| author | wenzelm | 
| Mon, 27 Feb 2012 16:56:25 +0100 | |
| changeset 46711 | f745bcc4a1e5 | 
| parent 45212 | e87feee00a4c | 
| child 47818 | 151d137f1095 | 
| permissions | -rw-r--r-- | 
| 44070 | 1 | header "Constant Folding" | 
| 2 | ||
| 3 | theory Fold imports Sem_Equiv begin | |
| 4 | ||
| 44850 | 5 | subsection "Simple folding of arithmetic expressions" | 
| 44070 | 6 | |
| 45134 | 7 | type_synonym | 
| 45212 | 8 | tab = "vname \<Rightarrow> val option" | 
| 44070 | 9 | |
| 10 | (* maybe better as the composition of substitution and the existing simp_const(0) *) | |
| 11 | fun simp_const :: "aexp \<Rightarrow> tab \<Rightarrow> aexp" where | |
| 12 | "simp_const (N n) _ = N n" | | |
| 13 | "simp_const (V x) t = (case t x of None \<Rightarrow> V x | Some k \<Rightarrow> N k)" | | |
| 14 | "simp_const (Plus e1 e2) t = (case (simp_const e1 t, simp_const e2 t) of | |
| 15 | (N n1, N n2) \<Rightarrow> N(n1+n2) | (e1',e2') \<Rightarrow> Plus e1' e2')" | |
| 16 | ||
| 17 | definition "approx t s \<longleftrightarrow> (ALL x k. t x = Some k \<longrightarrow> s x = k)" | |
| 18 | ||
| 19 | theorem aval_simp_const[simp]: | |
| 20 | assumes "approx t s" | |
| 21 | shows "aval (simp_const a t) s = aval a s" | |
| 22 | using assms | |
| 23 | by (induct a) (auto simp: approx_def split: aexp.split option.split) | |
| 24 | ||
| 25 | theorem aval_simp_const_N: | |
| 26 | assumes "approx t s" | |
| 27 | shows "simp_const a t = N n \<Longrightarrow> aval a s = n" | |
| 28 | using assms | |
| 29 | by (induct a arbitrary: n) | |
| 30 | (auto simp: approx_def split: aexp.splits option.splits) | |
| 31 | ||
| 32 | definition | |
| 33 | "merge t1 t2 = (\<lambda>m. if t1 m = t2 m then t1 m else None)" | |
| 34 | ||
| 45212 | 35 | primrec lnames :: "com \<Rightarrow> vname set" where | 
| 44070 | 36 | "lnames SKIP = {}" |
 | 
| 37 | "lnames (x ::= a) = {x}" |
 | |
| 38 | "lnames (c1; c2) = lnames c1 \<union> lnames c2" | | |
| 39 | "lnames (IF b THEN c1 ELSE c2) = lnames c1 \<union> lnames c2" | | |
| 40 | "lnames (WHILE b DO c) = lnames c" | |
| 41 | ||
| 42 | primrec "defs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where | |
| 43 | "defs SKIP t = t" | | |
| 44 | "defs (x ::= a) t = | |
| 45 | (case simp_const a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | | |
| 46 | "defs (c1;c2) t = (defs c2 o defs c1) t" | | |
| 47 | "defs (IF b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2 t)" | | |
| 48 | "defs (WHILE b DO c) t = t |` (-lnames c)" | |
| 49 | ||
| 50 | primrec fold where | |
| 51 | "fold SKIP _ = SKIP" | | |
| 52 | "fold (x ::= a) t = (x ::= (simp_const a t))" | | |
| 53 | "fold (c1;c2) t = (fold c1 t; fold c2 (defs c1 t))" | | |
| 54 | "fold (IF b THEN c1 ELSE c2) t = IF b THEN fold c1 t ELSE fold c2 t" | | |
| 55 | "fold (WHILE b DO c) t = WHILE b DO fold c (t |` (-lnames c))" | |
| 56 | ||
| 57 | lemma approx_merge: | |
| 58 | "approx t1 s \<or> approx t2 s \<Longrightarrow> approx (merge t1 t2) s" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44850diff
