| author | wenzelm | 
| Wed, 08 Aug 2012 11:53:14 +0200 | |
| changeset 48728 | f6bee47063dc | 
| parent 42768 | 4db4a8b164c1 | 
| permissions | -rw-r--r-- | 
| 35849 | 1  | 
(* Author: Clemens Ballarin, started 23 June 1999  | 
2  | 
||
3  | 
Experimental theory: long division of polynomials.  | 
|
| 7998 | 4  | 
*)  | 
5  | 
||
| 35849 | 6  | 
theory LongDiv  | 
7  | 
imports PolyHomo  | 
|
8  | 
begin  | 
|
| 7998 | 9  | 
|
| 21423 | 10  | 
definition  | 
11  | 
lcoeff :: "'a::ring up => 'a" where  | 
|
12  | 
"lcoeff p = coeff p (deg p)"  | 
|
| 7998 | 13  | 
|
| 21423 | 14  | 
definition  | 
15  | 
eucl_size :: "'a::zero up => nat" where  | 
|
16  | 
"eucl_size p = (if p = 0 then 0 else deg p + 1)"  | 
|
| 14723 | 17  | 
|
18  | 
lemma SUM_shrink_below_lemma:  | 
|
19  | 
"!! f::(nat=>'a::ring). (ALL i. i < m --> f i = 0) -->  | 
|
20  | 
  setsum (%i. f (i+m)) {..d} = setsum f {..m+d}"
 | 
|
21  | 
apply (induct_tac d)  | 
|
| 15481 | 22  | 
apply (induct_tac m)  | 
| 21423 | 23  | 
apply simp  | 
24  | 
apply force  | 
|
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
21423 
diff
changeset
 | 
25  | 
apply (simp add: add_commute [of m])  | 
| 21423 | 26  | 
done  | 
27  | 
||
28  | 
lemma SUM_extend_below:  | 
|
29  | 
"!! f::(nat=>'a::ring).  | 
|
30  | 
     [| m <= n; !!i. i < m ==> f i = 0; P (setsum (%i. f (i+m)) {..n-m}) |]  
 | 
|
31  | 
     ==> P (setsum f {..n})"
 | 
|
32  | 
by (simp add: SUM_shrink_below_lemma add_diff_inverse leD)  | 
|
33  | 
||
34  | 
lemma up_repr2D:  | 
|
35  | 
"!! p::'a::ring up.  | 
|
36  | 
   [| deg p <= n; P (setsum (%i. monom (coeff p i) i) {..n}) |]  
 | 
|
37  | 
==> P p"  | 
|
38  | 
by (simp add: up_repr_le)  | 
|
39  | 
||
40  | 
||
41  | 
(* Start of LongDiv *)  | 
|
42  | 
||
43  | 
lemma deg_lcoeff_cancel:  | 
|
44  | 
  "!!p::('a::ring up).  
 | 
|
45  | 
[| deg p <= deg r; deg q <= deg r;  | 
|
46  | 
coeff p (deg r) = - (coeff q (deg r)); deg r ~= 0 |] ==>  | 
|
47  | 
deg (p + q) < deg r"  | 
|
| 
24742
 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 
paulson 
parents: 
22384 
diff
changeset
 | 
48  | 
apply (rule le_less_trans [of _ "deg r - 1"])  | 
| 21423 | 49  | 
prefer 2  | 
50  | 
apply arith  | 
|
51  | 
apply (rule deg_aboveI)  | 
|
52  | 
apply (case_tac "deg r = m")  | 
|
53  | 
apply clarify  | 
|
54  | 
apply simp  | 
|
55  | 
(* case "deg q ~= m" *)  | 
|
56  | 
apply (subgoal_tac "deg p < m & deg q < m")  | 
|
57  | 
apply (simp (no_asm_simp) add: deg_aboveD)  | 
|
58  | 
apply arith  | 
|
59  | 
done  | 
|
60  | 
||
61  | 
lemma deg_lcoeff_cancel2:  | 
|
62  | 
  "!!p::('a::ring up).  
