| author | krauss | 
| Tue, 02 Aug 2011 10:03:12 +0200 | |
| changeset 44011 | f67c93f52d13 | 
| parent 41959 | b460124855b8 | 
| child 50249 | 3f0920f8a24e | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/NSA/HLim.thy  | 
| 41589 | 2  | 
Author: Jacques D. Fleuriot, University of Cambridge  | 
3  | 
Author: Lawrence C Paulson  | 
|
| 27468 | 4  | 
*)  | 
5  | 
||
6  | 
header{* Limits and Continuity (Nonstandard) *}
 | 
|
7  | 
||
8  | 
theory HLim  | 
|
9  | 
imports Star Lim  | 
|
10  | 
begin  | 
|
11  | 
||
12  | 
text{*Nonstandard Definitions*}
 | 
|
13  | 
||
14  | 
definition  | 
|
15  | 
NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"  | 
|
16  | 
            ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
 | 
|
| 37765 | 17  | 
"f -- a --NS> L =  | 
| 27468 | 18  | 
(\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"  | 
19  | 
||
20  | 
definition  | 
|
21  | 
isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where  | 
|
22  | 
    --{*NS definition dispenses with limit notions*}
 | 
|
| 37765 | 23  | 
"isNSCont f a = (\<forall>y. y @= star_of a -->  | 
| 27468 | 24  | 
( *f* f) y @= star_of (f a))"  | 
25  | 
||
26  | 
definition  | 
|
27  | 
isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where  | 
|
| 37765 | 28  | 
"isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"  | 
| 27468 | 29  | 
|
30  | 
||
31  | 
subsection {* Limits of Functions *}
 | 
|
32  | 
||
33  | 
lemma NSLIM_I:  | 
|
34  | 
"(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L)  | 
|
35  | 
\<Longrightarrow> f -- a --NS> L"  | 
|
36  | 
by (simp add: NSLIM_def)  | 
|
37  | 
||
38  | 
lemma NSLIM_D:  | 
|
39  | 
"\<lbrakk>f -- a --NS> L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk>  | 
|
40  | 
\<Longrightarrow> starfun f x \<approx> star_of L"  | 
|
41  | 
by (simp add: NSLIM_def)  | 
|
42  | 
||
43  | 
text{*Proving properties of limits using nonstandard definition.
 | 
|
44  | 
The properties hold for standard limits as well!*}  | 
|
45  | 
||
46  | 
lemma NSLIM_mult:  | 
|
47  | 
fixes l m :: "'a::real_normed_algebra"  | 
|
48  | 
shows "[| f -- x --NS> l; g -- x --NS> m |]  | 
|
49  | 
==> (%x. f(x) * g(x)) -- x --NS> (l * m)"  | 
|
50  | 
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)  | 
|
51  | 
||
52  | 
lemma starfun_scaleR [simp]:  | 
|
53  | 
"starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"  | 
|
54  | 
by transfer (rule refl)  | 
|
55  | 
||
56  | 
lemma NSLIM_scaleR:  | 
|
57  | 
"[| f -- x --NS> l; g -- x --NS> m |]  | 
|
58  | 
==> (%x. f(x) *\<^sub>R g(x)) -- x --NS> (l *\<^sub>R m)"  | 
|
59  | 
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)  | 
|
60  | 
||
61  | 
lemma NSLIM_add:  | 
|
62  | 
"[| f -- x --NS> l; g -- x --NS> m |]  | 
|
63  | 
==> (%x. f(x) + g(x)) -- x --NS> (l + m)"  | 
|
64  | 
by (auto simp add: NSLIM_def intro!: approx_add)  | 
|
65  | 
||
66  | 
lemma NSLIM_const [simp]: "(%x. k) -- x --NS> k"  | 
|
67  | 
by (simp add: NSLIM_def)  | 
|
68  | 
||
69  | 
lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L"  | 
|
70  | 
by (simp add: NSLIM_def)  | 
|
71  | 
||
72  | 
lemma NSLIM_diff:  | 
|
73  | 
"\<lbrakk>f -- x --NS> l; g -- x --NS> m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) -- x --NS> (l - m)"  | 
|
| 37887 | 74  | 
by (simp only: diff_minus NSLIM_add NSLIM_minus)  | 
| 27468 | 75  | 
|
76  | 
lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"  | 
|
77  | 
by (simp only: NSLIM_add NSLIM_minus)  | 
|
78  | 
||
79  | 
lemma NSLIM_inverse:  | 
|
80  | 
fixes L :: "'a::real_normed_div_algebra"  | 
|
81  | 
shows "[| f -- a --NS> L; L \<noteq> 0 |]  | 
|
82  | 
==> (%x. inverse(f(x))) -- a --NS> (inverse L)"  | 
|
83  | 
apply (simp add: NSLIM_def, clarify)  | 
|
84  | 
apply (drule spec)  | 