changeset | 59 | by (fastforce simp: merge_def approx_def) | 
| 44070 | 60 | |
| 61 | lemma approx_map_le: | |
| 62 | "approx t2 s \<Longrightarrow> t1 \<subseteq>\<^sub>m t2 \<Longrightarrow> approx t1 s" | |
| 63 | by (clarsimp simp: approx_def map_le_def dom_def) | |
| 64 | ||
| 65 | lemma restrict_map_le [intro!, simp]: "t |` S \<subseteq>\<^sub>m t" | |
| 66 | by (clarsimp simp: restrict_map_def map_le_def) | |
| 67 | ||
| 68 | lemma merge_restrict: | |
| 69 | assumes "t1 |` S = t |` S" | |
| 70 | assumes "t2 |` S = t |` S" | |
| 71 | shows "merge t1 t2 |` S = t |` S" | |
| 72 | proof - | |
| 73 | from assms | |
| 74 | have "\<forall>x. (t1 |` S) x = (t |` S) x" | |
| 75 | and "\<forall>x. (t2 |` S) x = (t |` S) x" by auto | |
| 76 | thus ?thesis | |
| 77 | by (auto simp: merge_def restrict_map_def | |
| 78 | split: if_splits intro: ext) | |
| 79 | qed | |
| 80 | ||
| 81 | ||
| 82 | lemma defs_restrict: | |
| 83 | "defs c t |` (- lnames c) = t |` (- lnames c)" | |
| 45015 | 84 | proof (induction c arbitrary: t) | 
| 44070 | 85 | case (Semi c1 c2) | 
| 86 | hence "defs c1 t |` (- lnames c1) = t |` (- lnames c1)" | |
| 87 | by simp | |
| 88 | hence "defs c1 t |` (- lnames c1) |` (-lnames c2) = | |
| 89 | t |` (- lnames c1) |` (-lnames c2)" by simp | |
| 90 | moreover | |
| 91 | from Semi | |
| 92 | have "defs c2 (defs c1 t) |` (- lnames c2) = | |
| 93 | defs c1 t |` (- lnames c2)" | |
| 94 | by simp | |
| 95 | hence "defs c2 (defs c1 t) |` (- lnames c2) |` (- lnames c1) = | |
| 96 | defs c1 t |` (- lnames c2) |` (- lnames c1)" | |
| 97 | by simp | |
| 98 | ultimately | |
| 99 | show ?case by (clarsimp simp: Int_commute) | |
| 100 | next | |
| 101 | case (If b c1 c2) | |
| 102 | hence "defs c1 t |` (- lnames c1) = t |` (- lnames c1)" by simp | |
| 103 | hence "defs c1 t |` (- lnames c1) |` (-lnames c2) = | |
| 104 | t |` (- lnames c1) |` (-lnames c2)" by simp | |
| 105 | moreover | |
| 106 | from If | |
| 107 | have "defs c2 t |` (- lnames c2) = t |` (- lnames c2)" by simp | |
| 108 | hence "defs c2 t |` (- lnames c2) |` (-lnames c1) = | |
| 109 | t |` (- lnames c2) |` (-lnames c1)" by simp | |
| 110 | ultimately | |
| 111 | show ?case by (auto simp: Int_commute intro: merge_restrict) | |
| 112 | qed (auto split: aexp.split) | |
| 113 | ||
| 114 | ||
| 115 | lemma big_step_pres_approx: | |
| 116 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (defs c t) s'" | |
| 45015 | 117 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 118 | case Skip thus ?case by simp | 
| 119 | next | |
| 120 | case Assign | |
| 121 | thus ?case | |
| 122 | by (clarsimp simp: aval_simp_const_N approx_def split: aexp.split) | |
| 123 | next | |
| 124 | case (Semi c1 s1 s2 c2 s3) | |
| 45015 | 125 | have "approx (defs c1 t) s2" by (rule Semi.IH(1)[OF Semi.prems]) | 
| 126 | hence "approx (defs c2 (defs c1 t)) s3" by (rule Semi.IH(2)) | |
| 44070 | 127 | thus ?case by simp | 
| 128 | next | |
| 129 | case (IfTrue b s c1 s') | |
| 130 | hence "approx (defs c1 t) s'" by simp | |
