| author | krauss | 
| Tue, 02 Aug 2011 10:03:12 +0200 | |
| changeset 44011 | f67c93f52d13 | 
| parent 41959 | b460124855b8 | 
| child 46008 | c296c75f4cf4 | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/NSA/Filter.thy  | 
| 41589 | 2  | 
Author: Jacques D. Fleuriot, University of Cambridge  | 
3  | 
Author: Lawrence C Paulson  | 
|
4  | 
Author: Brian Huffman  | 
|
| 27468 | 5  | 
*)  | 
6  | 
||
7  | 
header {* Filters and Ultrafilters *}
 | 
|
8  | 
||
9  | 
theory Filter  | 
|
10  | 
imports "~~/src/HOL/Library/Zorn" "~~/src/HOL/Library/Infinite_Set"  | 
|
11  | 
begin  | 
|
12  | 
||
13  | 
subsection {* Definitions and basic properties *}
 | 
|
14  | 
||
15  | 
subsubsection {* Filters *}
 | 
|
16  | 
||
17  | 
locale filter =  | 
|
18  | 
fixes F :: "'a set set"  | 
|
19  | 
assumes UNIV [iff]: "UNIV \<in> F"  | 
|
20  | 
  assumes empty [iff]: "{} \<notin> F"
 | 
|
21  | 
assumes Int: "\<lbrakk>u \<in> F; v \<in> F\<rbrakk> \<Longrightarrow> u \<inter> v \<in> F"  | 
|
22  | 
assumes subset: "\<lbrakk>u \<in> F; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> F"  | 
|
23  | 
||
24  | 
lemma (in filter) memD: "A \<in> F \<Longrightarrow> - A \<notin> F"  | 
|
25  | 
proof  | 
|
26  | 
assume "A \<in> F" and "- A \<in> F"  | 
|
27  | 
hence "A \<inter> (- A) \<in> F" by (rule Int)  | 
|
28  | 
thus "False" by simp  | 
|
29  | 
qed  | 
|
30  | 
||
31  | 
lemma (in filter) not_memI: "- A \<in> F \<Longrightarrow> A \<notin> F"  | 
|
32  | 
by (drule memD, simp)  | 
|
33  | 
||
34  | 
lemma (in filter) Int_iff: "(x \<inter> y \<in> F) = (x \<in> F \<and> y \<in> F)"  | 
|
35  | 
by (auto elim: subset intro: Int)  | 
|
36  | 
||
37  | 
subsubsection {* Ultrafilters *}
 | 
|
38  | 
||
39  | 
locale ultrafilter = filter +  | 
|
40  | 
assumes ultra: "A \<in> F \<or> - A \<in> F"  | 
|
41  | 
||
42  | 
lemma (in ultrafilter) memI: "- A \<notin> F \<Longrightarrow> A \<in> F"  | 
|
43  | 
by (cut_tac ultra [of A], simp)  | 
|
44  | 
||
45  | 
lemma (in ultrafilter) not_memD: "A \<notin> F \<Longrightarrow> - A \<in> F"  | 
|
46  | 
by (rule memI, simp)  | 
|
47  | 
||
48  | 
lemma (in ultrafilter) not_mem_iff: "(A \<notin> F) = (- A \<in> F)"  | 
|
49  | 
by (rule iffI [OF not_memD not_memI])  | 
|
50  | 
||
51  | 
lemma (in ultrafilter) Compl_iff: "(- A \<in> F) = (A \<notin> F)"  | 
|
52  | 
by (rule iffI [OF not_memI not_memD])  | 
|
53  | 
||
54  | 
lemma (in ultrafilter) Un_iff: "(x \<union> y \<in> F) = (x \<in> F \<or> y \<in> F)"  | 
|
55  | 
apply (rule iffI)  | 
|
56  | 
apply (erule contrapos_pp)  | 
|
57  | 
apply (simp add: Int_iff not_mem_iff)  | 
|
58  | 
apply (auto elim: subset)  | 
|
59  | 
done  | 
|
60  | 
||
61  | 
subsubsection {* Free Ultrafilters *}
 | 
|
62  | 
||
63  | 
locale freeultrafilter = ultrafilter +  | 
|
64  | 