|
85  | 
apply (auto simp add: star_of_approx_inverse)  | 
|
86  | 
done  | 
|
87  | 
||
88  | 
lemma NSLIM_zero:  | 
|
89  | 
assumes f: "f -- a --NS> l" shows "(%x. f(x) - l) -- a --NS> 0"  | 
|
90  | 
proof -  | 
|
91  | 
have "(\<lambda>x. f x - l) -- a --NS> l - l"  | 
|
92  | 
by (rule NSLIM_diff [OF f NSLIM_const])  | 
|
93  | 
thus ?thesis by simp  | 
|
94  | 
qed  | 
|
95  | 
||
96  | 
lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"  | 
|
97  | 
apply (drule_tac g = "%x. l" and m = l in NSLIM_add)  | 
|
98  | 
apply (auto simp add: diff_minus add_assoc)  | 
|
99  | 
done  | 
|
100  | 
||
101  | 
lemma NSLIM_const_not_eq:  | 
|
102  | 
fixes a :: "'a::real_normed_algebra_1"  | 
|
103  | 
shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> L"  | 
|
104  | 
apply (simp add: NSLIM_def)  | 
|
105  | 
apply (rule_tac x="star_of a + of_hypreal epsilon" in exI)  | 
|
106  | 
apply (simp add: hypreal_epsilon_not_zero approx_def)  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma NSLIM_not_zero:  | 
|
110  | 
fixes a :: "'a::real_normed_algebra_1"  | 
|
111  | 
shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> 0"  | 
|
112  | 
by (rule NSLIM_const_not_eq)  | 
|
113  | 
||
114  | 
lemma NSLIM_const_eq:  | 
|
115  | 
fixes a :: "'a::real_normed_algebra_1"  | 
|
116  | 
shows "(\<lambda>x. k) -- a --NS> L \<Longrightarrow> k = L"  | 
|
117  | 
apply (rule ccontr)  | 
|
118  | 
apply (blast dest: NSLIM_const_not_eq)  | 
|
119  | 
done  | 
|
120  | 
||
121  | 
lemma NSLIM_unique:  | 
|
122  | 
fixes a :: "'a::real_normed_algebra_1"  | 
|
123  | 
shows "\<lbrakk>f -- a --NS> L; f -- a --NS> M\<rbrakk> \<Longrightarrow> L = M"  | 
|
124  | 
apply (drule (1) NSLIM_diff)  | 
|
125  | 
apply (auto dest!: NSLIM_const_eq)  | 
|
126  | 
done  | 
|
127  | 
||
128  | 
lemma NSLIM_mult_zero:  | 
|
129  | 
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"  | 
|
130  | 
shows "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0"  | 
|
131  | 
by (drule NSLIM_mult, auto)  | 
|
132  | 
||
133  | 
lemma NSLIM_self: "(%x. x) -- a --NS> a"  | 
|
134  | 
by (simp add: NSLIM_def)  | 
|
135  | 
||
136  | 
subsubsection {* Equivalence of @{term LIM} and @{term NSLIM} *}
 | 
|
137  | 
||
138  | 
lemma LIM_NSLIM:  | 
|
139  | 
assumes f: "f -- a --> L" shows "f -- a --NS> L"  | 
|
140  | 
proof (rule NSLIM_I)  | 
|
141  | 
fix x  | 
|
142  | 
assume neq: "x \<noteq> star_of a"  | 
|
143  | 
assume approx: "x \<approx> star_of a"  | 
|
144  | 
have "starfun f x - star_of L \<in> Infinitesimal"  | 
|
145  | 
proof (rule InfinitesimalI2)  | 
|
146  | 
fix r::real assume r: "0 < r"  | 
|
147  | 
from LIM_D [OF f r]  | 
|
148  | 
obtain s where s: "0 < s" and  | 
|
149  | 
less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r"  | 
|
150  | 
by fast  | 
|
151  | 
from less_r have less_r':  | 
|
152  | 
"\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk>  | 
|
153  | 
\<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r"  | 
|
154  | 
by transfer  | 
|
155  | 
from approx have "x - star_of a \<in> Infinitesimal"  | 
|
156  | 
by (unfold approx_def)  | 
|
157  | 
hence "hnorm (x - star_of a) < star_of s"  | 
|
158  | 
using s by (rule InfinitesimalD2)  | 
|
159  | 
with neq show "hnorm (starfun f x - star_of L) < star_of r"  | 
|
160  | 
by (rule less_r')  | 
|
161  | 
qed  | 
|
162  | 
thus "starfun f x \<approx> star_of L"  | 
|
163  | 
by (unfold approx_def)  | 
|
164  | 
qed  | 
|
165  | 
||
166  | 
lemma NSLIM_LIM:  | 
|
167  | 
assumes f: "f -- a --NS> L" shows "f -- a --> L"  | 
|
168  | 
proof (rule LIM_I)  | 
|
169  | 
fix r::real assume r: "0 < r"  | 
|
170  | 
have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s  | 
|
171  | 
\<longrightarrow> hnorm (starfun f x - star_of L) < star_of r"  | 
