| author | wenzelm | 
| Thu, 19 Aug 2010 22:26:15 +0200 | |
| changeset 38563 | f6c9a4f9f66f | 
| parent 35123 | e286d5df187a | 
| child 45703 | c7a13ce60161 | 
| permissions | -rw-r--r-- | 
| 23146 | 1 | (* Title: ZF/Bin.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1994 University of Cambridge | |
| 4 | ||
| 5 | The sign Pls stands for an infinite string of leading 0's. | |
| 6 | The sign Min stands for an infinite string of leading 1's. | |
| 7 | ||
| 8 | A number can have multiple representations, namely leading 0's with sign | |
| 9 | Pls and leading 1's with sign Min. See twos-compl.ML/int_of_binary for | |
| 10 | the numerical interpretation. | |
| 11 | ||
| 12 | The representation expects that (m mod 2) is 0 or 1, even if m is negative; | |
| 13 | For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1 | |
| 14 | *) | |
| 15 | ||
| 16 | header{*Arithmetic on Binary Integers*}
 | |
| 17 | ||
| 18 | theory Bin | |
| 26056 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 krauss parents: 
24893diff
changeset | 19 | imports Int_ZF Datatype_ZF | 
| 26190 | 20 | uses ("Tools/numeral_syntax.ML")
 | 
| 23146 | 21 | begin | 
| 22 | ||
| 23 | consts bin :: i | |
| 24 | datatype | |
| 25 | "bin" = Pls | |
| 26 | | Min | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26190diff
changeset | 27 |         | Bit ("w: bin", "b: bool")     (infixl "BIT" 90)
 | 
| 23146 | 28 | |
| 29 | consts | |
| 30 | integ_of :: "i=>i" | |
| 31 | NCons :: "[i,i]=>i" | |
| 32 | bin_succ :: "i=>i" | |
| 33 | bin_pred :: "i=>i" | |
| 34 | bin_minus :: "i=>i" | |
| 35 | bin_adder :: "i=>i" | |
| 36 | bin_mult :: "[i,i]=>i" | |
| 37 | ||
| 38 | primrec | |
| 39 | integ_of_Pls: "integ_of (Pls) = $# 0" | |
| 40 | integ_of_Min: "integ_of (Min) = $-($#1)" | |
| 41 | integ_of_BIT: "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)" | |
| 42 | ||
| 43 | (** recall that cond(1,b,c)=b and cond(0,b,c)=0 **) | |
| 44 | ||
| 45 | primrec (*NCons adds a bit, suppressing leading 0s and 1s*) | |
| 46 | NCons_Pls: "NCons (Pls,b) = cond(b,Pls BIT b,Pls)" | |
| 47 | NCons_Min: "NCons (Min,b) = cond(b,Min,Min BIT b)" | |
| 48 | NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b" | |
| 49 | ||
| 50 | primrec (*successor. If a BIT, can change a 0 to a 1 without recursion.*) | |
| 51 | bin_succ_Pls: "bin_succ (Pls) = Pls BIT 1" | |
| 52 | bin_succ_Min: "bin_succ (Min) = Pls" | |
| 53 | bin_succ_BIT: "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))" | |
| 54 | ||
| 55 | primrec (*predecessor*) | |
| 56 | bin_pred_Pls: "bin_pred (Pls) = Min" | |
| 57 | bin_pred_Min: "bin_pred (Min) = Min BIT 0" | |
| 58 | bin_pred_BIT: "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)" | |
| 59 | ||
| 60 | primrec (*unary negation*) | |
| 61 | bin_minus_Pls: | |
| 62 | "bin_minus (Pls) = Pls" | |
| 63 | bin_minus_Min: | |
| 64 | "bin_minus (Min) = Pls BIT 1" | |
| 65 | bin_minus_BIT: | |
| 66 | "bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)), | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26190diff
changeset | 67 | bin_minus(w) BIT 0)" | 
| 23146 | 68 | |
| 69 | primrec (*sum*) | |
| 70 | bin_adder_Pls: | |
| 71 | "bin_adder (Pls) = (lam w:bin. w)" | |
| 72 | bin_adder_Min: | |
| 73 | "bin_adder (Min) = (lam w:bin. bin_pred(w))" | |
| 74 | bin_adder_BIT: | |
| 75 | "bin_adder (v BIT x) = | |
| 76 | (lam w:bin. | |
