15346
|
1 |
(* ID: $Id$
|
10213
|
2 |
Author: Konrad Slind
|
|
3 |
Copyright 1995 TU Munich
|
|
4 |
*)
|
|
5 |
|
15346
|
6 |
header {*Well-founded Relations*}
|
|
7 |
|
|
8 |
theory Wellfounded_Relations
|
|
9 |
imports Finite_Set
|
|
10 |
begin
|
|
11 |
|
|
12 |
text{*Derived WF relations such as inverse image, lexicographic product and
|
|
13 |
measure. The simple relational product, in which @{term "(x',y')"} precedes
|
|
14 |
@{term "(x,y)"} if @{term "x'<x"} and @{term "y'<y"}, is a subset of the
|
|
15 |
lexicographic product, and therefore does not need to be defined separately.*}
|
10213
|
16 |
|
|
17 |
constdefs
|
|
18 |
less_than :: "(nat*nat)set"
|
15346
|
19 |
"less_than == trancl pred_nat"
|
10213
|
20 |
|
|
21 |
measure :: "('a => nat) => ('a * 'a)set"
|
15346
|
22 |
"measure == inv_image less_than"
|
10213
|
23 |
|
|
24 |
lex_prod :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
|
|
25 |
(infixr "<*lex*>" 80)
|
15346
|
26 |
"ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"
|
|
27 |
|
|
28 |
finite_psubset :: "('a set * 'a set) set"
|
|
29 |
--{* finite proper subset*}
|
|
30 |
"finite_psubset == {(A,B). A < B & finite B}"
|
|
31 |
|
|
32 |
same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
|
|
33 |
"same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
|
|
34 |
--{*For @{text rec_def} declarations where the first n parameters
|
|
35 |
stay unchanged in the recursive call.
|
|
36 |
See @{text "Library/While_Combinator.thy"} for an application.*}
|
|
37 |
|
|
38 |
|
|
39 |
|
|
40 |
|
|
41 |
subsection{*Measure Functions make Wellfounded Relations*}
|
|
42 |
|
|
43 |
subsubsection{*`Less than' on the natural numbers*}
|
|
44 |
|
|
45 |
lemma wf_less_than [iff]: "wf less_than"
|
|
46 |
by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
|
|
47 |
|
|
48 |
lemma trans_less_than [iff]: "trans less_than"
|
|
49 |
by (simp add: less_than_def trans_trancl)
|
|
50 |
|
|
51 |
lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
|
|
52 |
by (simp add: less_than_def less_def)
|
|
53 |
|
|
54 |
lemma full_nat_induct:
|
|
55 |
assumes ih: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
|
|
56 |
shows "P n"
|
|
57 |
apply (rule wf_less_than [THEN wf_induct])
|
|
58 |
apply (rule ih, auto)
|
|
59 |
done
|
|
60 |
|
|
61 |
subsubsection{*The Inverse Image into a Wellfounded Relation is Wellfounded.*}
|
|
62 |
|
|
63 |
lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
|
|
64 |
apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
|
|
65 |
apply clarify
|
|
66 |
apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
|
|
67 |
prefer 2 apply (blast del: allE)
|
|
68 |
apply (erule allE)
|
|
69 |
apply (erule (1) notE impE)
|
|
70 |
apply blast
|
|
71 |
done
|
10213
|
72 |
|
15346
|
73 |
|
|
74 |
subsubsection{*Finally, All Measures are Wellfounded.*}
|
|
75 |
|
19623
|
76 |
lemma in_measure[simp]: "((x,y) : measure f) = (f x < f y)"
|
|
77 |
by (auto simp:measure_def inv_image_def)
|
|
78 |
|
15346
|
79 |
lemma wf_measure [iff]: "wf (measure f)"
|
|
80 |
apply (unfold measure_def)
|
|
81 |
apply (rule wf_less_than [THEN wf_inv_image])
|
|
82 |
done
|
|
83 |
|
18277
|
84 |
lemma measure_induct_rule [case_names less]:
|
|
85 |
fixes f :: "'a \<Rightarrow> nat"
|
|
86 |
assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
|
|
87 |
shows "P a"
|
|
88 |
proof -
|
|
89 |
have "wf (measure f)" ..
