| 
5545
 | 
     1  | 
(*  Title:      HOL/ex/BinEx.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1998  University of Cambridge
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
11024
 | 
     7  | 
header {* Binary arithmetic examples *}
 | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory BinEx = Main:
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsection {* The Integers *}
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
text {* Addition *}
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
lemma "(#13::int) + #19 = #32"
  | 
| 
 | 
    16  | 
  by simp
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
lemma "(#1234::int) + #5678 = #6912"
  | 
| 
 | 
    19  | 
  by simp
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma "(#1359::int) + #-2468 = #-1109"
  | 
| 
 | 
    22  | 
  by simp
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma "(#93746::int) + #-46375 = #47371"
  | 
| 
 | 
    25  | 
  by simp
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
text {* \medskip Negation *}
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma "- (#65745::int) = #-65745"
  | 
| 
 | 
    31  | 
  by simp
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma "- (#-54321::int) = #54321"
  | 
| 
 | 
    34  | 
  by simp
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
text {* \medskip Multiplication *}
 | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma "(#13::int) * #19 = #247"
  | 
| 
 | 
    40  | 
  by simp
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma "(#-84::int) * #51 = #-4284"
  | 
| 
 | 
    43  | 
  by simp
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma "(#255::int) * #255 = #65025"
  | 
| 
 | 
    46  | 
  by simp
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma "(#1359::int) * #-2468 = #-3354012"
  | 
| 
 | 
    49  | 
  by simp
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma "(#89::int) * #10 \<noteq> #889"
  | 
| 
 | 
    52  | 
  by simp
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma "(#13::int) < #18 - #4"
  | 
| 
 | 
    55  | 
  by simp
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma "(#-345::int) < #-242 + #-100"
  | 
| 
 | 
    58  | 
  by simp
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma "(#13557456::int) < #18678654"
  | 
| 
 | 
    61  | 
  by simp
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma "(#999999::int) \<le> (#1000001 + #1) - #2"
  | 
| 
 | 
    64  | 
  by simp
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma "(#1234567::int) \<le> #1234567"
  | 
| 
 | 
    67  | 
  by simp
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
text {* \medskip Quotient and Remainder *}
 | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma "(#10::int) div #3 = #3"
  | 
| 
 | 
    73  | 
  by simp
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
lemma "(#10::int) mod #3 = #1"
  | 
| 
 | 
    76  | 
  by simp
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
text {* A negative divisor *}
 | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma "(#10::int) div #-3 = #-4"
  | 
| 
 | 
    81  | 
  by simp
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
lemma "(#10::int) mod #-3 = #-2"
  | 
| 
 | 
    84  | 
  by simp
  | 
| 
5545
 | 
    85  | 
  | 
| 
11024
 | 
    86  | 
text {*
 | 
| 
 | 
    87  | 
  A negative dividend\footnote{The definition agrees with mathematical
 | 
| 
 | 
    88  | 
  convention but not with the hardware of most computers}
  | 
| 
 | 
    89  | 
*}
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
lemma "(#-10::int) div #3 = #-4"
