| author | paulson | 
| Thu, 11 Dec 1997 10:28:04 +0100 | |
| changeset 4385 | f6d019eefa1e | 
| parent 4098 | 71e05eb27fb6 | 
| child 4423 | a129b817b58a | 
| permissions | -rw-r--r-- | 
| 2640 | 1 | (* Title: HOLCF/Fix.ML | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Franz Regensburger | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 2640 | 6 | Lemmas for Fix.thy | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | open Fix; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | (* derive inductive properties of iterate from primitive recursion *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 13 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 14 | |
| 2640 | 15 | qed_goal "iterate_0" thy "iterate 0 F x = x" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | (fn prems => | 
| 1461 | 17 | [ | 
| 18 | (resolve_tac (nat_recs iterate_def) 1) | |
| 19 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 20 | |
| 2640 | 21 | qed_goal "iterate_Suc" thy "iterate (Suc n) F x = F`(iterate n F x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 22 | (fn prems => | 
| 1461 | 23 | [ | 
| 24 | (resolve_tac (nat_recs iterate_def) 1) | |
| 25 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | |
| 1267 | 27 | Addsimps [iterate_0, iterate_Suc]; | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 28 | |
| 2640 | 29 | qed_goal "iterate_Suc2" thy "iterate (Suc n) F x = iterate n F (F`x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 30 | (fn prems => | 
| 1461 | 31 | [ | 
| 32 | (nat_ind_tac "n" 1), | |
| 33 | (Simp_tac 1), | |
| 2033 | 34 | (stac iterate_Suc 1), | 
| 35 | (stac iterate_Suc 1), | |
| 36 | (etac ssubst 1), | |
| 37 | (rtac refl 1) | |
| 1461 | 38 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 39 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 40 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | (* the sequence of function itertaions is a chain *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 42 | (* This property is essential since monotonicity of iterate makes no sense *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 43 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 44 | |
| 2640 | 45 | qed_goalw "is_chain_iterate2" thy [is_chain] | 
| 3842 | 46 | " x << F`x ==> is_chain (%i. iterate i F x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 47 | (fn prems => | 
| 1461 | 48 | [ | 
| 49 | (cut_facts_tac prems 1), | |
| 50 | (strip_tac 1), | |
| 51 | (Simp_tac 1), | |
| 52 | (nat_ind_tac "i" 1), | |
| 53 | (Asm_simp_tac 1), | |
| 54 | (Asm_simp_tac 1), | |
| 55 | (etac monofun_cfun_arg 1) | |
| 56 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 57 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 58 | |
| 2640 | 59 | qed_goal "is_chain_iterate" thy | 
| 3842 | 60 | "is_chain (%i. iterate i F UU)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 61 | (fn prems => | 
| 1461 | 62 | [ | 
| 63 | (rtac is_chain_iterate2 1), | |
| 64 | (rtac minimal 1) | |
| 65 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 66 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 67 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 68 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 69 | (* Kleene's fixed point theorems for continuous functions in pointed *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 70 | (* omega cpo's *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 71 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 72 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 73 | |
| 2640 | 74 | qed_goalw "Ifix_eq" thy [Ifix_def] "Ifix F =F`(Ifix F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 75 | (fn prems => | 
| 1461 | 76 | [ | 
| 2033 | 77 | (stac contlub_cfun_arg 1), | 
| 1461 | 78 | (rtac is_chain_iterate 1), | 
| 79 | (rtac antisym_less 1), | |
| 80 | (rtac lub_mono 1), | |
| 81 | (rtac is_chain_iterate 1), | |
| 82 | (rtac ch2ch_fappR 1), | |
| 83 | (rtac is_chain_iterate 1), | |
| 84 | (rtac allI 1), | |
| 85 | (rtac (iterate_Suc RS subst) 1), | |
| 86 | (rtac (is_chain_iterate RS is_chainE RS spec) 1), | |
| 87 | (rtac is_lub_thelub 1), | |
| 88 | (rtac ch2ch_fappR 1), | |
| 89 | (rtac is_chain_iterate 1), | |
| 90 | (rtac ub_rangeI 1), | |
| 91 | (rtac allI 1), | |
| 92 | (rtac (iterate_Suc RS subst) 1), | |
| 93 | (rtac is_ub_thelub 1), | |
| 94 | (rtac is_chain_iterate 1) | |
| 95 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 96 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 97 | |
| 2640 | 98 | qed_goalw "Ifix_least" thy [Ifix_def] "F`x=x ==> Ifix(F) << x" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 99 | (fn prems => | 
| 1461 | 100 | [ | 
| 101 | (cut_facts_tac prems 1), | |
| 102 | (rtac is_lub_thelub 1), | |
| 103 | (rtac is_chain_iterate 1), | |
| 104 | (rtac ub_rangeI 1), | |
| 105 | (strip_tac 1), | |
| 106 | (nat_ind_tac "i" 1), | |
| 107 | (Asm_simp_tac 1), | |
| 108 | (Asm_simp_tac 1), | |
| 109 |         (res_inst_tac [("t","x")] subst 1),
 | |
| 110 | (atac 1), | |
| 111 | (etac monofun_cfun_arg 1) | |
| 112 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 113 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 114 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 115 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 116 | (* monotonicity and continuity of iterate *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 117 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 118 | |
