author | haftmann |
Thu, 06 Apr 2017 08:33:37 +0200 | |
changeset 65416 | f707dbcf11e3 |
parent 64272 | f76b6dda2e56 |
child 66795 | 420d0080545f |
permissions | -rw-r--r-- |
32554 | 1 |
(* Authors: Jeremy Avigad and Amine Chaieb *) |
31708 | 2 |
|
60758 | 3 |
section \<open>Generic transfer machinery; specific transfer from nats to ints and back.\<close> |
31708 | 4 |
|
32558 | 5 |
theory Nat_Transfer |
47255
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
42870
diff
changeset
|
6 |
imports Int |
31708 | 7 |
begin |
8 |
||
60758 | 9 |
subsection \<open>Generic transfer machinery\<close> |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
10 |
|
35821 | 11 |
definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool" |
42870
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
krauss
parents:
39302
diff
changeset
|
12 |
where "transfer_morphism f A \<longleftrightarrow> True" |
35644 | 13 |
|
42870
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
krauss
parents:
39302
diff
changeset
|
14 |
lemma transfer_morphismI[intro]: "transfer_morphism f A" |
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
krauss
parents:
39302
diff
changeset
|
15 |
by (simp add: transfer_morphism_def) |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
16 |
|
48891 | 17 |
ML_file "Tools/legacy_transfer.ML" |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
18 |
|
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
19 |
|
60758 | 20 |
subsection \<open>Set up transfer from nat to int\<close> |
31708 | 21 |
|
60758 | 22 |
text \<open>set up transfer direction\<close> |
31708 | 23 |
|
42870
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
krauss
parents:
39302
diff
changeset
|
24 |
lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))" .. |
31708 | 25 |
|
35683 | 26 |
declare transfer_morphism_nat_int [transfer add |
27 |
mode: manual |
|
31708 | 28 |
return: nat_0_le |
35683 | 29 |
labels: nat_int |
31708 | 30 |
] |
31 |
||
60758 | 32 |
text \<open>basic functions and relations\<close> |
31708 | 33 |
|
35683 | 34 |
lemma transfer_nat_int_numerals [transfer key: transfer_morphism_nat_int]: |
31708 | 35 |
"(0::nat) = nat 0" |
36 |
"(1::nat) = nat 1" |
|
37 |
"(2::nat) = nat 2" |
|
38 |
"(3::nat) = nat 3" |
|
39 |
by auto |
|
40 |
||
41 |
definition |
|
42 |
tsub :: "int \<Rightarrow> int \<Rightarrow> int" |
|
43 |
where |
|
44 |
"tsub x y = (if x >= y then x - y else 0)" |
|
45 |
||
46 |
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y" |
|
47 |
by (simp add: tsub_def) |
|
48 |
||
35683 | 49 |
lemma transfer_nat_int_functions [transfer key: transfer_morphism_nat_int]: |
31708 | 50 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)" |
51 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)" |
|
52 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)" |
|
53 |
"(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)" |
|
54 |
by (auto simp add: eq_nat_nat_iff nat_mult_distrib |
|
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
55 |
nat_power_eq tsub_def) |
31708 | 56 |
|
35683 | 57 |
lemma transfer_nat_int_function_closures [transfer key: transfer_morphism_nat_int]: |
31708 | 58 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0" |
59 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0" |
|
60 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0" |
|
61 |
"(x::int) >= 0 \<Longrightarrow> x^n >= 0" |
|
62 |
"(0::int) >= 0" |
|
63 |
"(1::int) >= 0" |
|
64 |
"(2::int) >= 0" |
|
65 |
"(3::int) >= 0" |
|
66 |
"int z >= 0" |
|
33340
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
33318
diff
changeset
|
67 |
by (auto simp add: zero_le_mult_iff tsub_def) |
31708 | 68 |
|
35683 | 69 |
lemma transfer_nat_int_relations [transfer key: transfer_morphism_nat_int]: |