  | 
| 
 | 
    92  | 
  by simp
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma "(#-10::int) mod #3 = #2"
  | 
| 
 | 
    95  | 
  by simp
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
text {* A negative dividend \emph{and} divisor *}
 | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
lemma "(#-10::int) div #-3 = #3"
  | 
| 
 | 
   100  | 
  by simp
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
lemma "(#-10::int) mod #-3 = #-1"
  | 
| 
 | 
   103  | 
  by simp
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
text {* A few bigger examples *}
 | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma "(#8452::int) mod #3 = #1"
  | 
| 
 | 
   108  | 
  by simp
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma "(#59485::int) div #434 = #137"
  | 
| 
 | 
   111  | 
  by simp
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma "(#1000006::int) mod #10 = #6"
  | 
| 
 | 
   114  | 
  by simp
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
text {* \medskip Division by shifting *}
 | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
lemma "#10000000 div #2 = (#5000000::int)"
  | 
| 
 | 
   120  | 
  by simp
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
lemma "#10000001 mod #2 = (#1::int)"
  | 
| 
 | 
   123  | 
  by simp
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
lemma "#10000055 div #32 = (#312501::int)"
  | 
| 
 | 
   126  | 
  by simp
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
lemma "#10000055 mod #32 = (#23::int)"
  | 
| 
 | 
   129  | 
  by simp
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
lemma "#100094 div #144 = (#695::int)"
  | 
| 
 | 
   132  | 
  by simp
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
lemma "#100094 mod #144 = (#14::int)"
  | 
| 
 | 
   135  | 
  by simp
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
subsection {* The Natural Numbers *}
 | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
text {* Successor *}
 | 
| 
 | 
   141  | 
  | 
| 
 | 
   142  | 
lemma "Suc #99999 = #100000"
  | 
| 
 | 
   143  | 
  by (simp add: Suc_nat_number_of)
  | 
| 
 | 
   144  | 
    -- {* not a default rewrite since sometimes we want to have @{text "Suc #nnn"} *}
 | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
text {* \medskip Addition *}
 | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
lemma "(#13::nat) + #19 = #32"
  | 
| 
 | 
   150  | 
  by simp
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
lemma "(#1234::nat) + #5678 = #6912"
  | 
| 
 | 
   153  | 
  by simp
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
lemma "(#973646::nat) + #6475 = #980121"
  | 
| 
 | 
   156  | 
  by simp
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
text {* \medskip Subtraction *}
 | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
lemma "(#32::nat) - #14 = #18"
  | 
| 
 | 
   162  | 
  by simp
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
lemma "(#14::nat) - #15 = #0"
  | 
| 
 | 
   165  | 
  by simp
  | 
| 
5545
 | 
   166  | 
  | 
| 
11024
 | 
   167  | 
lemma "(#14::nat) - #1576644 = #0"
  | 
| 
 | 
   168  | 
  by simp
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
lemma "(#48273776::nat) - #3873737 = #44400039"
  | 
| 
 | 
   171  | 
  by simp
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
text {* \medskip Multiplication *}
 | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
lemma "(#12::nat) * #11 = #132"
  | 
| 
 | 
   177  | 
  by simp
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma "(#647::nat) * #3643 = #2357021"
  | 
| 
 | 
   180  | 
  by simp
  | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
text {* \medskip Quotient and Remainder *}
 | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
lemma "(#10::nat) div #3 = #3"
  | 
| 
 | 
   186  | 
  by simp
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
lemma "(#10::nat) mod #3 = #1"
  | 
| 
 | 
   189  | 
  by simp
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
lemma "(#10000::nat) div #9 = #1111"
  | 
| 
 | 
   192  | 
  by simp
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
lemma "(#10000::nat) mod #9 = #1"
  | 
| 
 | 
   195  | 
  by simp
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
lemma "(#10000::nat) div #16 = #625"
  | 
| 
 | 
   198  | 
  by simp
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
lemma "(#10000::nat) mod #16 = #0"
  | 
| 
 | 
   201  | 
  by simp
  | 
| 
 | 
   202  | 
  | 
| 
5545
 | 
   203  | 
  | 
| 
11024
 | 
   204  | 
text {* \medskip Testing the cancellation of complementary terms *}
 | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
lemma "y + (x + -x) = (#0::int) + y"
  | 
| 
 | 
   207  | 
  by simp
  | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
lemma "y + (-x + (- y + x)) = (#0::int)"
  | 
| 
 | 
   210  | 
  by simp
  | 
| 
 | 
   211  | 
  | 
| 
 | 
   212  | 
lemma "-x + (y + (- y + x)) = (#0::int)"
  | 
| 
 | 
   213  | 
  by simp
  | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
lemma "x + (x + (- x + (- x + (- y + - z)))) = (#0::int) - y - z"
  | 
| 
 | 
   216  | 
  by simp
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
lemma "x + x - x - x - y - z = (#0::int) - y - z"
  | 
| 
 | 
   219  | 
  by simp
  | 
| 
 | 
   220  | 
  | 
| 
 | 
   221  | 
lemma "x + y + z - (x + z) = y - (#0::int)"
  | 
| 
 | 
   222  | 
  by simp
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
lemma "x + (y + (y + (y + (-x + -x)))) = (#0::int) + y - x + y + y"
  | 
| 
 | 
   225  | 
  by simp
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
lemma "x + (y + (y + (y + (-y + -x)))) = y + (#0::int) + y"
  | 
| 
 | 
   228  | 
  by simp
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
lemma "x + y - x + z - x - y - z + x < (#1::int)"
  | 
| 
 | 
   231  | 
  by simp
  | 
| 
 | 
   232  | 
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
subsection {* Normal form of bit strings *}
 | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
text {*
 | 
| 
 | 
   237  | 
  Definition of normal form for proving that binary arithmetic on
  | 
| 
 | 
   238  | 
  normalized operands yields normalized results.  Normal means no
  | 
| 
 | 
   239  | 
  leading 0s on positive numbers and no leading 1s on negatives.
  | 
| 
 | 
   240  | 
*}
  | 
| 
5545
 | 
   241  | 
  | 
| 
11024
 | 
   242  | 
consts normal :: "bin set"
  | 
| 
 | 
   243  | 
inductive "normal"
  | 
| 
 | 
   244  | 
  intros [simp]
  | 
| 
 | 
   245  | 
    Pls: "Pls: normal"
  | 
| 
 | 
   246  | 
    Min: "Min: normal"
  | 
| 
 | 
   247  | 
    BIT_F: "w: normal ==> w \<noteq> Pls ==> w BIT False : normal"
  | 
| 
 | 
   248  | 
    BIT_T: "w: normal ==> w \<noteq> Min ==> w BIT True : normal"
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
text {*
 | 
| 
 | 
   251  | 
  \medskip Binary arithmetic on normalized operands yields normalized
  | 
| 
 | 
   252  | 
  results.
  | 
| 
 | 
   253  | 
*}
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
lemma normal_BIT_I [simp]: "w BIT b \<in> normal ==> w BIT b BIT c \<in> normal"
  | 
| 
 | 
   256  | 
  apply (case_tac c)
  | 
| 
 | 
   257  | 
   apply auto
  | 
| 
 | 
   258  | 
  done