 | 
|
63  | 
[| deg p <= deg r; deg q <= deg r;  | 
|
64  | 
p ~= -q; coeff p (deg r) = - (coeff q (deg r)) |] ==>  | 
|
65  | 
deg (p + q) < deg r"  | 
|
66  | 
apply (rule deg_lcoeff_cancel)  | 
|
67  | 
apply assumption+  | 
|
68  | 
apply (rule classical)  | 
|
69  | 
apply clarify  | 
|
70  | 
apply (erule notE)  | 
|
71  | 
apply (rule_tac p = p in up_repr2D, assumption)  | 
|
72  | 
apply (rule_tac p = q in up_repr2D, assumption)  | 
|
73  | 
apply (rotate_tac -1)  | 
|
74  | 
apply (simp add: smult_l_minus)  | 
|
75  | 
done  | 
|
76  | 
||
77  | 
lemma long_div_eucl_size:  | 
|
78  | 
  "!!g::('a::ring up). g ~= 0 ==>  
 | 
|
79  | 
Ex (% (q, r, k).  | 
|
80  | 
(lcoeff g)^k *s f = q * g + r & (eucl_size r < eucl_size g))"  | 
|
81  | 
apply (rule_tac P = "%f. Ex (% (q, r, k) . (lcoeff g) ^k *s f = q * g + r & (eucl_size r < eucl_size g))" in wf_induct)  | 
|
82  | 
(* TO DO: replace by measure_induct *)  | 
|
83  | 
apply (rule_tac f = eucl_size in wf_measure)  | 
|
84  | 
apply (case_tac "eucl_size x < eucl_size g")  | 
|
85  | 
apply (rule_tac x = "(0, x, 0)" in exI)  | 
|
86  | 
apply (simp (no_asm_simp))  | 
|
87  | 
(* case "eucl_size x >= eucl_size g" *)  | 
|
88  | 
apply (drule_tac x = "lcoeff g *s x - (monom (lcoeff x) (deg x - deg g)) * g" in spec)  | 
|
89  | 
apply (erule impE)  | 
|
90  | 
apply (simp (no_asm_use) add: inv_image_def measure_def lcoeff_def)  | 
|
91  | 
apply (case_tac "x = 0")  | 
|
92  | 
apply (rotate_tac -1)  | 
|
93  | 
apply (simp add: eucl_size_def)  | 
|
94  | 
(* case "x ~= 0 *)  | 
|
95  | 
apply (rotate_tac -1)  | 
|
96  | 
apply (simp add: eucl_size_def)  | 
|
97  | 
apply (rule impI)  | 
|
98  | 
apply (rule deg_lcoeff_cancel2)  | 
|
99  | 
(* replace by linear arithmetic??? *)  | 
|
100  | 
apply (rule_tac [2] le_trans)  | 
|
101  | 
apply (rule_tac [2] deg_smult_ring)  | 
|
102  | 
prefer 2  | 
|
103  | 
apply simp  | 
|
104  | 
apply (simp (no_asm))  | 
|
105  | 
apply (rule le_trans)  | 
|
106  | 
apply (rule deg_mult_ring)  | 
|
107  | 
apply (rule le_trans)  | 
|
108  | 
(**)  | 
|
109  | 
apply (rule add_le_mono)  | 
|
110  | 
apply (rule le_refl)  | 
|
111  | 
(* term order forces to use this instead of add_le_mono1 *)  | 
|
112  | 
apply (rule deg_monom_ring)  | 
|
113  | 
apply (simp (no_asm_simp))  | 
|
114  | 
apply force  | 
|
115  | 
apply (simp (no_asm))  | 
|
116  | 
(**)  | 
|
117  | 
(* This change is probably caused by application of commutativity *)  | 
|
118  | 
apply (rule_tac m = "deg g" and n = "deg x" in SUM_extend)  | 
|
119  | 
apply (simp (no_asm))  | 
|
120  | 
apply (simp (no_asm_simp))  | 
|
121  | 
apply arith  | 
|
122  | 
apply (rule_tac m = "deg g" and n = "deg g" in SUM_extend_below)  | 
|
123  | 
apply (rule le_refl)  | 
|
124  | 
apply (simp (no_asm_simp))  | 
|
125  | 
apply arith  | 
|
126  | 
apply (simp (no_asm))  | 
|
127  | 
(**)  | 
|
128  | 
(* end of subproof deg f1 < deg f *)  | 
|
129  | 
apply (erule exE)  | 
|
130  | 
