF mono]) | |
| 103 | apply (rule is_ub_thelub [OF Y]) | |
| 40736 | 104 | apply (rule below [OF Y fY]) | 
| 105 | done | |
| 106 | with fY show "range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)" | |
| 107 | by (rule thelubE) | |
| 108 | qed | |
| 25896 | 109 | |
| 67312 | 110 | |
| 62175 | 111 | subsection \<open>Collection of continuity rules\<close> | 
| 29530 
9905b660612b
change to simpler, more extensible continuity simproc
 huffman parents: 
29138diff
changeset | 112 | |
| 57945 
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
 wenzelm parents: 
45294diff
changeset | 113 | named_theorems cont2cont "continuity intro rule" | 
| 29530 
9905b660612b
change to simpler, more extensible continuity simproc
 huffman parents: 
29138diff
changeset | 114 | |
| 
9905b660612b
change to simpler, more extensible continuity simproc
 huffman parents: 
29138diff
changeset | 115 | |
| 62175 | 116 | subsection \<open>Continuity of basic functions\<close> | 
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 117 | |
| 62175 | 118 | text \<open>The identity function is continuous\<close> | 
| 15565 | 119 | |
| 37079 
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
 huffman parents: 
36658diff
changeset | 120 | lemma cont_id [simp, cont2cont]: "cont (\<lambda>x. x)" | 
| 67312 | 121 | apply (rule contI) | 
| 122 | apply (erule cpo_lubI) | |
| 123 | done | |
| 15565 | 124 | |
| 62175 | 125 | text \<open>constant functions are continuous\<close> | 
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 126 | |
| 37079 
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
 huffman parents: 
36658diff
changeset | 127 | lemma cont_const [simp, cont2cont]: "cont (\<lambda>x. c)" | 
| 40771 | 128 | using is_lub_const by (rule contI) | 
| 15565 | 129 | |
| 62175 | 130 | text \<open>application of functions is continuous\<close> | 
| 29532 | 131 | |
| 31041 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 132 | lemma cont_apply: | 
| 29532 | 133 | fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo" and t :: "'a \<Rightarrow> 'b" | 
| 31041 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 134 | assumes 1: "cont (\<lambda>x. t x)" | 
| 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 135 | assumes 2: "\<And>x. cont (\<lambda>y. f x y)" | 
| 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 136 | assumes 3: "\<And>y. cont (\<lambda>x. f x y)" | 
| 29532 | 137 | shows "cont (\<lambda>x. (f x) (t x))" | 
| 35914 | 138 | proof (rule contI2 [OF monofunI]) | 
| 67312 | 139 | fix x y :: "'a" | 
| 140 | assume "x \<sqsubseteq> y" | |
| 29532 | 141 | then show "f x (t x) \<sqsubseteq> f y (t y)" | 
| 31041 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 142 | by (auto intro: cont2monofunE [OF 1] | 
| 67312 | 143 | cont2monofunE [OF 2] | 
| 144 | cont2monofunE [OF 3] | |
| 145 | below_trans) | |
| 29532 | 146 | next | 
| 67312 | 147 | fix Y :: "nat \<Rightarrow> 'a" | 
| 148 | assume "chain Y" | |
| 35914 | 149 | then show "f (\<Squnion>i. Y i) (t (\<Squnion>i. Y i)) \<sqsubseteq> (\<Squnion>i. f (Y i) (t (Y i)))" | 
| 31041 
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
 huffman parents: 
31030diff
changeset | 150 | by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1] | 
| 67312 | 151 | cont2contlubE [OF 2] ch2ch_cont [OF 2] | 
| 152 | cont2contlubE [OF 3] ch2ch_cont [OF 3] | |
| 153 | diag_lub below_refl) | |
| 29532 | 154 | qed | 
| 155 | ||
| 67312 | 156 | lemma cont_compose: "cont c \<Longrightarrow> cont (\<lambda>x. f x) \<Longrightarrow> cont (\<lambda>x. c (f x))" | 
| 157 | by (rule cont_apply [OF _ _ cont_const]) | |
| 29532 | 158 | |
| 62175 | 159 | text \<open>Least upper bounds preserve continuity\<close> | 
| 40004 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 huffman parents: 