| 77 | bin_case (v BIT x, bin_pred(v BIT x), | |
| 78 | %w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w), | |
| 79 | x xor y), | |
| 80 | w))" | |
| 81 | ||
| 82 | (*The bin_case above replaces the following mutually recursive function: | |
| 83 | primrec | |
| 84 | "adding (v,x,Pls) = v BIT x" | |
| 85 | "adding (v,x,Min) = bin_pred(v BIT x)" | |
| 86 | "adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)), | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26190diff
changeset | 87 | x xor y)" | 
| 23146 | 88 | *) | 
| 89 | ||
| 24893 | 90 | definition | 
| 91 | bin_add :: "[i,i]=>i" where | |
| 23146 | 92 | "bin_add(v,w) == bin_adder(v)`w" | 
| 93 | ||
| 94 | ||
| 95 | primrec | |
| 96 | bin_mult_Pls: | |
| 97 | "bin_mult (Pls,w) = Pls" | |
| 98 | bin_mult_Min: | |
| 99 | "bin_mult (Min,w) = bin_minus(w)" | |
| 100 | bin_mult_BIT: | |
| 101 | "bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w), | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26190diff
changeset | 102 | NCons(bin_mult(v,w),0))" | 
| 23146 | 103 | |
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32960diff
changeset | 104 | syntax | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32960diff
changeset | 105 |   "_Int"    :: "xnum => i"        ("_")
 | 
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32960diff
changeset | 106 | |
| 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
32960diff
changeset | 107 | use "Tools/numeral_syntax.ML" | 
| 35123 | 108 | setup Numeral_Syntax.setup | 
| 23146 | 109 | |
| 110 | ||
| 111 | declare bin.intros [simp,TC] | |
| 112 | ||
| 113 | lemma NCons_Pls_0: "NCons(Pls,0) = Pls" | |
| 114 | by simp | |
| 115 | ||
| 116 | lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1" | |
| 117 | by simp | |
| 118 | ||
| 119 | lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0" | |
| 120 | by simp | |
| 121 | ||
| 122 | lemma NCons_Min_1: "NCons(Min,1) = Min" | |
| 123 | by simp | |
| 124 | ||
| 125 | lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b" | |
| 126 | by (simp add: bin.case_eqns) | |
| 127 | ||
| 128 | lemmas NCons_simps [simp] = | |
| 129 | NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT | |
| 130 | ||
| 131 | ||
| 132 | ||
| 133 | (** Type checking **) | |
| 134 | ||
| 135 | lemma integ_of_type [TC]: "w: bin ==> integ_of(w) : int" | |
| 136 | apply (induct_tac "w") | |
| 137 | apply (simp_all add: bool_into_nat) | |
| 138 | done | |
| 139 | ||
| 140 | lemma NCons_type [TC]: "[| w: bin; b: bool |] ==> NCons(w,b) : bin" | |
| 141 | by (induct_tac "w", auto) | |
| 142 | ||
| 143 | lemma bin_succ_type [TC]: "w: bin ==> bin_succ(w) : bin" | |
| 144 | by (induct_tac "w", auto) | |
| 145 | ||
| 146 | lemma bin_pred_type [TC]: "w: bin ==> bin_pred(w) : bin" | |
| 147 | by (induct_tac "w", auto) | |
| 148 | ||
| 149 | lemma bin_minus_type [TC]: "w: bin ==> bin_minus(w) : bin" | |
| 150 | by (induct_tac "w", auto) | |
| 151 | ||
| 152 | (*This proof is complicated by the mutual recursion*) | |
| 153 | lemma bin_add_type [rule_format,TC]: | |
| 154 | "v: bin ==> ALL w: bin. bin_add(v,w) : bin" | |
| 155 | apply (unfold bin_add_def) | |
| 156 | apply (induct_tac "v") | |
| 157 | apply (rule_tac [3] ballI) | |
| 158 | apply (rename_tac [3] "w'") | |
| 159 | apply (induct_tac [3] "w'") | |
| 160 | apply (simp_all add: NCons_type) | |
| 161 | done | |
| 162 | ||