assumes infinite: "A \<in> F \<Longrightarrow> infinite A"  | 
|
65  | 
||
66  | 
lemma (in freeultrafilter) finite: "finite A \<Longrightarrow> A \<notin> F"  | 
|
67  | 
by (erule contrapos_pn, erule infinite)  | 
|
68  | 
||
69  | 
lemma (in freeultrafilter) singleton: "{x} \<notin> F"
 | 
|
70  | 
by (rule finite, simp)  | 
|
71  | 
||
72  | 
lemma (in freeultrafilter) insert_iff [simp]: "(insert x A \<in> F) = (A \<in> F)"  | 
|
73  | 
apply (subst insert_is_Un)  | 
|
74  | 
apply (subst Un_iff)  | 
|
75  | 
apply (simp add: singleton)  | 
|
76  | 
done  | 
|
77  | 
||
| 28823 | 78  | 
lemma (in freeultrafilter) filter: "filter F" ..  | 
| 27468 | 79  | 
|
| 28823 | 80  | 
lemma (in freeultrafilter) ultrafilter: "ultrafilter F" ..  | 
| 27468 | 81  | 
|
82  | 
||
83  | 
subsection {* Collect properties *}
 | 
|
84  | 
||
85  | 
lemma (in filter) Collect_ex:  | 
|
86  | 
  "({n. \<exists>x. P n x} \<in> F) = (\<exists>X. {n. P n (X n)} \<in> F)"
 | 
|
87  | 
proof  | 
|
88  | 
  assume "{n. \<exists>x. P n x} \<in> F"
 | 
|
89  | 
  hence "{n. P n (SOME x. P n x)} \<in> F"
 | 
|
90  | 
by (auto elim: someI subset)  | 
|
91  | 
  thus "\<exists>X. {n. P n (X n)} \<in> F" by fast
 | 
|
92  | 
next  | 
|
93  | 
  show "\<exists>X. {n. P n (X n)} \<in> F \<Longrightarrow> {n. \<exists>x. P n x} \<in> F"
 | 
|
94  | 
by (auto elim: subset)  | 
|
95  | 
qed  | 
|
96  | 
||
97  | 
lemma (in filter) Collect_conj:  | 
|
98  | 
  "({n. P n \<and> Q n} \<in> F) = ({n. P n} \<in> F \<and> {n. Q n} \<in> F)"
 | 
|
99  | 
by (subst Collect_conj_eq, rule Int_iff)  | 
|
100  | 
||
101  | 
lemma (in ultrafilter) Collect_not:  | 
|
102  | 
  "({n. \<not> P n} \<in> F) = ({n. P n} \<notin> F)"
 | 
|
103  | 
by (subst Collect_neg_eq, rule Compl_iff)  | 
|
104  | 
||
105  | 
lemma (in ultrafilter) Collect_disj:  | 
|
106  | 
  "({n. P n \<or> Q n} \<in> F) = ({n. P n} \<in> F \<or> {n. Q n} \<in> F)"
 | 
|
107  | 
by (subst Collect_disj_eq, rule Un_iff)  | 
|
108  | 
||
109  | 
lemma (in ultrafilter) Collect_all:  | 
|
110  | 
  "({n. \<forall>x. P n x} \<in> F) = (\<forall>X. {n. P n (X n)} \<in> F)"
 | 
|
111  | 
apply (rule Not_eq_iff [THEN iffD1])  | 
|
112  | 
apply (simp add: Collect_not [symmetric])  | 
|
113  | 
apply (rule Collect_ex)  | 
|
114  | 
done  | 
|
115  | 
||
116  | 
subsection {* Maximal filter = Ultrafilter *}
 | 
|
117  | 
||
118  | 
text {*
 | 
|
119  | 
A filter F is an ultrafilter iff it is a maximal filter,  | 
|
120  | 
   i.e. whenever G is a filter and @{term "F \<subseteq> G"} then @{term "F = G"}
 | 
|
121  | 
*}  | 
|
122  | 
text {*
 | 
|
123  | 
Lemmas that shows existence of an extension to what was assumed to  | 
|
124  | 
be a maximal filter. Will be used to derive contradiction in proof of  | 
|
125  | 
property of ultrafilter.  | 
|
126  | 
*}  | 
|
127  | 
||
128  | 