37099diff
changeset | 160 | |
| 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 huffman parents: 
37099diff
changeset | 161 | lemma cont2cont_lub [simp]: | 
| 67312 | 162 | assumes chain: "\<And>x. chain (\<lambda>i. F i x)" | 
| 163 | and cont: "\<And>i. cont (\<lambda>x. F i x)" | |
| 40004 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 huffman parents: 
37099diff
changeset | 164 | shows "cont (\<lambda>x. \<Squnion>i. F i x)" | 
| 67312 | 165 | apply (rule contI2) | 
| 166 | apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain) | |
| 167 | apply (simp add: cont2contlubE [OF cont]) | |
| 168 | apply (simp add: diag_lub ch2ch_cont [OF cont] chain) | |
| 169 | done | |
| 40004 
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
 huffman parents: 
37099diff
changeset | 170 | |
| 62175 | 171 | text \<open>if-then-else is continuous\<close> | 
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 172 | |
| 67312 | 173 | lemma cont_if [simp, cont2cont]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. if b then f x else g x)" | 
| 174 | by (induct b) simp_all | |
| 175 | ||
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 176 | |
| 62175 | 177 | subsection \<open>Finite chains and flat pcpos\<close> | 
| 15565 | 178 | |
| 62175 | 179 | text \<open>Monotone functions map finite chains to finite chains.\<close> | 
| 15565 | 180 | |
| 67312 | 181 | lemma monofun_finch2finch: "monofun f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))" | 
| 182 | by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def) | |
| 15565 | 183 | |
| 62175 | 184 | text \<open>The same holds for continuous functions.\<close> | 
| 15565 | 185 | |
| 67312 | 186 | lemma cont_finch2finch: "cont f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))" | 
| 187 | by (rule cont2mono [THEN monofun_finch2finch]) | |
| 15565 | 188 | |
| 62175 | 189 | text \<open>All monotone functions with chain-finite domain are continuous.\<close> | 
| 40010 | 190 | |
| 67312 | 191 | lemma chfindom_monofun2cont: "monofun f \<Longrightarrow> cont f" | 
| 192 | for f :: "'a::chfin \<Rightarrow> 'b::cpo" | |
| 193 | apply (erule contI2) | |
| 194 | apply (frule chfin2finch) | |
| 195 | apply (clarsimp simp add: finite_chain_def) | |
| 196 | apply (subgoal_tac "max_in_chain i (\<lambda>i. f (Y i))") | |
| 197 | apply (simp add: maxinch_is_thelub ch2ch_monofun) | |
| 198 | apply (force simp add: max_in_chain_def) | |
| 199 | done | |
| 15565 | 200 | |
| 62175 | 201 | text \<open>All strict functions with flat domain are continuous.\<close> | 
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 202 | |
| 67312 | 203 | lemma flatdom_strict2mono: "f \<bottom> = \<bottom> \<Longrightarrow> monofun f" | 
| 204 | for f :: "'a::flat \<Rightarrow> 'b::pcpo" | |
| 205 | apply (rule monofunI) | |
| 206 | apply (drule ax_flat) | |
| 207 | apply auto | |
| 208 | done | |
| 16624 
645b9560f3fd
cleaned up; reorganized and added section headings
 huffman parents: 
16564diff
changeset | 209 | |
| 67312 | 210 | lemma flatdom_strict2cont: "f \<bottom> = \<bottom> \<Longrightarrow> cont f" | 
| 211 | for f :: "'a::flat \<Rightarrow> 'b::pcpo" | |
| 212 | by (rule flatdom_strict2mono [THEN chfindom_monofun2cont]) | |
| 15565 | 213 | |
| 62175 | 214 | text \<open>All functions with discrete domain are continuous.\<close> | 
| 26024 | 215 | |
| 67312 | 216 | lemma cont_discrete_cpo [simp, cont2cont]: "cont f" | 
| 217 | for f :: "'a::discrete_cpo \<Rightarrow> 'b::cpo" | |
| 218 | apply (rule contI) | |
| 219 | apply (drule discrete_chain_const, clarify) | |
| 220 | apply (simp add: is_lub_const) | |
| 221 | done | |
| 26024 | 222 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 223 | end |