| 163 | lemma bin_mult_type [TC]: "[| v: bin; w: bin |] ==> bin_mult(v,w) : bin" | |
| 164 | by (induct_tac "v", auto) | |
| 165 | ||
| 166 | ||
| 167 | subsubsection{*The Carry and Borrow Functions, 
 | |
| 168 |             @{term bin_succ} and @{term bin_pred}*}
 | |
| 169 | ||
| 170 | (*NCons preserves the integer value of its argument*) | |
| 171 | lemma integ_of_NCons [simp]: | |
| 172 | "[| w: bin; b: bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)" | |
| 173 | apply (erule bin.cases) | |
| 174 | apply (auto elim!: boolE) | |
| 175 | done | |
| 176 | ||
| 177 | lemma integ_of_succ [simp]: | |
| 178 | "w: bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)" | |
| 179 | apply (erule bin.induct) | |
| 180 | apply (auto simp add: zadd_ac elim!: boolE) | |
| 181 | done | |
| 182 | ||
| 183 | lemma integ_of_pred [simp]: | |
| 184 | "w: bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)" | |
| 185 | apply (erule bin.induct) | |
| 186 | apply (auto simp add: zadd_ac elim!: boolE) | |
| 187 | done | |
| 188 | ||
| 189 | ||
| 190 | subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*}
 | |
| 191 | ||
| 192 | lemma integ_of_minus: "w: bin ==> integ_of(bin_minus(w)) = $- integ_of(w)" | |
| 193 | apply (erule bin.induct) | |
| 194 | apply (auto simp add: zadd_ac zminus_zadd_distrib elim!: boolE) | |
| 195 | done | |
| 196 | ||
| 197 | ||
| 198 | subsubsection{*@{term bin_add}: Binary Addition*}
 | |
| 199 | ||
| 200 | lemma bin_add_Pls [simp]: "w: bin ==> bin_add(Pls,w) = w" | |
| 201 | by (unfold bin_add_def, simp) | |
| 202 | ||
| 203 | lemma bin_add_Pls_right: "w: bin ==> bin_add(w,Pls) = w" | |
| 204 | apply (unfold bin_add_def) | |
| 205 | apply (erule bin.induct, auto) | |
| 206 | done | |
| 207 | ||
| 208 | lemma bin_add_Min [simp]: "w: bin ==> bin_add(Min,w) = bin_pred(w)" | |
| 209 | by (unfold bin_add_def, simp) | |
| 210 | ||
| 211 | lemma bin_add_Min_right: "w: bin ==> bin_add(w,Min) = bin_pred(w)" | |
| 212 | apply (unfold bin_add_def) | |
| 213 | apply (erule bin.induct, auto) | |
| 214 | done | |
| 215 | ||
| 216 | lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x" | |
| 217 | by (unfold bin_add_def, simp) | |
| 218 | ||
| 219 | lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)" | |
| 220 | by (unfold bin_add_def, simp) | |
| 221 | ||
| 222 | lemma bin_add_BIT_BIT [simp]: | |
| 223 | "[| w: bin; y: bool |] | |
| 224 | ==> bin_add(v BIT x, w BIT y) = | |
| 225 | NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)" | |
| 226 | by (unfold bin_add_def, simp) | |
| 227 | ||
| 228 | lemma integ_of_add [rule_format]: | |
| 229 | "v: bin ==> | |
| 230 | ALL w: bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)" | |
| 231 | apply (erule bin.induct, simp, simp) | |
| 232 | apply (rule ballI) | |
| 233 | apply (induct_tac "wa") | |
| 234 | apply (auto simp add: zadd_ac elim!: boolE) | |
| 235 | done | |
| 236 | ||
| 237 | (*Subtraction*) | |
| 238 | lemma diff_integ_of_eq: | |
| 239 | "[| v: bin; w: bin |] | |
| 240 | ==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))" | |
| 241 | apply (unfold zdiff_def) | |
| 242 | apply (simp add: integ_of_add integ_of_minus) | |
| 243 | done | |
| 244 | ||
| 245 | ||
| 246 | subsubsection{*@{term bin_mult}: Binary Multiplication*}
 | |
| 247 | ||
| 248 | lemma integ_of_mult: | |
| 249 | "[| v: bin; w: bin |] | |