| 2640 | 119 | qed_goalw "monofun_iterate" thy [monofun] "monofun(iterate(i))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 120 | (fn prems => | 
| 1461 | 121 | [ | 
| 122 | (strip_tac 1), | |
| 123 | (nat_ind_tac "i" 1), | |
| 124 | (Asm_simp_tac 1), | |
| 125 | (Asm_simp_tac 1), | |
| 126 | (rtac (less_fun RS iffD2) 1), | |
| 127 | (rtac allI 1), | |
| 128 | (rtac monofun_cfun 1), | |
| 129 | (atac 1), | |
| 130 | (rtac (less_fun RS iffD1 RS spec) 1), | |
| 131 | (atac 1) | |
| 132 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 133 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 134 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 135 | (* the following lemma uses contlub_cfun which itself is based on a *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 136 | (* diagonalisation lemma for continuous functions with two arguments. *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 137 | (* In this special case it is the application function fapp *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 138 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 139 | |
| 2640 | 140 | qed_goalw "contlub_iterate" thy [contlub] "contlub(iterate(i))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 141 | (fn prems => | 
| 1461 | 142 | [ | 
| 143 | (strip_tac 1), | |
| 144 | (nat_ind_tac "i" 1), | |
| 145 | (Asm_simp_tac 1), | |
| 146 | (rtac (lub_const RS thelubI RS sym) 1), | |
| 147 | (Asm_simp_tac 1), | |
| 148 | (rtac ext 1), | |
| 2033 | 149 | (stac thelub_fun 1), | 
| 1461 | 150 | (rtac is_chainI 1), | 
| 151 | (rtac allI 1), | |
| 152 | (rtac (less_fun RS iffD2) 1), | |
| 153 | (rtac allI 1), | |
| 154 | (rtac (is_chainE RS spec) 1), | |
| 155 | (rtac (monofun_fapp1 RS ch2ch_MF2LR) 1), | |
| 156 | (rtac allI 1), | |
| 157 | (rtac monofun_fapp2 1), | |
| 158 | (atac 1), | |
| 159 | (rtac ch2ch_fun 1), | |
| 160 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | |
| 161 | (atac 1), | |
| 2033 | 162 | (stac thelub_fun 1), | 
| 1461 | 163 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | 
| 164 | (atac 1), | |
| 165 | (rtac contlub_cfun 1), | |
| 166 | (atac 1), | |
| 167 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1) | |
| 168 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 169 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 170 | |
| 2640 | 171 | qed_goal "cont_iterate" thy "cont(iterate(i))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 172 | (fn prems => | 
| 1461 | 173 | [ | 
| 174 | (rtac monocontlub2cont 1), | |
| 175 | (rtac monofun_iterate 1), | |
| 176 | (rtac contlub_iterate 1) | |
| 177 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 178 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 179 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 180 | (* a lemma about continuity of iterate in its third argument *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 181 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 182 | |
| 2640 | 183 | qed_goal "monofun_iterate2" thy "monofun(iterate n F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 184 | (fn prems => | 
| 1461 | 185 | [ | 
| 186 | (rtac monofunI 1), | |
| 187 | (strip_tac 1), | |
| 188 | (nat_ind_tac "n" 1), | |
| 189 | (Asm_simp_tac 1), | |
| 190 | (Asm_simp_tac 1), | |
| 191 | (etac monofun_cfun_arg 1) | |
| 192 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 193 | |
| 2640 | 194 | qed_goal "contlub_iterate2" thy "contlub(iterate n F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 195 | (fn prems => | 
| 1461 | 196 | [ | 
| 197 | (rtac contlubI 1), | |
| 198 | (strip_tac 1), | |
| 199 | (nat_ind_tac "n" 1), | |
| 200 | (Simp_tac 1), | |
| 201 | (Simp_tac 1), | |
| 3044 
3e3087aa69e7
Updates because nat_ind_tac no longer appends "1" to the ind.var.
 nipkow parents: 
2841diff
changeset | 202 |         (res_inst_tac [("t","iterate n F (lub(range(%u. Y u)))"),
 | 
| 
3e3087aa69e7
Updates because nat_ind_tac no longer appends "1" to the ind.var.
 nipkow parents: 
2841diff
changeset | 203 |         ("s","lub(range(%i. iterate n F (Y i)))")] ssubst 1),
 | 
| 1461 | 204 | (atac 1), | 
| 205 | (rtac contlub_cfun_arg 1), | |
| 206 | (etac (monofun_iterate2 RS ch2ch_monofun) 1) | |
| 207 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 208 | |
| 2640 | 209 | qed_goal "cont_iterate2" thy "cont (iterate n F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 210 | (fn prems => | 
| 1461 | 211 | [ | 
| 212 | (rtac monocontlub2cont 1), | |
| 213 | (rtac monofun_iterate2 1), | |
| 214 | (rtac contlub_iterate2 1) | |
| 215 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 216 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 217 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 218 | (* monotonicity and continuity of Ifix *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 219 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 220 | |
| 2640 | 221 | qed_goalw "monofun_Ifix" thy [monofun,Ifix_def] "monofun(Ifix)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 222 | (fn prems => | 
| 1461 | 223 | [ | 
| 224 | (strip_tac 1), | |
| 225 | (rtac lub_mono 1), | |
| 226 | (rtac is_chain_iterate 1), | |
| 227 | (rtac is_chain_iterate 1), | |