|
172  | 
proof (rule exI, safe)  | 
|
173  | 
show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)  | 
|
174  | 
next  | 
|
175  | 
fix x assume neq: "x \<noteq> star_of a"  | 
|
176  | 
assume "hnorm (x - star_of a) < epsilon"  | 
|
177  | 
with Infinitesimal_epsilon  | 
|
178  | 
have "x - star_of a \<in> Infinitesimal"  | 
|
179  | 
by (rule hnorm_less_Infinitesimal)  | 
|
180  | 
hence "x \<approx> star_of a"  | 
|
181  | 
by (unfold approx_def)  | 
|
182  | 
with f neq have "starfun f x \<approx> star_of L"  | 
|
183  | 
by (rule NSLIM_D)  | 
|
184  | 
hence "starfun f x - star_of L \<in> Infinitesimal"  | 
|
185  | 
by (unfold approx_def)  | 
|
186  | 
thus "hnorm (starfun f x - star_of L) < star_of r"  | 
|
187  | 
using r by (rule InfinitesimalD2)  | 
|
188  | 
qed  | 
|
189  | 
thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"  | 
|
190  | 
by transfer  | 
|
191  | 
qed  | 
|
192  | 
||
193  | 
theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"  | 
|
194  | 
by (blast intro: LIM_NSLIM NSLIM_LIM)  | 
|
195  | 
||
196  | 
||
197  | 
subsection {* Continuity *}
 | 
|
198  | 
||
199  | 
lemma isNSContD:  | 
|
200  | 
"\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)"  | 
|
201  | 
by (simp add: isNSCont_def)  | 
|
202  | 
||
203  | 
lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) "  | 
|
204  | 
by (simp add: isNSCont_def NSLIM_def)  | 
|
205  | 
||
206  | 
lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a"  | 
|
207  | 
apply (simp add: isNSCont_def NSLIM_def, auto)  | 
|
208  | 
apply (case_tac "y = star_of a", auto)  | 
|
209  | 
done  | 
|
210  | 
||
211  | 
text{*NS continuity can be defined using NS Limit in
 | 
|
212  | 
similar fashion to standard def of continuity*}  | 
|
213  | 
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))"  | 
|
214  | 
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)  | 
|
215  | 
||
216  | 
text{*Hence, NS continuity can be given
 | 
|
217  | 
in terms of standard limit*}  | 
|
218  | 
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))"  | 
|
219  | 
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)  | 
|
220  | 
||
221  | 
text{*Moreover, it's trivial now that NS continuity
 | 
|
222  | 
is equivalent to standard continuity*}  | 
|
223  | 
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"  | 
|
224  | 
apply (simp add: isCont_def)  | 
|
225  | 
apply (rule isNSCont_LIM_iff)  | 
|
226  | 
done  | 
|
227  | 
||
228  | 
text{*Standard continuity ==> NS continuity*}
 | 
|
229  | 
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"  | 
|
230  | 
by (erule isNSCont_isCont_iff [THEN iffD2])  | 
|
231  | 
||
232  | 
text{*NS continuity ==> Standard continuity*}
 | 
|
233  | 
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"  | 
|
234  | 
by (erule isNSCont_isCont_iff [THEN iffD1])  | 
|
235  | 
||
236  | 
text{*Alternative definition of continuity*}
 | 
|
237  | 
||
238  | 
(* Prove equivalence between NS limits - *)  | 
|
239  | 
(* seems easier than using standard def *)  | 
|
240  | 
lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)"  | 
|
241  | 
apply (simp add: NSLIM_def, auto)  | 
|
242  | 
apply (drule_tac x = "star_of a + x" in spec)  | 
|
243  | 
apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)  | 
|
244  | 
apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])  | 
|
245  | 
apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])  | 
|
| 37887 | 246  | 
prefer 2 apply (simp add: add_commute diff_minus [symmetric])  | 
| 27468 | 247  | 
apply (rule_tac x = x in star_cases)  | 
248  | 
apply (rule_tac [2] x = x in star_cases)  | 
|
249  | 
apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num)  | 
|
250  | 
done  | 
|
251  | 
||
252  | 