| 131 | thus ?case by (simp add: approx_merge) | |
| 132 | next | |
| 133 | case (IfFalse b s c2 s') | |
| 134 | hence "approx (defs c2 t) s'" by simp | |
| 135 | thus ?case by (simp add: approx_merge) | |
| 136 | next | |
| 137 | case WhileFalse | |
| 138 | thus ?case by (simp add: approx_def restrict_map_def) | |
| 139 | next | |
| 140 | case (WhileTrue b s1 c s2 s3) | |
| 141 | hence "approx (defs c t) s2" by simp | |
| 142 | with WhileTrue | |
| 143 | have "approx (defs c t |` (-lnames c)) s3" by simp | |
| 144 | thus ?case by (simp add: defs_restrict) | |
| 145 | qed | |
| 146 | ||
| 147 | corollary approx_defs_inv [simp]: | |
| 148 |   "\<Turnstile> {approx t} c {approx (defs c t)}"
 | |
| 149 | by (simp add: hoare_valid_def big_step_pres_approx) | |
| 150 | ||
| 151 | ||
| 152 | lemma big_step_pres_approx_restrict: | |
| 153 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx (t |` (-lnames c)) s \<Longrightarrow> approx (t |` (-lnames c)) s'" | |
| 45015 | 154 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 155 | case Assign | 
| 156 | thus ?case by (clarsimp simp: approx_def) | |
| 157 | next | |
| 158 | case (Semi c1 s1 s2 c2 s3) | |
| 159 | hence "approx (t |` (-lnames c2) |` (-lnames c1)) s1" | |
| 160 | by (simp add: Int_commute) | |
| 161 | hence "approx (t |` (-lnames c2) |` (-lnames c1)) s2" | |
| 162 | by (rule Semi) | |
| 163 | hence "approx (t |` (-lnames c1) |` (-lnames c2)) s2" | |
| 164 | by (simp add: Int_commute) | |
| 165 | hence "approx (t |` (-lnames c1) |` (-lnames c2)) s3" | |
| 166 | by (rule Semi) | |
| 167 | thus ?case by simp | |
| 168 | next | |
| 169 | case (IfTrue b s c1 s' c2) | |
| 170 | hence "approx (t |` (-lnames c2) |` (-lnames c1)) s" | |
| 171 | by (simp add: Int_commute) | |
| 172 | hence "approx (t |` (-lnames c2) |` (-lnames c1)) s'" | |
| 173 | by (rule IfTrue) | |
| 174 | thus ?case by (simp add: Int_commute) | |
| 175 | next | |
| 176 | case (IfFalse b s c2 s' c1) | |
| 177 | hence "approx (t |` (-lnames c1) |` (-lnames c2)) s" | |
| 178 | by simp | |
| 179 | hence "approx (t |` (-lnames c1) |` (-lnames c2)) s'" | |
| 180 | by (rule IfFalse) | |
| 181 | thus ?case by simp | |
| 182 | qed auto | |
| 183 | ||
| 184 | ||
| 185 | lemma approx_restrict_inv: | |
| 186 |   "\<Turnstile> {approx (t |` (-lnames c))} c {approx (t |` (-lnames c))}"
 | |
| 187 | by (simp add: hoare_valid_def big_step_pres_approx_restrict) | |
| 188 | ||
| 189 | declare assign_simp [simp] | |
| 190 | ||
| 191 | lemma approx_eq: | |
| 192 | "approx t \<Turnstile> c \<sim> fold c t" | |
| 45015 | 193 | proof (induction c arbitrary: t) | 
| 44070 | 194 | case SKIP show ?case by simp | 
| 195 | next | |
| 196 | case Assign | |
| 197 | show ?case by (simp add: equiv_up_to_def) | |
| 198 | next | |
| 199 | case Semi | |
| 200 | thus ?case by (auto intro!: equiv_up_to_semi) | |
| 201 | next | |
| 202 | case If | |
| 203 | thus ?case by (auto intro!: equiv_up_to_if_weak) | |
| 204 | next | |
| 205 | case (While b c) | |