31708 | 70 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
71 |
(nat (x::int) = nat y) = (x = y)" |
|
72 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
73 |
(nat (x::int) < nat y) = (x < y)" |
|
74 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
75 |
(nat (x::int) <= nat y) = (x <= y)" |
|
76 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> |
|
77 |
(nat (x::int) dvd nat y) = (x dvd y)" |
|
32558 | 78 |
by (auto simp add: zdvd_int) |
31708 | 79 |
|
80 |
||
60758 | 81 |
text \<open>first-order quantifiers\<close> |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
82 |
|
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
83 |
lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))" |
63648 | 84 |
by (simp split: split_nat) |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
85 |
|
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
86 |
lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))" |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
87 |
proof |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
88 |
assume "\<exists>x. P x" |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
89 |
then obtain x where "P x" .. |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
90 |
then have "int x \<ge> 0 \<and> P (nat (int x))" by simp |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
91 |
then show "\<exists>x\<ge>0. P (nat x)" .. |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
92 |
next |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
93 |
assume "\<exists>x\<ge>0. P (nat x)" |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
94 |
then show "\<exists>x. P x" by auto |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
95 |
qed |
31708 | 96 |
|
35683 | 97 |
lemma transfer_nat_int_quantifiers [transfer key: transfer_morphism_nat_int]: |
31708 | 98 |
"(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))" |
99 |
"(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))" |
|
100 |
by (rule all_nat, rule ex_nat) |
|
101 |
||
102 |
(* should we restrict these? *) |
|
103 |
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
104 |
(ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)" |
|
105 |
by auto |
|
106 |
||
107 |
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
108 |
(EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)" |
|
109 |
by auto |
|
110 |
||
35644 | 111 |
declare transfer_morphism_nat_int [transfer add |
31708 | 112 |
cong: all_cong ex_cong] |
113 |
||
114 |
||
60758 | 115 |
text \<open>if\<close> |
31708 | 116 |
|
35683 | 117 |
lemma nat_if_cong [transfer key: transfer_morphism_nat_int]: |
118 |
"(if P then (nat x) else (nat y)) = nat (if P then x else y)" |
|
31708 | 119 |
by auto |
120 |
||
121 |
||
60758 | 122 |
text \<open>operations with sets\<close> |
31708 | 123 |
|
124 |
definition |
|
125 |
nat_set :: "int set \<Rightarrow> bool" |
|
126 |
where |
|
127 |
"nat_set S = (ALL x:S. x >= 0)" |
|
128 |
||
129 |
lemma transfer_nat_int_set_functions: |
|
130 |
"card A = card (int ` A)" |
|
131 |
"{} = nat ` ({}::int set)" |
|
132 |
"A Un B = nat ` (int ` A Un int ` B)" |
|
133 |
"A Int B = nat ` (int ` A Int int ` B)" |
|
134 |
"{x. P x} = nat ` {x. x >= 0 & P(nat x)}" |
|
135 |
apply (rule card_image [symmetric]) |
|
136 |
apply (auto simp add: inj_on_def image_def) |
|
137 |
apply (rule_tac x = "int x" in bexI) |
|
138 |
apply auto |
|
139 |
apply (rule_tac x = "int x" in bexI) |
|
140 |
apply auto |
|
141 |
apply (rule_tac x = "int x" in bexI) |
|
142 |
apply auto |
|
143 |
apply (rule_tac x = "int x" in exI) |
|
144 |
apply auto |
|
145 |
done |
|
146 |
||
147 |
lemma transfer_nat_int_set_function_closures: |
|
148 |
"nat_set {}" |
|
149 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" |
|
