| author | wenzelm |
| Thu, 27 Sep 2001 12:25:09 +0200 | |
| changeset 11582 | f666c1e4133d |
| parent 11464 | ddea204de5bc |
| child 11701 | 3d51fbf81c17 |
| permissions | -rw-r--r-- |
| 2608 | 1 |
(* Title: HOL/NatDef.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Definition of types ind and nat. |
|
7 |
||
8 |
Type nat is defined as a set Nat over type ind. |
|
9 |
*) |
|
10 |
||
| 10212 | 11 |
NatDef = Wellfounded_Recursion + |
| 2608 | 12 |
|
13 |
(** type ind **) |
|
14 |
||
| 3947 | 15 |
global |
16 |
||
| 2608 | 17 |
types |
18 |
ind |
|
19 |
||
20 |
arities |
|
21 |
ind :: term |
|
22 |
||
23 |
consts |
|
24 |
Zero_Rep :: ind |
|
25 |
Suc_Rep :: ind => ind |
|
26 |
||
27 |
rules |
|
28 |
(*the axiom of infinity in 2 parts*) |
|
29 |
inj_Suc_Rep "inj(Suc_Rep)" |
|
30 |
Suc_Rep_not_Zero_Rep "Suc_Rep(x) ~= Zero_Rep" |
|
31 |
||
32 |
||
33 |
||
34 |
(** type nat **) |
|
35 |
||
36 |
(* type definition *) |
|
37 |
||
|
11326
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
38 |
consts |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
39 |
Nat' :: "ind set" |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
40 |
|
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
41 |
inductive Nat' |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
42 |
intrs |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
43 |
Zero_RepI "Zero_Rep : Nat'" |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
44 |
Suc_RepI "i : Nat' ==> Suc_Rep i : Nat'" |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
45 |
|
| 2608 | 46 |
typedef (Nat) |
|
11326
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
47 |
nat = "Nat'" (Nat'.Zero_RepI) |
| 2608 | 48 |
|
49 |
instance |
|
| 8943 | 50 |
nat :: {ord, zero}
|
| 2608 | 51 |
|
52 |
||
53 |
(* abstract constants and syntax *) |
|
54 |
||
55 |
consts |
|
56 |
Suc :: nat => nat |
|
57 |
pred_nat :: "(nat * nat) set" |
|
| 11464 | 58 |
"1" :: nat ("1")
|
| 2608 | 59 |
|
60 |
syntax |
|
| 11464 | 61 |
"1'" :: nat ("1'")
|
| 2608 | 62 |
"2" :: nat ("2")
|
63 |
||
64 |
translations |
|
| 11464 | 65 |
"1'" == "Suc 0" |
66 |
"2" == "Suc 1'" |
|
| 2608 | 67 |
|
68 |
||
| 3947 | 69 |
local |
70 |
||
| 2608 | 71 |
defs |
72 |
Zero_def "0 == Abs_Nat(Zero_Rep)" |
|
73 |
Suc_def "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))" |
|
| 11464 | 74 |
One_def "1 == 1'" |
| 2608 | 75 |
|
| 7872 | 76 |
(*nat operations*) |
| 3236 | 77 |
pred_nat_def "pred_nat == {(m,n). n = Suc m}"
|
| 2608 | 78 |
|
79 |
less_def "m<n == (m,n):trancl(pred_nat)" |
|
80 |
||
81 |
le_def "m<=(n::nat) == ~(n<m)" |
|
82 |
||
83 |
end |