| 228 | (rtac allI 1), | |
| 229 | (rtac (less_fun RS iffD1 RS spec) 1), | |
| 230 | (etac (monofun_iterate RS monofunE RS spec RS spec RS mp) 1) | |
| 231 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 232 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 233 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 234 | (* since iterate is not monotone in its first argument, special lemmas must *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 235 | (* be derived for lubs in this argument *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 236 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 237 | |
| 2640 | 238 | qed_goal "is_chain_iterate_lub" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 239 | "is_chain(Y) ==> is_chain(%i. lub(range(%ia. iterate ia (Y i) UU)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 240 | (fn prems => | 
| 1461 | 241 | [ | 
| 242 | (cut_facts_tac prems 1), | |
| 243 | (rtac is_chainI 1), | |
| 244 | (strip_tac 1), | |
| 245 | (rtac lub_mono 1), | |
| 246 | (rtac is_chain_iterate 1), | |
| 247 | (rtac is_chain_iterate 1), | |
| 248 | (strip_tac 1), | |
| 249 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun RS is_chainE | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 250 | RS spec) 1) | 
| 1461 | 251 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 252 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 253 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 254 | (* this exchange lemma is analog to the one for monotone functions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 255 | (* observe that monotonicity is not really needed. The propagation of *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 256 | (* chains is the essential argument which is usually derived from monot. *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 257 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 258 | |
| 2640 | 259 | qed_goal "contlub_Ifix_lemma1" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 260 | "is_chain(Y) ==>iterate n (lub(range Y)) y = lub(range(%i. iterate n (Y i) y))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 261 | (fn prems => | 
| 1461 | 262 | [ | 
| 263 | (cut_facts_tac prems 1), | |
| 264 | (rtac (thelub_fun RS subst) 1), | |
| 265 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | |
| 266 | (atac 1), | |
| 267 | (rtac fun_cong 1), | |
| 2033 | 268 | (stac (contlub_iterate RS contlubE RS spec RS mp) 1), | 
| 1461 | 269 | (atac 1), | 
| 270 | (rtac refl 1) | |
| 271 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 272 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 273 | |
| 2640 | 274 | qed_goal "ex_lub_iterate" thy "is_chain(Y) ==>\ | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 275 | \ lub(range(%i. lub(range(%ia. iterate i (Y ia) UU)))) =\ | 
| 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 276 | \ lub(range(%i. lub(range(%ia. iterate ia (Y i) UU))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 277 | (fn prems => | 
| 1461 | 278 | [ | 
| 279 | (cut_facts_tac prems 1), | |
| 280 | (rtac antisym_less 1), | |
| 281 | (rtac is_lub_thelub 1), | |
| 282 | (rtac (contlub_Ifix_lemma1 RS ext RS subst) 1), | |
| 283 | (atac 1), | |
| 284 | (rtac is_chain_iterate 1), | |
| 285 | (rtac ub_rangeI 1), | |
| 286 | (strip_tac 1), | |
| 287 | (rtac lub_mono 1), | |
| 288 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1), | |
| 289 | (etac is_chain_iterate_lub 1), | |
| 290 | (strip_tac 1), | |
| 291 | (rtac is_ub_thelub 1), | |
| 292 | (rtac is_chain_iterate 1), | |
| 293 | (rtac is_lub_thelub 1), | |
| 294 | (etac is_chain_iterate_lub 1), | |
| 295 | (rtac ub_rangeI 1), | |
| 296 | (strip_tac 1), | |
| 297 | (rtac lub_mono 1), | |
| 298 | (rtac is_chain_iterate 1), | |
| 299 | (rtac (contlub_Ifix_lemma1 RS ext RS subst) 1), | |
| 300 | (atac 1), | |
| 301 | (rtac is_chain_iterate 1), | |
| 302 | (strip_tac 1), | |
| 303 | (rtac is_ub_thelub 1), | |
| 304 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1) | |
| 305 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 306 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 307 | |
| 2640 | 308 | qed_goalw "contlub_Ifix" thy [contlub,Ifix_def] "contlub(Ifix)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 309 | (fn prems => | 
| 1461 | 310 | [ | 
| 311 | (strip_tac 1), | |
| 2033 | 312 | (stac (contlub_Ifix_lemma1 RS ext) 1), | 
| 1461 | 313 | (atac 1), | 
| 314 | (etac ex_lub_iterate 1) | |
| 315 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 316 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 317 | |
| 2640 | 318 | qed_goal "cont_Ifix" thy "cont(Ifix)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 319 | (fn prems => | 
| 1461 | 320 | [ | 
| 321 | (rtac monocontlub2cont 1), | |
| 322 | (rtac monofun_Ifix 1), | |
| 323 | (rtac contlub_Ifix 1) | |
| 324 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 325 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 326 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 327 | (* propagate properties of Ifix to its continuous counterpart *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 328 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 329 | |
| 2640 | 330 | qed_goalw "fix_eq" thy [fix_def] "fix`F = F`(fix`F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 331 | (fn prems => | 