| 206 | hence "approx (t |` (- lnames c)) \<Turnstile> | |
| 207 | WHILE b DO c \<sim> WHILE b DO fold c (t |` (- lnames c))" | |
| 208 | by (auto intro: equiv_up_to_while_weak approx_restrict_inv) | |
| 209 | thus ?case | |
| 210 | by (auto intro: equiv_up_to_weaken approx_map_le) | |
| 211 | qed | |
| 212 | ||
| 213 | ||
| 214 | lemma approx_empty [simp]: | |
| 215 | "approx empty = (\<lambda>_. True)" | |
| 216 | by (auto intro!: ext simp: approx_def) | |
| 217 | ||
| 218 | lemma equiv_sym: | |
| 219 | "c \<sim> c' \<longleftrightarrow> c' \<sim> c" | |
| 220 | by (auto simp add: equiv_def) | |
| 221 | ||
| 222 | theorem constant_folding_equiv: | |
| 223 | "fold c empty \<sim> c" | |
| 224 | using approx_eq [of empty c] | |
| 225 | by (simp add: equiv_up_to_True equiv_sym) | |
| 226 | ||
| 227 | ||
| 228 | ||
| 44850 | 229 | subsection {* More ambitious folding including boolean expressions *}
 | 
| 44070 | 230 | |
| 231 | ||
| 232 | fun bsimp_const :: "bexp \<Rightarrow> tab \<Rightarrow> bexp" where | |
| 233 | "bsimp_const (Less a1 a2) t = less (simp_const a1 t) (simp_const a2 t)" | | |
| 234 | "bsimp_const (And b1 b2) t = and (bsimp_const b1 t) (bsimp_const b2 t)" | | |
| 235 | "bsimp_const (Not b) t = not(bsimp_const b t)" | | |
| 45200 | 236 | "bsimp_const (Bc bc) _ = Bc bc" | 
| 44070 | 237 | |
| 238 | theorem bvalsimp_const [simp]: | |
| 239 | assumes "approx t s" | |
| 240 | shows "bval (bsimp_const b t) s = bval b s" | |
| 241 | using assms by (induct b) auto | |
| 242 | ||
| 45200 | 243 | lemma not_Bc [simp]: "not (Bc v) = Bc (\<not>v)" | 
| 44070 | 244 | by (cases v) auto | 
| 245 | ||
| 45200 | 246 | lemma not_Bc_eq [simp]: "(not b = Bc v) = (b = Bc (\<not>v))" | 
| 44070 | 247 | by (cases b) auto | 
| 248 | ||
| 45200 | 249 | lemma and_Bc_eq: | 
| 250 | "(and a b = Bc v) = | |
| 251 | (a = Bc False \<and> \<not>v \<or> b = Bc False \<and> \<not>v \<or> | |
| 252 | (\<exists>v1 v2. a = Bc v1 \<and> b = Bc v2 \<and> v = v1 \<and> v2))" | |
| 44070 | 253 | by (rule and.induct) auto | 
| 254 | ||
| 45200 | 255 | lemma less_Bc_eq [simp]: | 
| 256 | "(less a b = Bc v) = (\<exists>n1 n2. a = N n1 \<and> b = N n2 \<and> v = (n1 < n2))" | |
| 44070 | 257 | by (rule less.induct) auto | 
| 258 | ||
| 45200 | 259 | theorem bvalsimp_const_Bc: | 
| 44070 | 260 | assumes "approx t s" | 
| 45200 | 261 | shows "bsimp_const b t = Bc v \<Longrightarrow> bval b s = v" | 
| 44070 | 262 | using assms | 
| 263 | by (induct b arbitrary: v) | |
| 45200 | 264 | (auto simp: approx_def and_Bc_eq aval_simp_const_N | 
| 44070 | 265 | split: bexp.splits bool.splits) | 
| 266 | ||
| 267 | ||
| 268 | primrec "bdefs" :: "com \<Rightarrow> tab \<Rightarrow> tab" where | |
| 269 | "bdefs SKIP t = t" | | |
| 270 | "bdefs (x ::= a) t = | |
| 271 | (case simp_const a t of N k \<Rightarrow> t(x \<mapsto> k) | _ \<Rightarrow> t(x:=None))" | | |
| 272 | "bdefs (c1;c2) t = (bdefs c2 o bdefs c1) t" | | |
| 273 | "bdefs (IF b THEN c1 ELSE c2) t = (case bsimp_const b t of | |
| 45200 | 274 | Bc True \<Rightarrow> bdefs c1 t | 