|
|
90 |
then show ?thesis
|
|
91 |
proof induct
|
|
92 |
case (less x)
|
|
93 |
show ?case
|
|
94 |
proof (rule step)
|
|
95 |
fix y
|
|
96 |
assume "f y < f x"
|
19623
|
97 |
hence "(y, x) \<in> measure f" by simp
|
|
98 |
thus "P y" by (rule less)
|
18277
|
99 |
qed
|
|
100 |
qed
|
|
101 |
qed
|
|
102 |
|
|
103 |
lemma measure_induct:
|
|
104 |
fixes f :: "'a \<Rightarrow> nat"
|
|
105 |
shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
|
|
106 |
by (rule measure_induct_rule [of f P a]) iprover
|
15346
|
107 |
|
|
108 |
|
|
109 |
subsection{*Other Ways of Constructing Wellfounded Relations*}
|
|
110 |
|
|
111 |
text{*Wellfoundedness of lexicographic combinations*}
|
|
112 |
lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
|
|
113 |
apply (unfold wf_def lex_prod_def)
|
|
114 |
apply (rule allI, rule impI)
|
|
115 |
apply (simp (no_asm_use) only: split_paired_All)
|
|
116 |
apply (drule spec, erule mp)
|
|
117 |
apply (rule allI, rule impI)
|
|
118 |
apply (drule spec, erule mp, blast)
|
|
119 |
done
|
|
120 |
|
|
121 |
text{*Transitivity of WF combinators.*}
|
|
122 |
lemma trans_lex_prod [intro!]:
|
|
123 |
"[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
|
|
124 |
by (unfold trans_def lex_prod_def, blast)
|
|
125 |
|
|
126 |
subsubsection{*Wellfoundedness of proper subset on finite sets.*}
|
|
127 |
lemma wf_finite_psubset: "wf(finite_psubset)"
|
|
128 |
apply (unfold finite_psubset_def)
|
|
129 |
apply (rule wf_measure [THEN wf_subset])
|
|
130 |
apply (simp add: measure_def inv_image_def less_than_def less_def [symmetric])
|
|
131 |
apply (fast elim!: psubset_card_mono)
|
|
132 |
done
|
|
133 |
|
|
134 |
lemma trans_finite_psubset: "trans finite_psubset"
|
|
135 |
by (simp add: finite_psubset_def psubset_def trans_def, blast)
|
|
136 |
|
|
137 |
|
|
138 |
subsubsection{*Wellfoundedness of finite acyclic relations*}
|
|
139 |
|
|
140 |
text{*This proof belongs in this theory because it needs Finite.*}
|
10213
|
141 |
|
15346
|
142 |
lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
|
|
143 |
apply (erule finite_induct, blast)
|
|
144 |
apply (simp (no_asm_simp) only: split_tupled_all)
|
|
145 |
apply simp
|
|
146 |
done
|
|
147 |
|
|
148 |
lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
|
|
149 |
apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
|
|
150 |
apply (erule acyclic_converse [THEN iffD2])
|
|
151 |
done
|
|
152 |
|
|
153 |
lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
|
|
154 |
by (blast intro: finite_acyclic_wf wf_acyclic)
|
|
155 |
|
|
156 |
|
15352
|
157 |
subsubsection{*Wellfoundedness of @{term same_fst}*}
|
15346
|
158 |
|
|
159 |
lemma same_fstI [intro!]:
|
|
160 |
"[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R"
|
|
161 |
by (simp add: same_fst_def)
|
|
162 |
|
|
163 |
lemma wf_same_fst:
|
|
164 |
assumes prem: "(!!x. P x ==> wf(R x))"
|
|
165 |
shows "wf(same_fst P R)"
|
|
166 |
apply (simp cong del: imp_cong add: wf_def same_fst_def)
|
|
167 |
apply (intro strip)
|
|
168 |
apply (rename_tac a b)
|
|
169 |