| 1461 | 332 | [ | 
| 4098 | 333 | (asm_simp_tac (simpset() addsimps [cont_Ifix]) 1), | 
| 1461 | 334 | (rtac Ifix_eq 1) | 
| 335 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 336 | |
| 2640 | 337 | qed_goalw "fix_least" thy [fix_def] "F`x = x ==> fix`F << x" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 338 | (fn prems => | 
| 1461 | 339 | [ | 
| 340 | (cut_facts_tac prems 1), | |
| 4098 | 341 | (asm_simp_tac (simpset() addsimps [cont_Ifix]) 1), | 
| 1461 | 342 | (etac Ifix_least 1) | 
| 343 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 344 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 345 | |
| 2640 | 346 | qed_goal "fix_eqI" thy | 
| 1274 | 347 | "[| F`x = x; !z. F`z = z --> x << z |] ==> x = fix`F" | 
| 348 | (fn prems => | |
| 1461 | 349 | [ | 
| 350 | (cut_facts_tac prems 1), | |
| 351 | (rtac antisym_less 1), | |
| 352 | (etac allE 1), | |
| 353 | (etac mp 1), | |
| 354 | (rtac (fix_eq RS sym) 1), | |
| 355 | (etac fix_least 1) | |
| 356 | ]); | |
| 1274 | 357 | |
| 358 | ||
| 2640 | 359 | qed_goal "fix_eq2" thy "f == fix`F ==> f = F`f" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 360 | (fn prems => | 
| 1461 | 361 | [ | 
| 362 | (rewrite_goals_tac prems), | |
| 363 | (rtac fix_eq 1) | |
| 364 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 365 | |
| 2640 | 366 | qed_goal "fix_eq3" thy "f == fix`F ==> f`x = F`f`x" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 367 | (fn prems => | 
| 1461 | 368 | [ | 
| 369 | (rtac trans 1), | |
| 370 | (rtac ((hd prems) RS fix_eq2 RS cfun_fun_cong) 1), | |
| 371 | (rtac refl 1) | |
| 372 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 373 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 374 | fun fix_tac3 thm i = ((rtac trans i) THEN (rtac (thm RS fix_eq3) i)); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 375 | |
| 2640 | 376 | qed_goal "fix_eq4" thy "f = fix`F ==> f = F`f" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 377 | (fn prems => | 
| 1461 | 378 | [ | 
| 379 | (cut_facts_tac prems 1), | |
| 380 | (hyp_subst_tac 1), | |
| 381 | (rtac fix_eq 1) | |
| 382 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 383 | |
| 2640 | 384 | qed_goal "fix_eq5" thy "f = fix`F ==> f`x = F`f`x" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 385 | (fn prems => | 
| 1461 | 386 | [ | 
| 387 | (rtac trans 1), | |
| 388 | (rtac ((hd prems) RS fix_eq4 RS cfun_fun_cong) 1), | |
| 389 | (rtac refl 1) | |
| 390 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 391 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 392 | fun fix_tac5 thm i = ((rtac trans i) THEN (rtac (thm RS fix_eq5) i)); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 393 | |
| 3652 | 394 | (* proves the unfolding theorem for function equations f = fix`... *) | 
| 395 | fun fix_prover thy fixeq s = prove_goal thy s (fn prems => [ | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 396 | (rtac trans 1), | 
| 3652 | 397 | (rtac (fixeq RS fix_eq4) 1), | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 398 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 399 | (rtac beta_cfun 1), | 
| 2566 | 400 | (Simp_tac 1) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 401 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 402 | |
| 3652 | 403 | (* proves the unfolding theorem for function definitions f == fix`... *) | 
| 404 | fun fix_prover2 thy fixdef s = prove_goal thy s (fn prems => [ | |
| 1461 | 405 | (rtac trans 1), | 
| 406 | (rtac (fix_eq2) 1), | |
| 407 | (rtac fixdef 1), | |
| 408 | (rtac beta_cfun 1), | |
| 2566 | 409 | (Simp_tac 1) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 410 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 411 | |
| 3652 | 412 | (* proves an application case for a function from its unfolding thm *) | 
| 413 | fun case_prover thy unfold s = prove_goal thy s (fn prems => [ | |
| 414 | (cut_facts_tac prems 1), | |
| 415 | (rtac trans 1), | |
| 416 | (stac unfold 1), | |
| 417 | (Auto_tac ()) | |
| 418 | ]); | |
| 419 | ||
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 420 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 421 | (* better access to definitions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 422 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 423 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 424 | |
| 2640 | 425 | qed_goal "Ifix_def2" thy "Ifix=(%x. lub(range(%i. iterate i x UU)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 426 | (fn prems => | 
| 1461 | 427 | [ | 
| 428 | (rtac ext 1), | |
| 429 | (rewtac Ifix_def), | |
| 430 | (rtac refl 1) | |
| 431 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 432 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 433 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 434 | (* direct connection between fix and iteration without Ifix *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 435 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 436 | |
| 2640 | 437 | qed_goalw "fix_def2" thy [fix_def] | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 438 | "fix`F = lub(range(%i. iterate i F UU))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 439 | (fn prems => | 
| 1461 | 440 | [ | 
| 441 | (fold_goals_tac [Ifix_def]), | |