| 250 | ==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)" | |
| 251 | apply (induct_tac "v", simp) | |
| 252 | apply (simp add: integ_of_minus) | |
| 253 | apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib elim!: boolE) | |
| 254 | done | |
| 255 | ||
| 256 | ||
| 257 | subsection{*Computations*}
 | |
| 258 | ||
| 259 | (** extra rules for bin_succ, bin_pred **) | |
| 260 | ||
| 261 | lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0" | |
| 262 | by simp | |
| 263 | ||
| 264 | lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)" | |
| 265 | by simp | |
| 266 | ||
| 267 | lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)" | |
| 268 | by simp | |
| 269 | ||
| 270 | lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1" | |
| 271 | by simp | |
| 272 | ||
| 273 | (** extra rules for bin_minus **) | |
| 274 | ||
| 275 | lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))" | |
| 276 | by simp | |
| 277 | ||
| 278 | lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0" | |
| 279 | by simp | |
| 280 | ||
| 281 | (** extra rules for bin_add **) | |
| 282 | ||
| 283 | lemma bin_add_BIT_11: "w: bin ==> bin_add(v BIT 1, w BIT 1) = | |
| 284 | NCons(bin_add(v, bin_succ(w)), 0)" | |
| 285 | by simp | |
| 286 | ||
| 287 | lemma bin_add_BIT_10: "w: bin ==> bin_add(v BIT 1, w BIT 0) = | |
| 288 | NCons(bin_add(v,w), 1)" | |
| 289 | by simp | |
| 290 | ||
| 291 | lemma bin_add_BIT_0: "[| w: bin; y: bool |] | |
| 292 | ==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)" | |
| 293 | by simp | |
| 294 | ||
| 295 | (** extra rules for bin_mult **) | |
| 296 | ||
| 297 | lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)" | |
| 298 | by simp | |
| 299 | ||
| 300 | lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)" | |
| 301 | by simp | |
| 302 | ||
| 303 | ||
| 304 | (** Simplification rules with integer constants **) | |
| 305 | ||
| 306 | lemma int_of_0: "$#0 = #0" | |
| 307 | by simp | |
| 308 | ||
| 309 | lemma int_of_succ: "$# succ(n) = #1 $+ $#n" | |
| 310 | by (simp add: int_of_add [symmetric] natify_succ) | |
| 311 | ||
| 312 | lemma zminus_0 [simp]: "$- #0 = #0" | |
| 313 | by simp | |
| 314 | ||
| 315 | lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)" | |
| 316 | by simp | |
| 317 | ||
| 318 | lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)" | |
| 319 | by simp | |
| 320 | ||
| 321 | lemma zmult_1_intify [simp]: "#1 $* z = intify(z)" | |
| 322 | by simp | |
| 323 | ||
| 324 | lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)" | |
| 325 | by (subst zmult_commute, simp) | |
| 326 | ||
| 327 | lemma zmult_0 [simp]: "#0 $* z = #0" | |
| 328 | by simp | |
| 329 | ||
| 330 | lemma zmult_0_right [simp]: "z $* #0 = #0" | |
| 331 | by (subst zmult_commute, simp) | |
| 332 | ||
| 333 | lemma zmult_minus1 [simp]: "#-1 $* z = $-z" | |
| 334 | by (simp add: zcompare_rls) | |
| 335 | ||
| 336 | lemma zmult_minus1_right [simp]: "z $* #-1 = $-z" | |
| 337 | apply (subst zmult_commute) | |
| 338 | apply (rule zmult_minus1) | |
| 339 | done | |
| 340 | ||
| 341 | ||
| 342 | subsection{*Simplification Rules for Comparison of Binary Numbers*}
 | |
| 343 | text{*Thanks to Norbert Voelker*}
 | |
| 344 | ||
| 345 | (** Equals (=) **) | |
| 346 | ||
| 347 | lemma eq_integ_of_eq: | |
| 348 | "[| v: bin; w: bin |] | |
| 349 | ==> ((integ_of(v)) = integ_of(w)) <-> | |