apply (rule_tac x = "((% (q,r,k) . (monom (lcoeff g ^ k * lcoeff x) (deg x - deg g) + q)) xa, (% (q,r,k) . r) xa, (% (q,r,k) . Suc k) xa) " in exI)  | 
|
131  | 
apply clarify  | 
|
132  | 
apply (drule sym)  | 
|
| 42768 | 133  | 
using [[simproc del: ring]]  | 
134  | 
apply (simp (no_asm_use) add: l_distr a_assoc)  | 
|
135  | 
apply (simp (no_asm_simp))  | 
|
136  | 
apply (simp (no_asm_use) add: minus_def smult_r_distr smult_r_minus  | 
|
137  | 
monom_mult_smult smult_assoc2)  | 
|
138  | 
using [[simproc ring]]  | 
|
| 
30968
 
10fef94f40fc
adaptions due to rearrangment of power operation
 
haftmann 
parents: 
27214 
diff
changeset
 | 
139  | 
apply (simp add: smult_assoc1 [symmetric])  | 
| 21423 | 140  | 
done  | 
141  | 
||
| 42768 | 142  | 
lemma long_div_ring_aux:  | 
143  | 
"(g :: 'a::ring up) ~= 0 ==>  | 
|
144  | 
Ex (\<lambda>(q, r, k). lcoeff g ^ k *s f = q * g + r \<and>  | 
|
145  | 
(if r = 0 then 0 else deg r + 1) < (if g = 0 then 0 else deg g + 1))"  | 
|
146  | 
proof -  | 
|
147  | 
note [[simproc del: ring]]  | 
|
148  | 
assume "g ~= 0"  | 
|
149  | 
then show ?thesis  | 
|
150  | 
by (rule long_div_eucl_size [simplified eucl_size_def])  | 
|
151  | 
qed  | 
|
| 21423 | 152  | 
|
153  | 
lemma long_div_ring:  | 
|
154  | 
  "!!g::('a::ring up). g ~= 0 ==>  
 | 
|
155  | 
Ex (% (q, r, k).  | 
|
156  | 
(lcoeff g)^k *s f = q * g + r & (r = 0 | deg r < deg g))"  | 
|
| 27214 | 157  | 
apply (frule_tac f = f in long_div_ring_aux)  | 
| 42768 | 158  | 
using [[simproc del: ring]]  | 
159  | 
apply auto  | 
|
| 21423 | 160  | 
apply (case_tac "aa = 0")  | 
161  | 
apply blast  | 
|
162  | 
(* case "aa ~= 0 *)  | 
|
163  | 
apply (rotate_tac -1)  | 
|
164  | 
apply auto  | 
|
165  | 
done  | 
|
166  | 
||
167  | 
(* Next one fails *)  | 
|
168  | 
lemma long_div_unit:  | 
|
169  | 
  "!!g::('a::ring up). [| g ~= 0; (lcoeff g) dvd 1 |] ==>  
 | 
|
170  | 
Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))"  | 
|
171  | 
apply (frule_tac f = "f" in long_div_ring)  | 
|
172  | 
apply (erule exE)  | 
|
173  | 
apply (rule_tac x = "((% (q,r,k) . (inverse (lcoeff g ^k) *s q)) x, (% (q,r,k) . inverse (lcoeff g ^k) *s r) x) " in exI)  | 
|
174  | 
apply clarify  | 
|
175  | 
apply (rule conjI)  | 
|
176  | 
apply (drule sym)  | 
|
| 42768 | 177  | 
using [[simproc del: ring]]  | 
178  | 
apply (simp (no_asm_simp) add: smult_r_distr [symmetric] smult_assoc2)  | 
|
179  | 
using [[simproc ring]]  | 
|
| 21423 | 180  | 
apply (simp (no_asm_simp) add: l_inverse_ring unit_power smult_assoc1 [symmetric])  | 
181  | 
(* degree property *)  | 
|
182  | 
apply (erule disjE)  | 
|
183  | 
apply (simp (no_asm_simp))  | 
|
184  | 
apply (rule disjI2)  | 
|
185  | 
apply (rule le_less_trans)  | 
|
186  | 
apply (rule deg_smult_ring)  | 
|
187  | 
apply (simp (no_asm_simp))  | 
|
188  | 
done  | 
|
189  | 
||
190  | 
lemma long_div_theorem:  | 
|
191  | 
  "!!g::('a::field up). g ~= 0 ==>  
 | 
|
192  | 
Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))"  | 
|
193  | 
apply (rule long_div_unit)  | 
|