| 4098 | 442 | (asm_simp_tac (simpset() addsimps [cont_Ifix]) 1) | 
| 1461 | 443 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 444 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 445 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 446 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 447 | (* Lemmas about admissibility and fixed point induction *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 448 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 449 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 450 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 451 | (* access to definitions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 452 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 453 | |
| 3460 | 454 | qed_goalw "admI" thy [adm_def] | 
| 3842 | 455 | "(!!Y. [| is_chain(Y); !i. P(Y(i)) |] ==> P(lub(range(Y)))) ==> adm(P)" | 
| 3460 | 456 | (fn prems => [fast_tac (HOL_cs addIs prems) 1]); | 
| 457 | ||
| 458 | qed_goalw "admD" thy [adm_def] | |
| 3842 | 459 | "!!P. [| adm(P); is_chain(Y); !i. P(Y(i)) |] ==> P(lub(range(Y)))" | 
| 3460 | 460 | (fn prems => [fast_tac HOL_cs 1]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 461 | |
| 2640 | 462 | qed_goalw "admw_def2" thy [admw_def] | 
| 3842 | 463 | "admw(P) = (!F.(!n. P(iterate n F UU)) -->\ | 
| 464 | \ P (lub(range(%i. iterate i F UU))))" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 465 | (fn prems => | 
| 1461 | 466 | [ | 
| 467 | (rtac refl 1) | |
| 468 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 469 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 470 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 471 | (* an admissible formula is also weak admissible *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 472 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 473 | |
| 3460 | 474 | qed_goalw "adm_impl_admw" thy [admw_def] "!!P. adm(P)==>admw(P)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 475 | (fn prems => | 
| 1461 | 476 | [ | 
| 477 | (strip_tac 1), | |
| 3460 | 478 | (etac admD 1), | 
| 1461 | 479 | (rtac is_chain_iterate 1), | 
| 480 | (atac 1) | |
| 481 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 482 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 483 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 484 | (* fixed point induction *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 485 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 486 | |
| 2640 | 487 | qed_goal "fix_ind" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 488 | "[| adm(P);P(UU);!!x. P(x) ==> P(F`x)|] ==> P(fix`F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 489 | (fn prems => | 
| 1461 | 490 | [ | 
| 491 | (cut_facts_tac prems 1), | |
| 2033 | 492 | (stac fix_def2 1), | 
| 3460 | 493 | (etac admD 1), | 
| 1461 | 494 | (rtac is_chain_iterate 1), | 
| 495 | (rtac allI 1), | |
| 496 | (nat_ind_tac "i" 1), | |
| 2033 | 497 | (stac iterate_0 1), | 
| 1461 | 498 | (atac 1), | 
| 2033 | 499 | (stac iterate_Suc 1), | 
| 1461 | 500 | (resolve_tac prems 1), | 
| 501 | (atac 1) | |
| 502 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 503 | |
| 2640 | 504 | qed_goal "def_fix_ind" thy "[| f == fix`F; adm(P); \ | 
| 2568 | 505 | \ P(UU);!!x. P(x) ==> P(F`x)|] ==> P f" (fn prems => [ | 
| 506 | (cut_facts_tac prems 1), | |
| 507 | (asm_simp_tac HOL_ss 1), | |
| 508 | (etac fix_ind 1), | |
| 509 | (atac 1), | |
| 510 | (eresolve_tac prems 1)]); | |
| 511 | ||
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 512 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 513 | (* computational induction for weak admissible formulae *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 514 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 515 | |
| 2640 | 516 | qed_goal "wfix_ind" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 517 | "[| admw(P); !n. P(iterate n F UU)|] ==> P(fix`F)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 518 | (fn prems => | 
| 1461 | 519 | [ | 
| 520 | (cut_facts_tac prems 1), | |
| 2033 | 521 | (stac fix_def2 1), | 
| 1461 | 522 | (rtac (admw_def2 RS iffD1 RS spec RS mp) 1), | 
| 523 | (atac 1), | |
| 524 | (rtac allI 1), | |
| 525 | (etac spec 1) | |
| 526 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 527 | |
| 2640 | 528 | qed_goal "def_wfix_ind" thy "[| f == fix`F; admw(P); \ | 
| 2568 | 529 | \ !n. P(iterate n F UU) |] ==> P f" (fn prems => [ | 
| 530 | (cut_facts_tac prems 1), | |
| 531 | (asm_simp_tac HOL_ss 1), | |
| 532 | (etac wfix_ind 1), | |
| 533 | (atac 1)]); | |
| 534 | ||
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 535 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 536 | (* for chain-finite (easy) types every formula is admissible *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 537 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 538 | |
| 2640 | 539 | qed_goalw "adm_max_in_chain" thy [adm_def] | 
| 3842 | 540 | "!Y. is_chain(Y::nat=>'a) --> (? n. max_in_chain n Y) ==> adm(P::'a=>bool)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 541 | (fn prems => | 
| 1461 | 542 | [ | 
| 543 | (cut_facts_tac prems 1), | |
| 544 | (strip_tac 1), | |
| 545 | (rtac exE 1), | |
| 546 | (rtac mp 1), | |
| 547 | (etac spec 1), | |
| 548 | (atac 1), | |
| 2033 | 549 | (stac (lub_finch1 RS thelubI) 1), | 