lemma extend_lemma1: "UNIV \<in> F \<Longrightarrow> A \<in> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
 | 
|
129  | 
by blast  | 
|
130  | 
||
131  | 
lemma extend_lemma2: "F \<subseteq> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
 | 
|
132  | 
by blast  | 
|
133  | 
||
134  | 
lemma (in filter) extend_filter:  | 
|
135  | 
assumes A: "- A \<notin> F"  | 
|
136  | 
shows "filter {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" (is "filter ?X")
 | 
|
137  | 
proof (rule filter.intro)  | 
|
138  | 
show "UNIV \<in> ?X" by blast  | 
|
139  | 
next  | 
|
140  | 
  show "{} \<notin> ?X"
 | 
|
141  | 
proof (clarify)  | 
|
142  | 
    fix f assume f: "f \<in> F" and Af: "A \<inter> f \<subseteq> {}"
 | 
|
143  | 
from Af have fA: "f \<subseteq> - A" by blast  | 
|
144  | 
from f fA have "- A \<in> F" by (rule subset)  | 
|
145  | 
with A show "False" by simp  | 
|
146  | 
qed  | 
|
147  | 
next  | 
|
148  | 
fix u and v  | 
|
149  | 
assume u: "u \<in> ?X" and v: "v \<in> ?X"  | 
|
150  | 
from u obtain f where f: "f \<in> F" and Af: "A \<inter> f \<subseteq> u" by blast  | 
|
151  | 
from v obtain g where g: "g \<in> F" and Ag: "A \<inter> g \<subseteq> v" by blast  | 
|
152  | 
from f g have fg: "f \<inter> g \<in> F" by (rule Int)  | 
|
153  | 
from Af Ag have Afg: "A \<inter> (f \<inter> g) \<subseteq> u \<inter> v" by blast  | 
|
154  | 
from fg Afg show "u \<inter> v \<in> ?X" by blast  | 
|
155  | 
next  | 
|
156  | 
fix u and v  | 
|
157  | 
assume uv: "u \<subseteq> v" and u: "u \<in> ?X"  | 
|
158  | 
from u obtain f where f: "f \<in> F" and Afu: "A \<inter> f \<subseteq> u" by blast  | 
|
159  | 
from Afu uv have Afv: "A \<inter> f \<subseteq> v" by blast  | 
|
160  | 
from f Afv have "\<exists>f\<in>F. A \<inter> f \<subseteq> v" by blast  | 
|
161  | 
thus "v \<in> ?X" by simp  | 
|
162  | 
qed  | 
|
163  | 
||
164  | 
lemma (in filter) max_filter_ultrafilter:  | 
|
165  | 
assumes max: "\<And>G. \<lbrakk>filter G; F \<subseteq> G\<rbrakk> \<Longrightarrow> F = G"  | 
|
166  | 
shows "ultrafilter_axioms F"  | 
|
167  | 
proof (rule ultrafilter_axioms.intro)  | 
|
168  | 
fix A show "A \<in> F \<or> - A \<in> F"  | 
|
169  | 
proof (rule disjCI)  | 
|
170  | 
    let ?X = "{X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
 | 
|
171  | 
assume AF: "- A \<notin> F"  | 
|
172  | 
from AF have X: "filter ?X" by (rule extend_filter)  | 
|
173  | 
from UNIV have AX: "A \<in> ?X" by (rule extend_lemma1)  | 
|
174  | 
have FX: "F \<subseteq> ?X" by (rule extend_lemma2)  | 
|
175  | 
from X FX have "F = ?X" by (rule max)  | 
|
176  | 
with AX show "A \<in> F" by simp  | 
|
177  | 
qed  | 
|
178  | 
qed  | 
|
179  | 
||
180  | 
lemma (in ultrafilter) max_filter:  | 
|
181  | 
assumes G: "filter G" and sub: "F \<subseteq> G" shows "F = G"  | 
|
182  | 
proof  | 
|
183  | 