| 275 | | Bc False \<Rightarrow> bdefs c2 t | |
| 44070 | 276 | | _ \<Rightarrow> merge (bdefs c1 t) (bdefs c2 t))" | | 
| 277 | "bdefs (WHILE b DO c) t = t |` (-lnames c)" | |
| 278 | ||
| 279 | ||
| 280 | primrec bfold where | |
| 281 | "bfold SKIP _ = SKIP" | | |
| 282 | "bfold (x ::= a) t = (x ::= (simp_const a t))" | | |
| 283 | "bfold (c1;c2) t = (bfold c1 t; bfold c2 (bdefs c1 t))" | | |
| 284 | "bfold (IF b THEN c1 ELSE c2) t = (case bsimp_const b t of | |
| 45200 | 285 | Bc True \<Rightarrow> bfold c1 t | 
| 286 | | Bc False \<Rightarrow> bfold c2 t | |
| 44070 | 287 | | _ \<Rightarrow> IF bsimp_const b t THEN bfold c1 t ELSE bfold c2 t)" | | 
| 288 | "bfold (WHILE b DO c) t = (case bsimp_const b t of | |
| 45200 | 289 | Bc False \<Rightarrow> SKIP | 
| 44070 | 290 | | _ \<Rightarrow> WHILE bsimp_const b (t |` (-lnames c)) DO bfold c (t |` (-lnames c)))" | 
| 291 | ||
| 292 | ||
| 293 | lemma bdefs_restrict: | |
| 294 | "bdefs c t |` (- lnames c) = t |` (- lnames c)" | |
| 45015 | 295 | proof (induction c arbitrary: t) | 
| 44070 | 296 | case (Semi c1 c2) | 
| 297 | hence "bdefs c1 t |` (- lnames c1) = t |` (- lnames c1)" | |
| 298 | by simp | |
| 299 | hence "bdefs c1 t |` (- lnames c1) |` (-lnames c2) = | |
| 300 | t |` (- lnames c1) |` (-lnames c2)" by simp | |
| 301 | moreover | |
| 302 | from Semi | |
| 303 | have "bdefs c2 (bdefs c1 t) |` (- lnames c2) = | |
| 304 | bdefs c1 t |` (- lnames c2)" | |
| 305 | by simp | |
| 306 | hence "bdefs c2 (bdefs c1 t) |` (- lnames c2) |` (- lnames c1) = | |
| 307 | bdefs c1 t |` (- lnames c2) |` (- lnames c1)" | |
| 308 | by simp | |
| 309 | ultimately | |
| 310 | show ?case by (clarsimp simp: Int_commute) | |
| 311 | next | |
| 312 | case (If b c1 c2) | |
| 313 | hence "bdefs c1 t |` (- lnames c1) = t |` (- lnames c1)" by simp | |
| 314 | hence "bdefs c1 t |` (- lnames c1) |` (-lnames c2) = | |
| 315 | t |` (- lnames c1) |` (-lnames c2)" by simp | |
| 316 | moreover | |
| 317 | from If | |
| 318 | have "bdefs c2 t |` (- lnames c2) = t |` (- lnames c2)" by simp | |
| 319 | hence "bdefs c2 t |` (- lnames c2) |` (-lnames c1) = | |
| 320 | t |` (- lnames c2) |` (-lnames c1)" by simp | |
| 321 | ultimately | |
| 322 | show ?case | |
| 323 | by (auto simp: Int_commute intro: merge_restrict | |
| 324 | split: bexp.splits bool.splits) | |
| 325 | qed (auto split: aexp.split bexp.split bool.split) | |
| 326 | ||
| 327 | ||
| 328 | lemma big_step_pres_approx_b: | |
| 329 | "(c,s) \<Rightarrow> s' \<Longrightarrow> approx t s \<Longrightarrow> approx (bdefs c t) s'" | |
| 45015 | 330 | proof (induction arbitrary: t rule: big_step_induct) | 
| 44070 | 331 | case Skip thus ?case by simp | 
| 332 | next | |
| 333 | case Assign | |
| 334 | thus ?case | |
| 335 | by (clarsimp simp: aval_simp_const_N approx_def split: aexp.split) | |
| 336 | next | |
| 337 | case (Semi c1 s1 s2 c2 s3) | |
| 45015 | 338 | have "approx (bdefs c1 t) s2" by (rule Semi.IH(1)[OF Semi.prems]) | 
| 339 | hence "approx (bdefs c2 (bdefs c1 t)) s3" by (rule Semi.IH(2)) | |