| 1461 | 550 | (atac 1), | 
| 551 | (atac 1), | |
| 552 | (etac spec 1) | |
| 553 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 554 | |
| 3324 | 555 | bind_thm ("adm_chain_finite" ,chfin RS adm_max_in_chain);
 | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 556 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 557 | (* ------------------------------------------------------------------------ *) | 
| 2354 | 558 | (* some lemmata for functions with flat/chain_finite domain/range types *) | 
| 559 | (* ------------------------------------------------------------------------ *) | |
| 560 | ||
| 3324 | 561 | qed_goalw "adm_chfindom" thy [adm_def] "adm (%(u::'a::cpo->'b::chfin). P(u`s))" | 
| 562 | (fn _ => [ | |
| 2354 | 563 | strip_tac 1, | 
| 564 | dtac chfin_fappR 1, | |
| 565 | 	eres_inst_tac [("x","s")] allE 1,
 | |
| 4098 | 566 | fast_tac (HOL_cs addss (simpset() addsimps [chfin])) 1]); | 
| 2354 | 567 | |
| 3324 | 568 | (* adm_flat not needed any more, since it is a special case of adm_chfindom *) | 
| 2354 | 569 | |
| 1992 | 570 | (* ------------------------------------------------------------------------ *) | 
| 3326 | 571 | (* improved admisibility introduction *) | 
| 1992 | 572 | (* ------------------------------------------------------------------------ *) | 
| 573 | ||
| 3460 | 574 | qed_goalw "admI2" thy [adm_def] | 
| 1992 | 575 | "(!!Y. [| is_chain Y; !i. P (Y i); !i. ? j. i < j & Y i ~= Y j & Y i << Y j |]\ | 
| 576 | \ ==> P(lub (range Y))) ==> adm P" | |
| 577 | (fn prems => [ | |
| 2033 | 578 | strip_tac 1, | 
| 579 | etac increasing_chain_adm_lemma 1, atac 1, | |
| 580 | eresolve_tac prems 1, atac 1, atac 1]); | |
| 1992 | 581 | |
| 582 | ||
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 583 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 584 | (* admissibility of special formulae and propagation *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 585 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 586 | |
| 2640 | 587 | qed_goalw "adm_less" thy [adm_def] | 
| 3842 | 588 | "[|cont u;cont v|]==> adm(%x. u x << v x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 589 | (fn prems => | 
| 1461 | 590 | [ | 
| 591 | (cut_facts_tac prems 1), | |
| 592 | (strip_tac 1), | |
| 593 | (etac (cont2contlub RS contlubE RS spec RS mp RS ssubst) 1), | |
| 594 | (atac 1), | |
| 595 | (etac (cont2contlub RS contlubE RS spec RS mp RS ssubst) 1), | |
| 596 | (atac 1), | |
| 597 | (rtac lub_mono 1), | |
| 598 | (cut_facts_tac prems 1), | |
| 599 | (etac (cont2mono RS ch2ch_monofun) 1), | |
| 600 | (atac 1), | |
| 601 | (cut_facts_tac prems 1), | |
| 602 | (etac (cont2mono RS ch2ch_monofun) 1), | |
| 603 | (atac 1), | |
| 604 | (atac 1) | |
| 605 | ]); | |
| 3460 | 606 | Addsimps [adm_less]; | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 607 | |
| 2640 | 608 | qed_goal "adm_conj" thy | 
| 3460 | 609 | "!!P. [| adm P; adm Q |] ==> adm(%x. P x & Q x)" | 
| 610 | (fn prems => [fast_tac (HOL_cs addEs [admD] addIs [admI]) 1]); | |
| 611 | Addsimps [adm_conj]; | |
| 612 | ||
| 3842 | 613 | qed_goalw "adm_not_free" thy [adm_def] "adm(%x. t)" | 
| 3460 | 614 | (fn prems => [fast_tac HOL_cs 1]); | 
| 615 | Addsimps [adm_not_free]; | |
| 616 | ||
| 617 | qed_goalw "adm_not_less" thy [adm_def] | |
| 618 | "!!t. cont t ==> adm(%x.~ (t x) << u)" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 619 | (fn prems => | 
| 1461 | 620 | [ | 
| 621 | (strip_tac 1), | |
| 622 | (rtac contrapos 1), | |
| 623 | (etac spec 1), | |
| 624 | (rtac trans_less 1), | |
| 625 | (atac 2), | |
| 626 | (etac (cont2mono RS monofun_fun_arg) 1), | |
| 627 | (rtac is_ub_thelub 1), | |
| 628 | (atac 1) | |
| 629 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 630 | |
| 3460 | 631 | qed_goal "adm_all" thy | 
| 3842 | 632 | "!!P. !y. adm(P y) ==> adm(%x.!y. P y x)" | 
| 3460 | 633 | (fn prems => [fast_tac (HOL_cs addIs [admI] addEs [admD]) 1]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 634 | |
| 1779 | 635 | bind_thm ("adm_all2", allI RS adm_all);
 | 
| 625 | 636 | |
| 2640 | 637 | qed_goal "adm_subst" thy | 
| 3460 | 638 | "!!P. [|cont t; adm P|] ==> adm(%x. P (t x))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 639 | (fn prems => | 
| 1461 | 640 | [ | 
| 3460 | 641 | (rtac admI 1), | 
| 2033 | 642 | (stac (cont2contlub RS contlubE RS spec RS mp) 1), | 
| 1461 | 643 | (atac 1), | 
| 644 | (atac 1), | |
| 3460 | 645 | (etac admD 1), | 
| 646 | (etac (cont2mono RS ch2ch_monofun) 1), | |
| 1461 | 647 | (atac 1), | 
| 648 | (atac 1) | |
| 649 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 650 | |
| 2640 | 651 | qed_goal "adm_UU_not_less" thy "adm(%x.~ UU << t(x))" | 
| 3460 | 652 | (fn prems => [Simp_tac 1]); | 
| 653 | ||
| 654 | qed_goalw "adm_not_UU" thy [adm_def] | |
| 655 | "!!t. cont(t)==> adm(%x.~ (t x) = UU)" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 656 | (fn prems => | 
| 1461 | 657 | [ | 
| 658 | (strip_tac 1), | |
| 659 | (rtac contrapos 1), | |
| 660 | (etac spec 1), | |
| 661 | (rtac (chain_UU_I RS spec) 1), | |
| 662 | (rtac (cont2mono RS ch2ch_monofun) 1), | |
| 663 | (atac 1), | |
| 664 | (atac 1), | |
| 665 | (rtac (cont2contlub RS contlubE RS spec RS mp RS subst) 1), | |
| 666 | (atac 1), | |
| 667 | (atac 1), | |
| 668 | (atac 1) | |
| 669 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 670 | |