show "F \<subseteq> G" using sub .  | 
|
184  | 
show "G \<subseteq> F"  | 
|
185  | 
proof  | 
|
186  | 
fix A assume A: "A \<in> G"  | 
|
187  | 
from G A have "- A \<notin> G" by (rule filter.memD)  | 
|
188  | 
with sub have B: "- A \<notin> F" by blast  | 
|
189  | 
thus "A \<in> F" by (rule memI)  | 
|
190  | 
qed  | 
|
191  | 
qed  | 
|
192  | 
||
193  | 
subsection {* Ultrafilter Theorem *}
 | 
|
194  | 
||
195  | 
text "A locale makes proof of ultrafilter Theorem more modular"  | 
|
| 27681 | 196  | 
locale UFT =  | 
| 27468 | 197  | 
fixes frechet :: "'a set set"  | 
198  | 
and superfrechet :: "'a set set set"  | 
|
199  | 
||
200  | 
assumes infinite_UNIV: "infinite (UNIV :: 'a set)"  | 
|
201  | 
||
202  | 
  defines frechet_def: "frechet \<equiv> {A. finite (- A)}"
 | 
|
203  | 
  and     superfrechet_def: "superfrechet \<equiv> {G. filter G \<and> frechet \<subseteq> G}"
 | 
|
204  | 
||
205  | 
lemma (in UFT) superfrechetI:  | 
|
206  | 
"\<lbrakk>filter G; frechet \<subseteq> G\<rbrakk> \<Longrightarrow> G \<in> superfrechet"  | 
|
207  | 
by (simp add: superfrechet_def)  | 
|
208  | 
||
209  | 
lemma (in UFT) superfrechetD1:  | 
|
210  | 
"G \<in> superfrechet \<Longrightarrow> filter G"  | 
|
211  | 
by (simp add: superfrechet_def)  | 
|
212  | 
||
213  | 
lemma (in UFT) superfrechetD2:  | 
|
214  | 
"G \<in> superfrechet \<Longrightarrow> frechet \<subseteq> G"  | 
|
215  | 
by (simp add: superfrechet_def)  | 
|
216  | 
||
217  | 
text {* A few properties of free filters *}
 | 
|
218  | 
||
219  | 
lemma filter_cofinite:  | 
|
220  | 
assumes inf: "infinite (UNIV :: 'a set)"  | 
|
221  | 
shows "filter {A:: 'a set. finite (- A)}" (is "filter ?F")
 | 
|
222  | 
proof (rule filter.intro)  | 
|
223  | 
show "UNIV \<in> ?F" by simp  | 
|
224  | 
next  | 
|
225  | 
  show "{} \<notin> ?F" using inf by simp
 | 
|
226  | 
next  | 
|
227  | 
fix u v assume "u \<in> ?F" and "v \<in> ?F"  | 
|
228  | 
thus "u \<inter> v \<in> ?F" by simp  | 
|
229  | 
next  | 
|
230  | 
fix u v assume uv: "u \<subseteq> v" and u: "u \<in> ?F"  | 
|
231  | 
from uv have vu: "- v \<subseteq> - u" by simp  | 
|
232  | 
from u show "v \<in> ?F"  | 
|
233  | 
by (simp add: finite_subset [OF vu])  | 
|
234  | 
qed  | 
|
235  | 
||
236  | 
text {*
 | 
|
237  | 
We prove: 1. Existence of maximal filter i.e. ultrafilter;  | 
|
238  | 
2. Freeness property i.e ultrafilter is free.  | 
|
239  | 
Use a locale to prove various lemmas and then  | 
|
240  | 
export main result: The ultrafilter Theorem  | 
|
241  | 
*}  | 
|
242  | 
||
243  | 
lemma (in UFT) filter_frechet: "filter frechet"  | 
|
244  | 
by (unfold frechet_def, rule filter_cofinite [OF infinite_UNIV])  | 
|
245  | 
||
246  | 
lemma (in UFT) frechet_in_superfrechet: "frechet \<in> superfrechet"  | 
|
247  | 
by (rule superfrechetI [OF filter_frechet subset_refl])  | 
