| author | wenzelm | 
| Thu, 27 Sep 2001 12:25:09 +0200 | |
| changeset 11582 | f666c1e4133d | 
| parent 9570 | e16e168984e1 | 
| child 13176 | 312bd350579b | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/perm  | 
| 0 | 2  | 
ID: $Id$  | 
| 1478 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1991 University of Cambridge  | 
5  | 
||
6  | 
The theory underlying permutation groups  | 
|
7  | 
-- Composition of relations, the identity relation  | 
|
8  | 
-- Injections, surjections, bijections  | 
|
9  | 
-- Lemmas for the Schroeder-Bernstein Theorem  | 
|
10  | 
*)  | 
|
11  | 
||
| 
9570
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
2469 
diff
changeset
 | 
12  | 
Perm = mono + func +  | 
| 0 | 13  | 
consts  | 
| 1806 | 14  | 
O :: [i,i]=>i (infixr 60)  | 
| 0 | 15  | 
|
| 753 | 16  | 
defs  | 
| 1806 | 17  | 
(*composition of relations and functions; NOT Suppes's relative product*)  | 
18  | 
  comp_def    "r O s == {xz : domain(s)*range(r) . 
 | 
|
19  | 
EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"  | 
|
| 0 | 20  | 
|
| 1806 | 21  | 
constdefs  | 
22  | 
(*the identity function for A*)  | 
|
23  | 
id :: i=>i  | 
|
24  | 
"id(A) == (lam x:A. x)"  | 
|
| 0 | 25  | 
|
| 1806 | 26  | 
(*one-to-one functions from A to B*)  | 
27  | 
inj :: [i,i]=>i  | 
|
28  | 
  "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
 | 
|
| 0 | 29  | 
|
| 1806 | 30  | 
(*onto functions from A to B*)  | 
31  | 
surj :: [i,i]=>i  | 
|
32  | 
  "surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
 | 
|
| 0 | 33  | 
|
| 1806 | 34  | 
(*one-to-one and onto functions*)  | 
35  | 
bij :: [i,i]=>i  | 
|
36  | 
"bij(A,B) == inj(A,B) Int surj(A,B)"  | 
|
| 0 | 37  | 
|
38  | 
end  |