| 2640 | 671 | qed_goal "adm_eq" thy | 
| 3460 | 672 | "!!u. [|cont u ; cont v|]==> adm(%x. u x = v x)" | 
| 4098 | 673 | (fn prems => [asm_simp_tac (simpset() addsimps [po_eq_conv]) 1]); | 
| 3460 | 674 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 675 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 676 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 677 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 678 | (* admissibility for disjunction is hard to prove. It takes 10 Lemmas *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 679 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 680 | |
| 1992 | 681 | local | 
| 682 | ||
| 2619 | 683 | val adm_disj_lemma1 = prove_goal HOL.thy | 
| 3842 | 684 | "!n. P(Y n)|Q(Y n) ==> (? i.!j. R i j --> Q(Y(j))) | (!i.? j. R i j & P(Y(j)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 685 | (fn prems => | 
| 1461 | 686 | [ | 
| 687 | (cut_facts_tac prems 1), | |
| 688 | (fast_tac HOL_cs 1) | |
| 689 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 690 | |
| 2640 | 691 | val adm_disj_lemma2 = prove_goal thy | 
| 3842 | 692 | "!!Q. [| adm(Q); ? X. is_chain(X) & (!n. Q(X(n))) &\ | 
| 1992 | 693 | \ lub(range(Y))=lub(range(X))|] ==> Q(lub(range(Y)))" | 
| 4098 | 694 | (fn _ => [fast_tac (claset() addEs [admD] addss simpset()) 1]); | 
| 2619 | 695 | |
| 2640 | 696 | val adm_disj_lemma3 = prove_goalw thy [is_chain] | 
| 2619 | 697 | "!!Q. is_chain(Y) ==> is_chain(%m. if m < Suc i then Y(Suc i) else Y m)" | 
| 698 | (fn _ => | |
| 1461 | 699 | [ | 
| 4098 | 700 | asm_simp_tac (simpset() setloop (split_tac[expand_if])) 1, | 
| 2619 | 701 | safe_tac HOL_cs, | 
| 702 | subgoal_tac "ia = i" 1, | |
| 703 | Asm_simp_tac 1, | |
| 704 | trans_tac 1 | |
| 1461 | 705 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 706 | |
| 2619 | 707 | val adm_disj_lemma4 = prove_goal Nat.thy | 
| 708 | "!!Q. !j. i < j --> Q(Y(j)) ==> !n. Q( if n < Suc i then Y(Suc i) else Y n)" | |
| 709 | (fn _ => | |
| 1461 | 710 | [ | 
| 4098 | 711 | asm_simp_tac (simpset() setloop (split_tac[expand_if])) 1, | 
| 2619 | 712 | strip_tac 1, | 
| 713 | etac allE 1, | |
| 714 | etac mp 1, | |
| 715 | trans_tac 1 | |
| 1461 | 716 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 717 | |
| 2640 | 718 | val adm_disj_lemma5 = prove_goal thy | 
| 2841 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 nipkow parents: 
2764diff
changeset | 719 | "!!Y::nat=>'a::cpo. [| is_chain(Y); ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 1992 | 720 | \ lub(range(Y)) = lub(range(%m. if m< Suc(i) then Y(Suc(i)) else Y m))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 721 | (fn prems => | 
| 1461 | 722 | [ | 
| 2619 | 723 | safe_tac (HOL_cs addSIs [lub_equal2,adm_disj_lemma3]), | 
| 2764 | 724 | atac 2, | 
| 4098 | 725 | asm_simp_tac (simpset() setloop (split_tac[expand_if])) 1, | 
| 2619 | 726 |         res_inst_tac [("x","i")] exI 1,
 | 
| 727 | strip_tac 1, | |
| 728 | trans_tac 1 | |
| 1461 | 729 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 730 | |
| 2640 | 731 | val adm_disj_lemma6 = prove_goal thy | 
| 2841 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 nipkow parents: 
2764diff
changeset | 732 | "[| is_chain(Y::nat=>'a::cpo); ? i. ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 1992 | 733 | \ ? X. is_chain(X) & (! n. Q(X(n))) & lub(range(Y)) = lub(range(X))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 734 | (fn prems => | 
| 1461 | 735 | [ | 
| 736 | (cut_facts_tac prems 1), | |
| 737 | (etac exE 1), | |
| 3842 | 738 |         (res_inst_tac [("x","%m. if m<Suc(i) then Y(Suc(i)) else Y m")] exI 1),
 | 
| 1461 | 739 | (rtac conjI 1), | 
| 740 | (rtac adm_disj_lemma3 1), | |
| 741 | (atac 1), | |
| 742 | (rtac conjI 1), | |
| 743 | (rtac adm_disj_lemma4 1), | |
| 744 | (atac 1), | |
| 745 | (rtac adm_disj_lemma5 1), | |
| 746 | (atac 1), | |
| 747 | (atac 1) | |
| 748 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 749 | |
| 2640 | 750 | val adm_disj_lemma7 = prove_goal thy | 
| 2841 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 nipkow parents: 
2764diff
changeset | 751 | "[| is_chain(Y::nat=>'a::cpo); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 1992 | 752 | \ is_chain(%m. Y(Least(%j. m<j & P(Y(j)))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 753 | (fn prems => | 
| 1461 | 754 | [ | 
| 755 | (cut_facts_tac prems 1), | |
| 756 | (rtac is_chainI 1), | |
| 757 | (rtac allI 1), | |
| 758 | (rtac chain_mono3 1), | |
| 759 | (atac 1), | |
| 1675 | 760 | (rtac Least_le 1), | 
| 1461 | 761 | (rtac conjI 1), | 
| 762 | (rtac Suc_lessD 1), | |
| 763 | (etac allE 1), | |
| 764 | (etac exE 1), | |
| 1675 | 765 | (rtac (LeastI RS conjunct1) 1), | 
| 1461 | 766 | (atac 1), | 
| 767 | (etac allE 1), | |
| 768 | (etac exE 1), | |
| 1675 | 769 | (rtac (LeastI RS conjunct2) 1), | 
| 1461 | 770 | (atac 1) | 
| 771 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 772 | |
| 2640 | 773 | val adm_disj_lemma8 = prove_goal thy | 
| 2619 | 774 | "[| ! i. ? j. i < j & P(Y(j)) |] ==> ! m. P(Y(LEAST j::nat. m<j & P(Y(j))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 775 | (fn prems => | 
| 1461 | 776 | [ | 
| 777 | (cut_facts_tac prems 1), | |
| 778 | (strip_tac 1), | |
| 779 | (etac allE 1), | |
| 780 | (etac exE 1), | |