150 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" |
|
151 |
"nat_set {x. x >= 0 & P x}" |
|
152 |
"nat_set (int ` C)" |
|
153 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *) |
|
154 |
unfolding nat_set_def apply auto |
|
155 |
done |
|
156 |
||
157 |
lemma transfer_nat_int_set_relations: |
|
158 |
"(finite A) = (finite (int ` A))" |
|
159 |
"(x : A) = (int x : int ` A)" |
|
160 |
"(A = B) = (int ` A = int ` B)" |
|
161 |
"(A < B) = (int ` A < int ` B)" |
|
162 |
"(A <= B) = (int ` A <= int ` B)" |
|
163 |
apply (rule iffI) |
|
164 |
apply (erule finite_imageI) |
|
165 |
apply (erule finite_imageD) |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
166 |
apply (auto simp add: image_def set_eq_iff inj_on_def) |
31708 | 167 |
apply (drule_tac x = "int x" in spec, auto) |
168 |
apply (drule_tac x = "int x" in spec, auto) |
|
169 |
apply (drule_tac x = "int x" in spec, auto) |
|
170 |
done |
|
171 |
||
172 |
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow> |
|
173 |
(int ` nat ` A = A)" |
|
174 |
by (auto simp add: nat_set_def image_def) |
|
175 |
||
176 |
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow> |
|
177 |
{(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}" |
|
178 |
by auto |
|
179 |
||
35644 | 180 |
declare transfer_morphism_nat_int [transfer add |
31708 | 181 |
return: transfer_nat_int_set_functions |
182 |
transfer_nat_int_set_function_closures |
|
183 |
transfer_nat_int_set_relations |
|
184 |
transfer_nat_int_set_return_embed |
|
185 |
cong: transfer_nat_int_set_cong |
|
186 |
] |
|
187 |
||
188 |
||
64272 | 189 |
text \<open>sum and prod\<close> |
31708 | 190 |
|
191 |
(* this handles the case where the *domain* of f is nat *) |
|
192 |
lemma transfer_nat_int_sum_prod: |
|
64267 | 193 |
"sum f A = sum (%x. f (nat x)) (int ` A)" |
64272 | 194 |
"prod f A = prod (%x. f (nat x)) (int ` A)" |
64267 | 195 |
apply (subst sum.reindex) |
31708 | 196 |
apply (unfold inj_on_def, auto) |
64272 | 197 |
apply (subst prod.reindex) |
31708 | 198 |
apply (unfold inj_on_def o_def, auto) |
199 |
done |
|
200 |
||
201 |
(* this handles the case where the *range* of f is nat *) |
|
202 |
lemma transfer_nat_int_sum_prod2: |
|
64267 | 203 |
"sum f A = nat(sum (%x. int (f x)) A)" |
64272 | 204 |
"prod f A = nat(prod (%x. int (f x)) A)" |
64267 | 205 |
apply (simp only: int_sum [symmetric] nat_int) |
64272 | 206 |
apply (simp only: int_prod [symmetric] nat_int) |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
60758
diff
changeset
|
207 |
done |
31708 | 208 |
|
209 |
lemma transfer_nat_int_sum_prod_closure: |
|
64267 | 210 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> sum f A >= 0" |
64272 | 211 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> prod f A >= 0" |
31708 | 212 |
unfolding nat_set_def |
64267 | 213 |
apply (rule sum_nonneg) |
31708 | 214 |
apply auto |
64272 | 215 |
apply (rule prod_nonneg) |
31708 | 216 |
apply auto |
217 |
done |
|
218 |
||
219 |
(* this version doesn't work, even with nat_set A \<Longrightarrow> |
|
220 |
x : A \<Longrightarrow> x >= 0 turned on. Why not? |
|
221 |
||
222 |
also: what does =simp=> do? |
|
223 |
||
224 |
lemma transfer_nat_int_sum_prod_closure: |
|
64267 | 225 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> sum f A >= 0" |
64272 | 226 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> prod f A >= 0" |
31708 | 227 |
unfolding nat_set_def simp_implies_def |
64267 | 228 |
apply (rule sum_nonneg) |
31708 | 229 |
apply auto |
64272 | 230 |
apply (rule prod_nonneg) |
31708 | 231 |
apply auto |
232 |
done |
|
233 |
*) |
|
234 |
||
235 |
(* Making A = B in this lemma doesn't work. Why not? |
|
64272 | 236 |
Also, why aren't sum.cong and prod.cong enough, |
31708 | 237 |
with the previously mentioned rule turned on? *) |