| 350 | iszero (integ_of (bin_add (v, bin_minus(w))))" | |
| 351 | apply (unfold iszero_def) | |
| 352 | apply (simp add: zcompare_rls integ_of_add integ_of_minus) | |
| 353 | done | |
| 354 | ||
| 355 | lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))" | |
| 356 | by (unfold iszero_def, simp) | |
| 357 | ||
| 358 | ||
| 359 | lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))" | |
| 360 | apply (unfold iszero_def) | |
| 361 | apply (simp add: zminus_equation) | |
| 362 | done | |
| 363 | ||
| 364 | lemma iszero_integ_of_BIT: | |
| 365 | "[| w: bin; x: bool |] | |
| 366 | ==> iszero (integ_of (w BIT x)) <-> (x=0 & iszero (integ_of(w)))" | |
| 367 | apply (unfold iszero_def, simp) | |
| 368 | apply (subgoal_tac "integ_of (w) : int") | |
| 369 | apply typecheck | |
| 370 | apply (drule int_cases) | |
| 371 | apply (safe elim!: boolE) | |
| 372 | apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric] | |
| 373 | int_of_add [symmetric]) | |
| 374 | done | |
| 375 | ||
| 376 | lemma iszero_integ_of_0: | |
| 377 | "w: bin ==> iszero (integ_of (w BIT 0)) <-> iszero (integ_of(w))" | |
| 378 | by (simp only: iszero_integ_of_BIT, blast) | |
| 379 | ||
| 380 | lemma iszero_integ_of_1: "w: bin ==> ~ iszero (integ_of (w BIT 1))" | |
| 381 | by (simp only: iszero_integ_of_BIT, blast) | |
| 382 | ||
| 383 | ||
| 384 | ||
| 385 | (** Less-than (<) **) | |
| 386 | ||
| 387 | lemma less_integ_of_eq_neg: | |
| 388 | "[| v: bin; w: bin |] | |
| 389 | ==> integ_of(v) $< integ_of(w) | |
| 390 | <-> znegative (integ_of (bin_add (v, bin_minus(w))))" | |
| 391 | apply (unfold zless_def zdiff_def) | |
| 392 | apply (simp add: integ_of_minus integ_of_add) | |
| 393 | done | |
| 394 | ||
| 395 | lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))" | |
| 396 | by simp | |
| 397 | ||
| 398 | lemma neg_integ_of_Min: "znegative (integ_of(Min))" | |
| 399 | by simp | |
| 400 | ||
| 401 | lemma neg_integ_of_BIT: | |
| 402 | "[| w: bin; x: bool |] | |
| 403 | ==> znegative (integ_of (w BIT x)) <-> znegative (integ_of(w))" | |
| 404 | apply simp | |
| 405 | apply (subgoal_tac "integ_of (w) : int") | |
| 406 | apply typecheck | |
| 407 | apply (drule int_cases) | |
| 408 | apply (auto elim!: boolE simp add: int_of_add [symmetric] zcompare_rls) | |
| 409 | apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def | |
| 410 | int_of_add [symmetric]) | |
| 411 | apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ") | |
| 412 | apply (simp add: zdiff_def) | |
| 413 | apply (simp add: equation_zminus int_of_diff [symmetric]) | |
| 414 | done | |
| 415 | ||
| 416 | (** Less-than-or-equals (<=) **) | |
| 417 | ||
| 418 | lemma le_integ_of_eq_not_less: | |
| 419 | "(integ_of(x) $<= (integ_of(w))) <-> ~ (integ_of(w) $< (integ_of(x)))" | |
| 420 | by (simp add: not_zless_iff_zle [THEN iff_sym]) | |
| 421 | ||
| 422 | ||
| 423 | (*Delete the original rewrites, with their clumsy conditional expressions*) | |
| 424 | declare bin_succ_BIT [simp del] | |
| 425 | bin_pred_BIT [simp del] | |
| 426 | bin_minus_BIT [simp del] | |
| 427 | NCons_Pls [simp del] | |
| 428 | NCons_Min [simp del] | |
| 429 | bin_adder_BIT [simp del] | |
| 430 | bin_mult_BIT [simp del] | |
| 431 | ||
| 432 | (*Hide the binary representation of integer constants*) | |
| 433 | declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del] | |
| 434 | ||
| 435 | ||