|
248  | 
||
249  | 
lemma (in UFT) lemma_mem_chain_filter:  | 
|
250  | 
"\<lbrakk>c \<in> chain superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> filter x"  | 
|
251  | 
by (unfold chain_def superfrechet_def, blast)  | 
|
252  | 
||
253  | 
||
254  | 
subsubsection {* Unions of chains of superfrechets *}
 | 
|
255  | 
||
256  | 
text "In this section we prove that superfrechet is closed  | 
|
257  | 
with respect to unions of non-empty chains. We must show  | 
|
258  | 
1) Union of a chain is a filter,  | 
|
259  | 
2) Union of a chain contains frechet.  | 
|
260  | 
||
261  | 
Number 2 is trivial, but 1 requires us to prove all the filter rules."  | 
|
262  | 
||
263  | 
lemma (in UFT) Union_chain_UNIV:  | 
|
264  | 
"\<lbrakk>c \<in> chain superfrechet; c \<noteq> {}\<rbrakk> \<Longrightarrow> UNIV \<in> \<Union>c"
 | 
|
265  | 
proof -  | 
|
266  | 
  assume 1: "c \<in> chain superfrechet" and 2: "c \<noteq> {}"
 | 
|
267  | 
from 2 obtain x where 3: "x \<in> c" by blast  | 
|
268  | 
from 1 3 have "filter x" by (rule lemma_mem_chain_filter)  | 
|
269  | 
hence "UNIV \<in> x" by (rule filter.UNIV)  | 
|
270  | 
with 3 show "UNIV \<in> \<Union>c" by blast  | 
|
271  | 
qed  | 
|
272  | 
||
273  | 
lemma (in UFT) Union_chain_empty:  | 
|
274  | 
"c \<in> chain superfrechet \<Longrightarrow> {} \<notin> \<Union>c"
 | 
|
275  | 
proof  | 
|
276  | 
  assume 1: "c \<in> chain superfrechet" and 2: "{} \<in> \<Union>c"
 | 
|
277  | 
  from 2 obtain x where 3: "x \<in> c" and 4: "{} \<in> x" ..
 | 
|
278  | 
from 1 3 have "filter x" by (rule lemma_mem_chain_filter)  | 
|
279  | 
  hence "{} \<notin> x" by (rule filter.empty)
 | 
|
280  | 
with 4 show "False" by simp  | 
|
281  | 
qed  | 
|
282  | 
||
283  | 
lemma (in UFT) Union_chain_Int:  | 
|
284  | 
"\<lbrakk>c \<in> chain superfrechet; u \<in> \<Union>c; v \<in> \<Union>c\<rbrakk> \<Longrightarrow> u \<inter> v \<in> \<Union>c"  | 
|
285  | 
proof -  | 
|
286  | 
assume c: "c \<in> chain superfrechet"  | 
|
287  | 
assume "u \<in> \<Union>c"  | 
|
288  | 
then obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..  | 
|
289  | 
assume "v \<in> \<Union>c"  | 
|
290  | 
then obtain y where vy: "v \<in> y" and yc: "y \<in> c" ..  | 
|
291  | 
from c xc yc have "x \<subseteq> y \<or> y \<subseteq> x" by (rule chainD)  | 
|
292  | 
with xc yc have xyc: "x \<union> y \<in> c"  | 
|
293  | 
by (auto simp add: Un_absorb1 Un_absorb2)  | 
|
294  | 
with c have fxy: "filter (x \<union> y)" by (rule lemma_mem_chain_filter)  | 
|
295  | 
from ux have uxy: "u \<in> x \<union> y" by simp  | 
|
296  | 
from vy have vxy: "v \<in> x \<union> y" by simp  | 
|
297  | 
from fxy uxy vxy have "u \<inter> v \<in> x \<union> y" by (rule filter.Int)  | 
|
298  | 
with xyc show "u \<inter> v \<in> \<Union>c" ..  | 
|
299  | 