| 44070 | 340 | thus ?case by simp | 
| 341 | next | |
| 342 | case (IfTrue b s c1 s') | |
| 343 | hence "approx (bdefs c1 t) s'" by simp | |
| 344 | thus ?case using `bval b s` `approx t s` | |
| 45200 | 345 | by (clarsimp simp: approx_merge bvalsimp_const_Bc | 
| 44070 | 346 | split: bexp.splits bool.splits) | 
| 347 | next | |
| 348 | case (IfFalse b s c2 s') | |
| 349 | hence "approx (bdefs c2 t) s'" by simp | |
| 350 | thus ?case using `\<not>bval b s` `approx t s` | |
| 45200 | 351 | by (clarsimp simp: approx_merge bvalsimp_const_Bc | 
| 44070 | 352 | split: bexp.splits bool.splits) | 
| 353 | next | |
| 354 | case WhileFalse | |
| 355 | thus ?case | |
| 45200 | 356 | by (clarsimp simp: bvalsimp_const_Bc approx_def restrict_map_def | 
| 44070 | 357 | split: bexp.splits bool.splits) | 
| 358 | next | |
| 359 | case (WhileTrue b s1 c s2 s3) | |
| 360 | hence "approx (bdefs c t) s2" by simp | |
| 361 | with WhileTrue | |
| 362 | have "approx (bdefs c t |` (- lnames c)) s3" | |
| 363 | by simp | |
| 364 | thus ?case | |
| 365 | by (simp add: bdefs_restrict) | |
| 366 | qed | |
| 367 | ||
| 368 | corollary approx_bdefs_inv [simp]: | |
| 369 |   "\<Turnstile> {approx t} c {approx (bdefs c t)}"
 | |
| 370 | by (simp add: hoare_valid_def big_step_pres_approx_b) | |
| 371 | ||
| 372 | lemma bfold_equiv: | |
| 373 | "approx t \<Turnstile> c \<sim> bfold c t" | |
| 45015 | 374 | proof (induction c arbitrary: t) | 
| 44070 | 375 | case SKIP show ?case by simp | 
| 376 | next | |
| 377 | case Assign | |
| 378 | thus ?case by (simp add: equiv_up_to_def) | |
| 379 | next | |
| 380 | case Semi | |
| 381 | thus ?case by (auto intro!: equiv_up_to_semi) | |
| 382 | next | |
| 383 | case (If b c1 c2) | |
| 384 | hence "approx t \<Turnstile> IF b THEN c1 ELSE c2 \<sim> | |
| 385 | IF Fold.bsimp_const b t THEN bfold c1 t ELSE bfold c2 t" | |
| 386 | by (auto intro: equiv_up_to_if_weak simp: bequiv_up_to_def) | |
| 387 | thus ?case using If | |
| 45200 | 388 | by (fastforce simp: bvalsimp_const_Bc split: bexp.splits bool.splits | 
| 44070 | 389 | intro: equiv_up_to_trans) | 
| 390 | next | |
| 391 | case (While b c) | |
| 392 | hence "approx (t |` (- lnames c)) \<Turnstile> | |
| 393 | WHILE b DO c \<sim> | |
| 394 | WHILE bsimp_const b (t |` (- lnames c)) | |
| 395 | DO bfold c (t |` (- lnames c))" (is "_ \<Turnstile> ?W \<sim> ?W'") | |
| 396 | by (auto intro: equiv_up_to_while_weak approx_restrict_inv | |
| 397 | simp: bequiv_up_to_def) | |
| 398 | hence "approx t \<Turnstile> ?W \<sim> ?W'" | |
| 399 | by (auto intro: equiv_up_to_weaken approx_map_le) | |
| 400 | thus ?case | |
| 401 | by (auto split: bexp.splits bool.splits | |
| 402 | intro: equiv_up_to_while_False | |
| 45200 | 403 | simp: bvalsimp_const_Bc) | 
| 44070 | 404 | qed | 
| 405 | ||
| 406 | ||
| 407 | theorem constant_bfolding_equiv: | |
| 408 | "bfold c empty \<sim> c" | |
| 409 | using bfold_equiv [of empty c] | |
| 410 | by (simp add: equiv_up_to_True equiv_sym) | |
| 411 | ||
| 412 | ||
| 413 | end |