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"  | 
|
253  | 
by (rule NSLIM_h_iff)  | 
|
254  | 
||
255  | 
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"  | 
|
256  | 
by (simp add: isNSCont_def)  | 
|
257  | 
||
258  | 
lemma isNSCont_inverse:  | 
|
259  | 
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"  | 
|
260  | 
shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"  | 
|
261  | 
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)  | 
|
262  | 
||
263  | 
lemma isNSCont_const [simp]: "isNSCont (%x. k) a"  | 
|
264  | 
by (simp add: isNSCont_def)  | 
|
265  | 
||
266  | 
lemma isNSCont_abs [simp]: "isNSCont abs (a::real)"  | 
|
267  | 
apply (simp add: isNSCont_def)  | 
|
268  | 
apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs)  | 
|
269  | 
done  | 
|
270  | 
||
271  | 
||
272  | 
subsection {* Uniform Continuity *}
 | 
|
273  | 
||
274  | 
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"  | 
|
275  | 
by (simp add: isNSUCont_def)  | 
|
276  | 
||
277  | 
lemma isUCont_isNSUCont:  | 
|
278  | 
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"  | 
|
279  | 
assumes f: "isUCont f" shows "isNSUCont f"  | 
|
280  | 
proof (unfold isNSUCont_def, safe)  | 
|
281  | 
fix x y :: "'a star"  | 
|
282  | 
assume approx: "x \<approx> y"  | 
|
283  | 
have "starfun f x - starfun f y \<in> Infinitesimal"  | 
|
284  | 
proof (rule InfinitesimalI2)  | 
|
285  | 
fix r::real assume r: "0 < r"  | 
|
286  | 
with f obtain s where s: "0 < s" and  | 
|
287  | 
less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"  | 
|
| 
31338
 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 
huffman 
parents: 
28562 
diff
changeset
 | 
288  | 
by (auto simp add: isUCont_def dist_norm)  | 
| 27468 | 289  | 
from less_r have less_r':  | 
290  | 
"\<And>x y. hnorm (x - y) < star_of s  | 
|
291  | 
\<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"  | 
|
292  | 
by transfer  | 
|
293  | 
from approx have "x - y \<in> Infinitesimal"  | 
|
294  | 
by (unfold approx_def)  | 
|
295  | 
hence "hnorm (x - y) < star_of s"  | 
|
296  | 
using s by (rule InfinitesimalD2)  | 
|
297  | 
thus "hnorm (starfun f x - starfun f y) < star_of r"  | 
|
298  | 
by (rule less_r')  | 
|
299  | 
qed  | 
|
300  | 
thus "starfun f x \<approx> starfun f y"  | 
|
301  | 
by (unfold approx_def)  | 
|
302  | 
qed  | 
|
303  | 
||
304  | 
lemma isNSUCont_isUCont:  | 
|
305  | 
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"  | 
|
306  | 
assumes f: "isNSUCont f" shows "isUCont f"  | 
|
| 
31338
 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 
huffman 
parents: 
28562 
diff
changeset
 | 
307  | 
proof (unfold isUCont_def dist_norm, safe)  | 
| 27468 | 308  | 
fix r::real assume r: "0 < r"  | 
309  | 
have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s  | 
|
310  | 
\<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"  | 
|
311  | 
proof (rule exI, safe)  | 
|
312  | 
show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)  | 
|
313  | 
next  | 
|
314  | 
fix x y :: "'a star"  | 
|
315  | 
assume "hnorm (x - y) < epsilon"  | 
|
316  | 
with Infinitesimal_epsilon  | 
|
317  | 
have "x - y \<in> Infinitesimal"  | 
|
318  | 
by (rule hnorm_less_Infinitesimal)  | 
|
319  | 
hence "x \<approx> y"  | 
|
320  | 
by (unfold approx_def)  | 
|
321  | 
with f have "starfun f x \<approx> starfun f y"  | 
|
322  | 
by (simp add: isNSUCont_def)  | 
|
323  | 
hence "starfun f x - starfun f y \<in> Infinitesimal"  | 
|
324  | 
by (unfold approx_def)  | 
|
325  | 
thus "hnorm (starfun f x - starfun f y) < star_of r"  | 
|
326  | 
using r by (rule InfinitesimalD2)  | 
|
327  | 
qed  | 
|
328  | 
thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"  | 
|
329  | 
by transfer  | 
|
330  | 
qed  | 
|
331  | 
||
332  | 
end  |