qed  | 
|
300  | 
||
301  | 
lemma (in UFT) Union_chain_subset:  | 
|
302  | 
"\<lbrakk>c \<in> chain superfrechet; u \<in> \<Union>c; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> \<Union>c"  | 
|
303  | 
proof -  | 
|
304  | 
assume c: "c \<in> chain superfrechet"  | 
|
305  | 
and u: "u \<in> \<Union>c" and uv: "u \<subseteq> v"  | 
|
306  | 
from u obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..  | 
|
307  | 
from c xc have fx: "filter x" by (rule lemma_mem_chain_filter)  | 
|
308  | 
from fx ux uv have vx: "v \<in> x" by (rule filter.subset)  | 
|
309  | 
with xc show "v \<in> \<Union>c" ..  | 
|
310  | 
qed  | 
|
311  | 
||
312  | 
lemma (in UFT) Union_chain_filter:  | 
|
313  | 
assumes chain: "c \<in> chain superfrechet" and nonempty: "c \<noteq> {}"
 | 
|
314  | 
shows "filter (\<Union>c)"  | 
|
315  | 
proof (rule filter.intro)  | 
|
316  | 
show "UNIV \<in> \<Union>c" using chain nonempty by (rule Union_chain_UNIV)  | 
|
317  | 
next  | 
|
318  | 
  show "{} \<notin> \<Union>c" using chain by (rule Union_chain_empty)
 | 
|
319  | 
next  | 
|
320  | 
fix u v assume "u \<in> \<Union>c" and "v \<in> \<Union>c"  | 
|
321  | 
with chain show "u \<inter> v \<in> \<Union>c" by (rule Union_chain_Int)  | 
|
322  | 
next  | 
|
323  | 
fix u v assume "u \<in> \<Union>c" and "u \<subseteq> v"  | 
|
324  | 
with chain show "v \<in> \<Union>c" by (rule Union_chain_subset)  | 
|
325  | 
qed  | 
|
326  | 
||
327  | 
lemma (in UFT) lemma_mem_chain_frechet_subset:  | 
|
328  | 
"\<lbrakk>c \<in> chain superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> frechet \<subseteq> x"  | 
|
329  | 
by (unfold superfrechet_def chain_def, blast)  | 
|
330  | 
||
331  | 
lemma (in UFT) Union_chain_superfrechet:  | 
|
332  | 
  "\<lbrakk>c \<noteq> {}; c \<in> chain superfrechet\<rbrakk> \<Longrightarrow> \<Union>c \<in> superfrechet"
 | 
|
333  | 
proof (rule superfrechetI)  | 
|
334  | 
  assume 1: "c \<in> chain superfrechet" and 2: "c \<noteq> {}"
 | 
|
335  | 
thus "filter (\<Union>c)" by (rule Union_chain_filter)  | 
|
336  | 
from 2 obtain x where 3: "x \<in> c" by blast  | 
|
337  | 
from 1 3 have "frechet \<subseteq> x" by (rule lemma_mem_chain_frechet_subset)  | 
|
338  | 
also from 3 have "x \<subseteq> \<Union>c" by blast  | 
|
339  | 
finally show "frechet \<subseteq> \<Union>c" .  | 
|
340  | 
qed  | 
|
341  | 
||
342  | 
subsubsection {* Existence of free ultrafilter *}
 | 
|
343  | 
||
344  | 
lemma (in UFT) max_cofinite_filter_Ex:  | 
|
345  | 
"\<exists>U\<in>superfrechet. \<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> U = G"  | 
|
346  | 
proof (rule Zorn_Lemma2 [rule_format])  | 
|
347  | 
fix c assume c: "c \<in> chain superfrechet"  | 
|
348  | 
show "\<exists>U\<in>superfrechet. \<forall>G\<in>c. G \<subseteq> U" (is "?U")  | 
|
349  | 