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
lemma normal_BIT_D: "w BIT b \<in> normal ==> w \<in> normal"
  | 
| 
 | 
   261  | 
  apply (erule normal.cases)
  | 
| 
 | 
   262  | 
     apply auto
  | 
| 
 | 
   263  | 
  done
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
lemma NCons_normal [simp]: "w \<in> normal ==> NCons w b \<in> normal"
  | 
| 
 | 
   266  | 
  apply (induct w)
  | 
| 
 | 
   267  | 
    apply (auto simp add: NCons_Pls NCons_Min)
  | 
| 
 | 
   268  | 
  done
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
lemma NCons_True: "NCons w True \<noteq> Pls"
  | 
| 
 | 
   271  | 
  apply (induct w)
  | 
| 
 | 
   272  | 
    apply auto
  | 
| 
 | 
   273  | 
  done
  | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
lemma NCons_False: "NCons w False \<noteq> Min"
  | 
| 
 | 
   276  | 
  apply (induct w)
  | 
| 
 | 
   277  | 
    apply auto
  | 
| 
 | 
   278  | 
  done
  | 
| 
5545
 | 
   279  | 
  | 
| 
11024
 | 
   280  | 
lemma bin_succ_normal [simp]: "w \<in> normal ==> bin_succ w \<in> normal"
  | 
| 
 | 
   281  | 
  apply (erule normal.induct)
  | 
| 
 | 
   282  | 
     apply (case_tac [4] w)
  | 
| 
 | 
   283  | 
  apply (auto simp add: NCons_True bin_succ_BIT)
  | 
| 
 | 
   284  | 
  done
  | 
| 
 | 
   285  | 
  | 
| 
 | 
   286  | 
lemma bin_pred_normal [simp]: "w \<in> normal ==> bin_pred w \<in> normal"
  | 
| 
 | 
   287  | 
  apply (erule normal.induct)
  | 
| 
 | 
   288  | 
     apply (case_tac [3] w)
  | 
| 
 | 
   289  | 
  apply (auto simp add: NCons_False bin_pred_BIT)
  | 
| 
 | 
   290  | 
  done
  | 
| 
 | 
   291  | 
  | 
| 
 | 
   292  | 
lemma bin_add_normal [rule_format]:
  | 
| 
 | 
   293  | 
  "w \<in> normal --> (\<forall>z. z \<in> normal --> bin_add w z \<in> normal)"
  | 
| 
 | 
   294  | 
  apply (induct w)
  | 
| 
 | 
   295  | 
    apply simp
  | 
| 
 | 
   296  | 
   apply simp
  | 
| 
 | 
   297  | 
  apply (rule impI)
  | 
| 
 | 
   298  | 
  apply (rule allI)
  | 
| 
 | 
   299  | 
  apply (induct_tac z)
  | 
| 
 | 
   300  | 
    apply (simp_all add: bin_add_BIT)
  | 
| 
 | 
   301  | 
  apply (safe dest!: normal_BIT_D)
  | 
| 
 | 
   302  | 
    apply simp_all
  | 
| 
 | 
   303  | 
  done
  | 
| 
 | 
   304  | 
  | 
| 
 | 
   305  | 
lemma normal_Pls_eq_0: "w \<in> normal ==> (w = Pls) = (number_of w = (#0::int))"
  | 
| 
 | 
   306  | 
  apply (erule normal.induct)
  | 
| 
 | 
   307  | 
     apply auto
  | 
| 
 | 
   308  | 
  done
  | 
| 
 | 
   309  | 
  | 
| 
 | 
   310  | 
lemma bin_minus_normal: "w \<in> normal ==> bin_minus w \<in> normal"
  | 
| 
 | 
   311  | 
  apply (erule normal.induct)
  | 
| 
 | 
   312  | 
     apply (simp_all add: bin_minus_BIT)
  | 
| 
 | 
   313  | 
  apply (rule normal.intros)
  | 
| 
 | 
   314  | 
  apply assumption
  | 
| 
 | 
   315  | 
  apply (simp add: normal_Pls_eq_0)
  | 
| 
 | 
   316  | 
  apply (simp only: number_of_minus iszero_def zminus_equation [of _ "int 0"])
  | 
| 
 | 
   317  | 
  apply (rule not_sym)
  | 
| 
 | 
   318  | 
  apply simp
  | 
| 
 | 
   319  | 
  done
  | 
| 
 | 
   320  | 
  | 
| 
 | 
   321  | 
lemma bin_mult_normal [rule_format]:
  | 
| 
 | 
   322  | 
    "w \<in> normal ==> z \<in> normal --> bin_mult w z \<in> normal"
  | 
| 
 | 
   323  | 
  apply (erule normal.induct)
  | 
| 
 | 
   324  | 
     apply (simp_all add: bin_minus_normal bin_mult_BIT)
  | 
| 
 | 
   325  | 
  apply (safe dest!: normal_BIT_D)
  | 
| 
 | 
   326  | 
  apply (simp add: bin_add_normal)
  | 
| 
 | 
   327  | 
  done
  | 
| 
5545
 | 
   328  | 
  | 
| 
 | 
   329  | 
end
  |