| 1675 | 781 | (etac (LeastI RS conjunct2) 1) | 
| 1461 | 782 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 783 | |
| 2640 | 784 | val adm_disj_lemma9 = prove_goal thy | 
| 2841 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 nipkow parents: 
2764diff
changeset | 785 | "[| is_chain(Y::nat=>'a::cpo); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 1992 | 786 | \ lub(range(Y)) = lub(range(%m. Y(Least(%j. m<j & P(Y(j))))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 787 | (fn prems => | 
| 1461 | 788 | [ | 
| 789 | (cut_facts_tac prems 1), | |
| 790 | (rtac antisym_less 1), | |
| 791 | (rtac lub_mono 1), | |
| 792 | (atac 1), | |
| 793 | (rtac adm_disj_lemma7 1), | |
| 794 | (atac 1), | |
| 795 | (atac 1), | |
| 796 | (strip_tac 1), | |
| 797 | (rtac (chain_mono RS mp) 1), | |
| 798 | (atac 1), | |
| 799 | (etac allE 1), | |
| 800 | (etac exE 1), | |
| 1675 | 801 | (rtac (LeastI RS conjunct1) 1), | 
| 1461 | 802 | (atac 1), | 
| 803 | (rtac lub_mono3 1), | |
| 804 | (rtac adm_disj_lemma7 1), | |
| 805 | (atac 1), | |
| 806 | (atac 1), | |
| 807 | (atac 1), | |
| 808 | (strip_tac 1), | |
| 809 | (rtac exI 1), | |
| 810 | (rtac (chain_mono RS mp) 1), | |
| 811 | (atac 1), | |
| 812 | (rtac lessI 1) | |
| 813 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 814 | |
| 2640 | 815 | val adm_disj_lemma10 = prove_goal thy | 
| 2841 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 nipkow parents: 
2764diff
changeset | 816 | "[| is_chain(Y::nat=>'a::cpo); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 1992 | 817 | \ ? X. is_chain(X) & (! n. P(X(n))) & lub(range(Y)) = lub(range(X))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 818 | (fn prems => | 
| 1461 | 819 | [ | 
| 820 | (cut_facts_tac prems 1), | |
| 1675 | 821 |         (res_inst_tac [("x","%m. Y(Least(%j. m<j & P(Y(j))))")] exI 1),
 | 
| 1461 | 822 | (rtac conjI 1), | 
| 823 | (rtac adm_disj_lemma7 1), | |
| 824 | (atac 1), | |
| 825 | (atac 1), | |
| 826 | (rtac conjI 1), | |
| 827 | (rtac adm_disj_lemma8 1), | |
| 828 | (atac 1), | |
| 829 | (rtac adm_disj_lemma9 1), | |
| 830 | (atac 1), | |
| 831 | (atac 1) | |
| 832 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 833 | |
| 2640 | 834 | val adm_disj_lemma12 = prove_goal thy | 
| 1992 | 835 | "[| adm(P); is_chain(Y);? i. ! j. i < j --> P(Y(j))|]==>P(lub(range(Y)))" | 
| 836 | (fn prems => | |
| 837 | [ | |
| 838 | (cut_facts_tac prems 1), | |
| 839 | (etac adm_disj_lemma2 1), | |
| 840 | (etac adm_disj_lemma6 1), | |
| 841 | (atac 1) | |
| 842 | ]); | |
| 430 | 843 | |
| 1992 | 844 | in | 
| 845 | ||
| 2640 | 846 | val adm_lemma11 = prove_goal thy | 
| 430 | 847 | "[| adm(P); is_chain(Y); ! i. ? j. i < j & P(Y(j)) |]==>P(lub(range(Y)))" | 
| 848 | (fn prems => | |
| 1461 | 849 | [ | 
| 850 | (cut_facts_tac prems 1), | |
| 851 | (etac adm_disj_lemma2 1), | |
| 852 | (etac adm_disj_lemma10 1), | |
| 853 | (atac 1) | |
| 854 | ]); | |
| 430 | 855 | |
| 2640 | 856 | val adm_disj = prove_goal thy | 
| 3842 | 857 | "!!P. [| adm P; adm Q |] ==> adm(%x. P x | Q x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 858 | (fn prems => | 
| 1461 | 859 | [ | 
| 3460 | 860 | (rtac admI 1), | 
| 1461 | 861 | (rtac (adm_disj_lemma1 RS disjE) 1), | 
| 862 | (atac 1), | |
| 863 | (rtac disjI2 1), | |
| 864 | (etac adm_disj_lemma12 1), | |
| 865 | (atac 1), | |
| 866 | (atac 1), | |
| 867 | (rtac disjI1 1), | |
| 1992 | 868 | (etac adm_lemma11 1), | 
| 1461 | 869 | (atac 1), | 
| 870 | (atac 1) | |
| 871 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 872 | |
| 1992 | 873 | end; | 
| 874 | ||
| 875 | bind_thm("adm_lemma11",adm_lemma11);
 | |
| 876 | bind_thm("adm_disj",adm_disj);
 | |
| 430 | 877 | |
| 2640 | 878 | qed_goal "adm_imp" thy | 
| 3842 | 879 | "!!P. [| adm(%x.~(P x)); adm Q |] ==> adm(%x. P x --> Q x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 880 | (fn prems => | 
| 1461 | 881 | [ | 
| 3842 | 882 | (subgoal_tac "(%x. P x --> Q x) = (%x. ~P x | Q x)" 1), | 
| 3652 | 883 | (Asm_simp_tac 1), | 
| 884 | (etac adm_disj 1), | |
| 885 | (atac 1), | |
| 3460 | 886 | (rtac ext 1), | 
| 887 | (fast_tac HOL_cs 1) | |
| 1461 | 888 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 889 | |
| 3842 | 890 | goal Fix.thy "!! P. [| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] \ | 
| 3460 | 891 | \ ==> adm (%x. P x = Q x)"; | 
| 3842 | 892 | by(subgoal_tac "(%x. P x = Q x) = (%x. (P x --> Q x) & (Q x --> P x))" 1); | 
| 3460 | 893 | by (Asm_simp_tac 1); | 
| 894 | by (rtac ext 1); | |
| 895 | by (fast_tac HOL_cs 1); | |
| 896 | qed"adm_iff"; | |
| 897 | ||
| 898 | ||
| 2640 | 899 | qed_goal "adm_not_conj" thy | 
| 1681 | 900 | "[| adm (%x. ~ P x); adm (%x. ~ Q x) |] ==> adm (%x. ~ (P x & Q x))"(fn prems=>[ | 
| 2033 | 901 | cut_facts_tac prems 1, | 
| 902 | subgoal_tac | |
| 903 | "(%x. ~ (P x & Q x)) = (%x. ~ P x | ~ Q x)" 1, | |
| 904 | rtac ext 2, | |
| 905 | fast_tac HOL_cs 2, | |
| 906 | etac ssubst 1, | |
| 907 | etac adm_disj 1, | |
| 908 | atac 1]); | |
| 1675 | 909 | |
| 2566 | 910 | val adm_lemmas = [adm_imp,adm_disj,adm_eq,adm_not_UU,adm_UU_not_less, | 
| 3460 | 911 | adm_all2,adm_not_less,adm_not_free,adm_not_conj,adm_conj,adm_less, | 
| 912 | adm_iff]; | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 913 | |
| 2566 | 914 | Addsimps adm_lemmas; |