proof (cases)  | 
|
350  | 
    assume "c = {}"
 | 
|
351  | 
with frechet_in_superfrechet show "?U" by blast  | 
|
352  | 
next  | 
|
353  | 
    assume A: "c \<noteq> {}"
 | 
|
354  | 
from A c have "\<Union>c \<in> superfrechet"  | 
|
355  | 
by (rule Union_chain_superfrechet)  | 
|
356  | 
thus "?U" by blast  | 
|
357  | 
qed  | 
|
358  | 
qed  | 
|
359  | 
||
360  | 
lemma (in UFT) mem_superfrechet_all_infinite:  | 
|
361  | 
"\<lbrakk>U \<in> superfrechet; A \<in> U\<rbrakk> \<Longrightarrow> infinite A"  | 
|
362  | 
proof  | 
|
363  | 
assume U: "U \<in> superfrechet" and A: "A \<in> U" and fin: "finite A"  | 
|
364  | 
from U have fil: "filter U" and fre: "frechet \<subseteq> U"  | 
|
365  | 
by (simp_all add: superfrechet_def)  | 
|
366  | 
from fin have "- A \<in> frechet" by (simp add: frechet_def)  | 
|
367  | 
with fre have cA: "- A \<in> U" by (rule subsetD)  | 
|
368  | 
from fil A cA have "A \<inter> - A \<in> U" by (rule filter.Int)  | 
|
369  | 
with fil show "False" by (simp add: filter.empty)  | 
|
370  | 
qed  | 
|
371  | 
||
372  | 
text {* There exists a free ultrafilter on any infinite set *}
 | 
|
373  | 
||
374  | 
lemma (in UFT) freeultrafilter_ex:  | 
|
375  | 
"\<exists>U::'a set set. freeultrafilter U"  | 
|
376  | 
proof -  | 
|
377  | 
from max_cofinite_filter_Ex obtain U  | 
|
378  | 
where U: "U \<in> superfrechet"  | 
|
379  | 
and max [rule_format]: "\<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> U = G" ..  | 
|
380  | 
from U have fil: "filter U" by (rule superfrechetD1)  | 
|
381  | 
from U have fre: "frechet \<subseteq> U" by (rule superfrechetD2)  | 
|
382  | 
have ultra: "ultrafilter_axioms U"  | 
|
383  | 
proof (rule filter.max_filter_ultrafilter [OF fil])  | 
|
384  | 
fix G assume G: "filter G" and UG: "U \<subseteq> G"  | 
|
385  | 
from fre UG have "frechet \<subseteq> G" by simp  | 
|
386  | 
with G have "G \<in> superfrechet" by (rule superfrechetI)  | 
|
387  | 
from this UG show "U = G" by (rule max)  | 
|
388  | 
qed  | 
|
389  | 
have free: "freeultrafilter_axioms U"  | 
|
390  | 
proof (rule freeultrafilter_axioms.intro)  | 
|
391  | 
fix A assume "A \<in> U"  | 
|
392  | 
with U show "infinite A" by (rule mem_superfrechet_all_infinite)  | 
|
393  | 
qed  | 
|
394  | 
show ?thesis  | 
|
395  | 
proof  | 
|
396  | 
from fil ultra free show "freeultrafilter U"  | 
|
397  | 
by (rule freeultrafilter.intro [OF ultrafilter.intro])  | 
|
398  | 
(* FIXME: unfold_locales should use chained facts *)  | 
|
399  | 
qed  | 
|
400  | 
qed  | 
|
401  | 
||
| 27681 | 402  | 
lemmas freeultrafilter_Ex = UFT.freeultrafilter_ex [OF UFT.intro]  | 
| 27468 | 403  | 
|
| 
36176
 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 
wenzelm 
parents: 
28823 
diff
changeset
 | 
404  | 
hide_const (open) filter  | 
| 27468 | 405  | 
|
406  | 
end  |