238 |
||
239 |
lemma transfer_nat_int_sum_prod_cong: |
|
240 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> |
|
64267 | 241 |
sum f A = sum g B" |
31708 | 242 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow> |
64272 | 243 |
prod f A = prod g B" |
31708 | 244 |
unfolding nat_set_def |
64267 | 245 |
apply (subst sum.cong, assumption) |
31708 | 246 |
apply auto [2] |
64272 | 247 |
apply (subst prod.cong, assumption, auto) |
31708 | 248 |
done |
249 |
||
35644 | 250 |
declare transfer_morphism_nat_int [transfer add |
31708 | 251 |
return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2 |
252 |
transfer_nat_int_sum_prod_closure |
|
253 |
cong: transfer_nat_int_sum_prod_cong] |
|
254 |
||
255 |
||
60758 | 256 |
subsection \<open>Set up transfer from int to nat\<close> |
31708 | 257 |
|
60758 | 258 |
text \<open>set up transfer direction\<close> |
31708 | 259 |
|
42870
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
krauss
parents:
39302
diff
changeset
|
260 |
lemma transfer_morphism_int_nat: "transfer_morphism int (\<lambda>n. True)" .. |
31708 | 261 |
|
35644 | 262 |
declare transfer_morphism_int_nat [transfer add |
31708 | 263 |
mode: manual |
264 |
return: nat_int |
|
35683 | 265 |
labels: int_nat |
31708 | 266 |
] |
267 |
||
268 |
||
60758 | 269 |
text \<open>basic functions and relations\<close> |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
270 |
|
31708 | 271 |
definition |
272 |
is_nat :: "int \<Rightarrow> bool" |
|
273 |
where |
|
274 |
"is_nat x = (x >= 0)" |
|
275 |
||
276 |
lemma transfer_int_nat_numerals: |
|
277 |
"0 = int 0" |
|
278 |
"1 = int 1" |
|
279 |
"2 = int 2" |
|
280 |
"3 = int 3" |
|
281 |
by auto |
|
282 |
||
283 |
lemma transfer_int_nat_functions: |
|
284 |
"(int x) + (int y) = int (x + y)" |
|
285 |
"(int x) * (int y) = int (x * y)" |
|
286 |
"tsub (int x) (int y) = int (x - y)" |
|
287 |
"(int x)^n = int (x^n)" |
|
62348 | 288 |
by (auto simp add: of_nat_mult tsub_def of_nat_power) |
31708 | 289 |
|
290 |
lemma transfer_int_nat_function_closures: |
|
291 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)" |
|
292 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)" |
|
293 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)" |
|
294 |
"is_nat x \<Longrightarrow> is_nat (x^n)" |
|
295 |
"is_nat 0" |
|
296 |
"is_nat 1" |
|
297 |
"is_nat 2" |
|
298 |
"is_nat 3" |
|
299 |
"is_nat (int z)" |
|
300 |
by (simp_all only: is_nat_def transfer_nat_int_function_closures) |
|
301 |
||
302 |
lemma transfer_int_nat_relations: |
|
303 |
"(int x = int y) = (x = y)" |
|
304 |
"(int x < int y) = (x < y)" |
|
305 |
"(int x <= int y) = (x <= y)" |
|
306 |
"(int x dvd int y) = (x dvd y)" |
|
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
32558
diff
changeset
|
307 |
by (auto simp add: zdvd_int) |
32121 | 308 |
|
35644 | 309 |
declare transfer_morphism_int_nat [transfer add return: |
31708 | 310 |
transfer_int_nat_numerals |
311 |
transfer_int_nat_functions |
|
312 |
transfer_int_nat_function_closures |
|
313 |
transfer_int_nat_relations |
|
314 |
] |
|
315 |
||
316 |
||
60758 | 317 |
text \<open>first-order quantifiers\<close> |
31708 | 318 |
|
319 |
lemma transfer_int_nat_quantifiers: |
|
320 |
"(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))" |
|
321 |
"(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))" |
|
322 |
apply (subst all_nat) |
|
323 |
apply auto [1] |
|
324 |
apply (subst ex_nat) |
|
325 |
apply auto |
|
326 |
done |
|
327 |
||
35644 | 328 |
declare transfer_morphism_int_nat [transfer add |
31708 | 329 |
return: transfer_int_nat_quantifiers] |
330 |
||
331 |
||
60758 | 332 |
text \<open>if\<close> |
31708 | 333 |
|
334 |
lemma int_if_cong: "(if P then (int x) else (int y)) = |
|
335 |