| 436 | lemmas bin_arith_extra_simps = | |
| 437 | integ_of_add [symmetric] | |
| 438 | integ_of_minus [symmetric] | |
| 439 | integ_of_mult [symmetric] | |
| 440 | bin_succ_1 bin_succ_0 | |
| 441 | bin_pred_1 bin_pred_0 | |
| 442 | bin_minus_1 bin_minus_0 | |
| 443 | bin_add_Pls_right bin_add_Min_right | |
| 444 | bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11 | |
| 445 | diff_integ_of_eq | |
| 446 | bin_mult_1 bin_mult_0 NCons_simps | |
| 447 | ||
| 448 | ||
| 449 | (*For making a minimal simpset, one must include these default simprules | |
| 450 | of thy. Also include simp_thms, or at least (~False)=True*) | |
| 451 | lemmas bin_arith_simps = | |
| 452 | bin_pred_Pls bin_pred_Min | |
| 453 | bin_succ_Pls bin_succ_Min | |
| 454 | bin_add_Pls bin_add_Min | |
| 455 | bin_minus_Pls bin_minus_Min | |
| 456 | bin_mult_Pls bin_mult_Min | |
| 457 | bin_arith_extra_simps | |
| 458 | ||
| 459 | (*Simplification of relational operations*) | |
| 460 | lemmas bin_rel_simps = | |
| 461 | eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min | |
| 462 | iszero_integ_of_0 iszero_integ_of_1 | |
| 463 | less_integ_of_eq_neg | |
| 464 | not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT | |
| 465 | le_integ_of_eq_not_less | |
| 466 | ||
| 467 | declare bin_arith_simps [simp] | |
| 468 | declare bin_rel_simps [simp] | |
| 469 | ||
| 470 | ||
| 471 | (** Simplification of arithmetic when nested to the right **) | |
| 472 | ||
| 473 | lemma add_integ_of_left [simp]: | |
| 474 | "[| v: bin; w: bin |] | |
| 475 | ==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)" | |
| 476 | by (simp add: zadd_assoc [symmetric]) | |
| 477 | ||
| 478 | lemma mult_integ_of_left [simp]: | |
| 479 | "[| v: bin; w: bin |] | |
| 480 | ==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)" | |
| 481 | by (simp add: zmult_assoc [symmetric]) | |
| 482 | ||
| 483 | lemma add_integ_of_diff1 [simp]: | |
| 484 | "[| v: bin; w: bin |] | |
| 485 | ==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)" | |
| 486 | apply (unfold zdiff_def) | |
| 487 | apply (rule add_integ_of_left, auto) | |
| 488 | done | |
| 489 | ||
| 490 | lemma add_integ_of_diff2 [simp]: | |
| 491 | "[| v: bin; w: bin |] | |
| 492 | ==> integ_of(v) $+ (c $- integ_of(w)) = | |
| 493 | integ_of (bin_add (v, bin_minus(w))) $+ (c)" | |
| 494 | apply (subst diff_integ_of_eq [symmetric]) | |
| 495 | apply (simp_all add: zdiff_def zadd_ac) | |
| 496 | done | |
| 497 | ||
| 498 | ||
| 499 | (** More for integer constants **) | |
| 500 | ||
| 501 | declare int_of_0 [simp] int_of_succ [simp] | |
| 502 | ||
| 503 | lemma zdiff0 [simp]: "#0 $- x = $-x" | |
| 504 | by (simp add: zdiff_def) | |
| 505 | ||
| 506 | lemma zdiff0_right [simp]: "x $- #0 = intify(x)" | |
| 507 | by (simp add: zdiff_def) | |
| 508 | ||
| 509 | lemma zdiff_self [simp]: "x $- x = #0" | |
| 510 | by (simp add: zdiff_def) | |
| 511 | ||
| 512 | lemma znegative_iff_zless_0: "k: int ==> znegative(k) <-> k $< #0" | |
| 513 | by (simp add: zless_def) | |
| 514 | ||
| 515 | lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k: int|] ==> znegative($-k)" | |
| 516 | by (simp add: zless_def) | |
| 517 | ||
| 518 | lemma zero_zle_int_of [simp]: "#0 $<= $# n" | |
| 519 | by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym]) | |
| 520 | ||
| 521 | lemma nat_of_0 [simp]: "nat_of(#0) = 0" | |