194  | 
apply assumption  | 
|
195  | 
apply (simp (no_asm_simp) add: lcoeff_def lcoeff_nonzero field_ax)  | 
|
196  | 
done  | 
|
197  | 
||
198  | 
lemma uminus_zero: "- (0::'a::ring) = 0"  | 
|
199  | 
by simp  | 
|
200  | 
||
201  | 
lemma diff_zero_imp_eq: "!!a::'a::ring. a - b = 0 ==> a = b"  | 
|
202  | 
apply (rule_tac s = "a - (a - b) " in trans)  | 
|
203  | 
apply simp  | 
|
204  | 
apply (simp (no_asm))  | 
|
205  | 
done  | 
|
206  | 
||
207  | 
lemma eq_imp_diff_zero: "!!a::'a::ring. a = b ==> a + (-b) = 0"  | 
|
208  | 
by simp  | 
|
209  | 
||
210  | 
lemma long_div_quo_unique:  | 
|
211  | 
  "!!g::('a::field up). [| g ~= 0;  
 | 
|
212  | 
f = q1 * g + r1; (r1 = 0 | deg r1 < deg g);  | 
|
213  | 
f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> q1 = q2"  | 
|
214  | 
apply (subgoal_tac "(q1 - q2) * g = r2 - r1") (* 1 *)  | 
|
215  | 
apply (erule_tac V = "f = ?x" in thin_rl)  | 
|
216  | 
apply (erule_tac V = "f = ?x" in thin_rl)  | 
|
217  | 
apply (rule diff_zero_imp_eq)  | 
|
218  | 
apply (rule classical)  | 
|
219  | 
apply (erule disjE)  | 
|
220  | 
(* r1 = 0 *)  | 
|
221  | 
apply (erule disjE)  | 
|
222  | 
(* r2 = 0 *)  | 
|
| 42768 | 223  | 
using [[simproc del: ring]]  | 
224  | 
apply (simp add: integral_iff minus_def l_zero uminus_zero)  | 
|
| 21423 | 225  | 
(* r2 ~= 0 *)  | 
226  | 
apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)  | 
|
| 42768 | 227  | 
apply (simp add: minus_def l_zero uminus_zero)  | 
| 21423 | 228  | 
(* r1 ~=0 *)  | 
229  | 
apply (erule disjE)  | 
|
230  | 
(* r2 = 0 *)  | 
|
231  | 
apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)  | 
|
| 42768 | 232  | 
apply (simp add: minus_def l_zero uminus_zero)  | 
| 21423 | 233  | 
(* r2 ~= 0 *)  | 
234  | 
apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)  | 
|
| 42768 | 235  | 
apply (simp add: minus_def)  | 
| 21423 | 236  | 
apply (drule order_eq_refl [THEN add_leD2])  | 
237  | 
apply (drule leD)  | 
|
238  | 
apply (erule notE, rule deg_add [THEN le_less_trans])  | 
|
239  | 
apply (simp (no_asm_simp))  | 
|
240  | 
(* proof of 1 *)  | 
|
241  | 
apply (rule diff_zero_imp_eq)  | 
|
242  | 
apply hypsubst  | 
|
243  | 
apply (drule_tac a = "?x+?y" in eq_imp_diff_zero)  | 
|
| 42768 | 244  | 
using [[simproc ring]]  | 
| 21423 | 245  | 
apply simp  | 
246  | 
done  | 
|
247  | 
||
248  | 
lemma long_div_rem_unique:  | 
|
249  | 
  "!!g::('a::field up). [| g ~= 0;  
 | 
|
250  | 
f = q1 * g + r1; (r1 = 0 | deg r1 < deg g);  | 
|
251  | 
f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> r1 = r2"  | 
|
252  | 
apply (subgoal_tac "q1 = q2")  | 
|
| 
24742
 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 
paulson 
parents: 
22384 
diff
changeset
 | 
253  | 
apply (metis a_comm a_lcancel m_comm)  | 
| 
 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 
paulson 
parents: 
22384 
diff
changeset
 | 
254  | 
apply (metis a_comm l_zero long_div_quo_unique m_comm conc)  | 
| 14723 | 255  | 
done  | 
| 7998 | 256  | 
|
257  | 
end  |