apply (case_tac "wf (R a)")
|
|
170 |
apply (erule_tac a = b in wf_induct, blast)
|
|
171 |
apply (blast intro: prem)
|
|
172 |
done
|
|
173 |
|
|
174 |
|
|
175 |
subsection{*Weakly decreasing sequences (w.r.t. some well-founded order)
|
|
176 |
stabilize.*}
|
|
177 |
|
|
178 |
text{*This material does not appear to be used any longer.*}
|
|
179 |
|
|
180 |
lemma lemma1: "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*"
|
|
181 |
apply (induct_tac "k", simp_all)
|
|
182 |
apply (blast intro: rtrancl_trans)
|
|
183 |
done
|
|
184 |
|
|
185 |
lemma lemma2: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]
|
|
186 |
==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))"
|
|
187 |
apply (erule wf_induct, clarify)
|
|
188 |
apply (case_tac "EX j. (f (m+j), f m) : r^+")
|
|
189 |
apply clarify
|
|
190 |
apply (subgoal_tac "EX i. ALL k. f ((m+j) +i+k) = f ( (m+j) +i) ")
|
|
191 |
apply clarify
|
|
192 |
apply (rule_tac x = "j+i" in exI)
|
|
193 |
apply (simp add: add_ac, blast)
|
|
194 |
apply (rule_tac x = 0 in exI, clarsimp)
|
|
195 |
apply (drule_tac i = m and k = k in lemma1)
|
|
196 |
apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
|
|
197 |
done
|
|
198 |
|
|
199 |
lemma wf_weak_decr_stable: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]
|
|
200 |
==> EX i. ALL k. f (i+k) = f i"
|
|
201 |
apply (drule_tac x = 0 in lemma2 [THEN spec], auto)
|
|
202 |
done
|
|
203 |
|
|
204 |
(* special case of the theorem above: <= *)
|
|
205 |
lemma weak_decr_stable:
|
|
206 |
"ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i"
|
|
207 |
apply (rule_tac r = pred_nat in wf_weak_decr_stable)
|
|
208 |
apply (simp add: pred_nat_trancl_eq_le)
|
|
209 |
apply (intro wf_trancl wf_pred_nat)
|
|
210 |
done
|
|
211 |
|
|
212 |
|
|
213 |
ML
|
|
214 |
{*
|
|
215 |
val less_than_def = thm "less_than_def";
|
|
216 |
val measure_def = thm "measure_def";
|
|
217 |
val lex_prod_def = thm "lex_prod_def";
|
|
218 |
val finite_psubset_def = thm "finite_psubset_def";
|
|
219 |
|
|
220 |
val wf_less_than = thm "wf_less_than";
|
|
221 |
val trans_less_than = thm "trans_less_than";
|
|
222 |
val less_than_iff = thm "less_than_iff";
|
|
223 |
val full_nat_induct = thm "full_nat_induct";
|
|
224 |
val wf_inv_image = thm "wf_inv_image";
|
|
225 |
val wf_measure = thm "wf_measure";
|
|
226 |
val measure_induct = thm "measure_induct";
|
|
227 |
val wf_lex_prod = thm "wf_lex_prod";
|
|
228 |
val trans_lex_prod = thm "trans_lex_prod";
|
|
229 |
val wf_finite_psubset = thm "wf_finite_psubset";
|
|
230 |
val trans_finite_psubset = thm "trans_finite_psubset";
|
|
231 |
val finite_acyclic_wf = thm "finite_acyclic_wf";
|
|
232 |
val finite_acyclic_wf_converse = thm "finite_acyclic_wf_converse";
|
|
233 |
val wf_iff_acyclic_if_finite = thm "wf_iff_acyclic_if_finite";
|
|
234 |
val wf_weak_decr_stable = thm "wf_weak_decr_stable";
|
|
235 |
val weak_decr_stable = thm "weak_decr_stable";
|
|
236 |
val same_fstI = thm "same_fstI";
|
|
237 |
val wf_same_fst = thm "wf_same_fst";
|
|
238 |
*}
|
|
239 |
|
10213
|
240 |
|
|
241 |
end
|