| 522 | by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of) | |
| 523 | ||
| 524 | lemma nat_le_int0_lemma: "[| z $<= $#0; z: int |] ==> nat_of(z) = 0" | |
| 525 | by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of) | |
| 526 | ||
| 527 | lemma nat_le_int0: "z $<= $#0 ==> nat_of(z) = 0" | |
| 528 | apply (subgoal_tac "nat_of (intify (z)) = 0") | |
| 529 | apply (rule_tac [2] nat_le_int0_lemma, auto) | |
| 530 | done | |
| 531 | ||
| 532 | lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0" | |
| 533 | by (rule not_znegative_imp_zero, auto) | |
| 534 | ||
| 535 | lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0" | |
| 536 | by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int) | |
| 537 | ||
| 538 | lemma int_of_nat_of: "#0 $<= z ==> $# nat_of(z) = intify(z)" | |
| 539 | apply (rule not_zneg_nat_of_intify) | |
| 540 | apply (simp add: znegative_iff_zless_0 not_zless_iff_zle) | |
| 541 | done | |
| 542 | ||
| 543 | declare int_of_nat_of [simp] nat_of_zminus_int_of [simp] | |
| 544 | ||
| 545 | lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $<= z then intify(z) else #0)" | |
| 546 | by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless) | |
| 547 | ||
| 548 | lemma zless_nat_iff_int_zless: "[| m: nat; z: int |] ==> (m < nat_of(z)) <-> ($#m $< z)" | |
| 549 | apply (case_tac "znegative (z) ") | |
| 550 | apply (erule_tac [2] not_zneg_nat_of [THEN subst]) | |
| 551 | apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans] | |
| 552 | simp add: znegative_iff_zless_0) | |
| 553 | done | |
| 554 | ||
| 555 | ||
| 556 | (** nat_of and zless **) | |
| 557 | ||
| 558 | (*An alternative condition is $#0 <= w *) | |
| 559 | lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) <-> (w $< z)" | |
| 560 | apply (rule iff_trans) | |
| 561 | apply (rule zless_int_of [THEN iff_sym]) | |
| 562 | apply (auto simp add: int_of_nat_of_if simp del: zless_int_of) | |
| 563 | apply (auto elim: zless_asym simp add: not_zle_iff_zless) | |
| 564 | apply (blast intro: zless_zle_trans) | |
| 565 | done | |
| 566 | ||
| 567 | lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) <-> ($#0 $< z & w $< z)" | |
| 568 | apply (case_tac "$#0 $< z") | |
| 569 | apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle) | |
| 570 | done | |
| 571 | ||
| 572 | (*This simprule cannot be added unless we can find a way to make eq_integ_of_eq | |
| 573 | unconditional! | |
| 574 | [The condition "True" is a hack to prevent looping. | |
| 575 | Conditional rewrite rules are tried after unconditional ones, so a rule | |
| 576 | like eq_nat_number_of will be tried first to eliminate #mm=#nn.] | |
| 577 | lemma integ_of_reorient [simp]: | |
| 578 | "True ==> (integ_of(w) = x) <-> (x = integ_of(w))" | |
| 579 | by auto | |
| 580 | *) | |
| 581 | ||
| 582 | lemma integ_of_minus_reorient [simp]: | |
| 583 | "(integ_of(w) = $- x) <-> ($- x = integ_of(w))" | |
| 584 | by auto | |
| 585 | ||
| 586 | lemma integ_of_add_reorient [simp]: | |
| 587 | "(integ_of(w) = x $+ y) <-> (x $+ y = integ_of(w))" | |
| 588 | by auto | |
| 589 | ||
| 590 | lemma integ_of_diff_reorient [simp]: | |
| 591 | "(integ_of(w) = x $- y) <-> (x $- y = integ_of(w))" | |
| 592 | by auto | |
| 593 | ||
| 594 | lemma integ_of_mult_reorient [simp]: | |
| 595 | "(integ_of(w) = x $* y) <-> (x $* y = integ_of(w))" | |
| 596 | by auto | |
| 597 | ||
| 598 | end |