int (if P then x else y)" |
|
336 |
by auto |
|
337 |
||
35644 | 338 |
declare transfer_morphism_int_nat [transfer add return: int_if_cong] |
31708 | 339 |
|
340 |
||
341 |
||
60758 | 342 |
text \<open>operations with sets\<close> |
31708 | 343 |
|
344 |
lemma transfer_int_nat_set_functions: |
|
345 |
"nat_set A \<Longrightarrow> card A = card (nat ` A)" |
|
346 |
"{} = int ` ({}::nat set)" |
|
347 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)" |
|
348 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)" |
|
349 |
"{x. x >= 0 & P x} = int ` {x. P(int x)}" |
|
350 |
(* need all variants of these! *) |
|
351 |
by (simp_all only: is_nat_def transfer_nat_int_set_functions |
|
352 |
transfer_nat_int_set_function_closures |
|
353 |
transfer_nat_int_set_return_embed nat_0_le |
|
354 |
cong: transfer_nat_int_set_cong) |
|
355 |
||
356 |
lemma transfer_int_nat_set_function_closures: |
|
357 |
"nat_set {}" |
|
358 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)" |
|
359 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)" |
|
360 |
"nat_set {x. x >= 0 & P x}" |
|
361 |
"nat_set (int ` C)" |
|
362 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x" |
|
363 |
by (simp_all only: transfer_nat_int_set_function_closures is_nat_def) |
|
364 |
||
365 |
lemma transfer_int_nat_set_relations: |
|
366 |
"nat_set A \<Longrightarrow> finite A = finite (nat ` A)" |
|
367 |
"is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)" |
|
368 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)" |
|
369 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)" |
|
370 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)" |
|
371 |
by (simp_all only: is_nat_def transfer_nat_int_set_relations |
|
372 |
transfer_nat_int_set_return_embed nat_0_le) |
|
373 |
||
374 |
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A" |
|
375 |
by (simp only: transfer_nat_int_set_relations |
|
376 |
transfer_nat_int_set_function_closures |
|
377 |
transfer_nat_int_set_return_embed nat_0_le) |
|
378 |
||
379 |
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow> |
|
380 |
{(x::nat). P x} = {x. P' x}" |
|
381 |
by auto |
|
382 |
||
35644 | 383 |
declare transfer_morphism_int_nat [transfer add |
31708 | 384 |
return: transfer_int_nat_set_functions |
385 |
transfer_int_nat_set_function_closures |
|
386 |
transfer_int_nat_set_relations |
|
387 |
transfer_int_nat_set_return_embed |
|
388 |
cong: transfer_int_nat_set_cong |
|
389 |
] |
|
390 |
||
391 |
||
64272 | 392 |
text \<open>sum and prod\<close> |
31708 | 393 |
|
394 |
(* this handles the case where the *domain* of f is int *) |
|
395 |
lemma transfer_int_nat_sum_prod: |
|
64267 | 396 |
"nat_set A \<Longrightarrow> sum f A = sum (%x. f (int x)) (nat ` A)" |
64272 | 397 |
"nat_set A \<Longrightarrow> prod f A = prod (%x. f (int x)) (nat ` A)" |
64267 | 398 |
apply (subst sum.reindex) |
31708 | 399 |
apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff) |
64272 | 400 |
apply (subst prod.reindex) |
31708 | 401 |
apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff |
64272 | 402 |
cong: prod.cong) |
31708 | 403 |
done |
404 |
||
405 |
(* this handles the case where the *range* of f is int *) |
|
406 |
lemma transfer_int_nat_sum_prod2: |
|
64267 | 407 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> sum f A = int(sum (%x. nat (f x)) A)" |
31708 | 408 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> |
64272 | 409 |
prod f A = int(prod (%x. nat (f x)) A)" |
31708 | 410 |
unfolding is_nat_def |
64267 | 411 |
by (subst int_sum) auto |
31708 | 412 |
|
35644 | 413 |
declare transfer_morphism_int_nat [transfer add |
31708 | 414 |
return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2 |
64272 | 415 |
cong: sum.cong prod.cong] |
31708 | 416 |
|
417 |
end |