| 
19203
 | 
     1  | 
(*  Title:      HOL/ZF/LProd.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Steven Obua
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
    Introduces the lprod relation.
  | 
| 
 | 
     6  | 
    See "Partizan Games in Isabelle/HOLZF", available from http://www4.in.tum.de/~obua/partizan
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory LProd 
  | 
| 
 | 
    10  | 
imports Multiset
  | 
| 
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
consts
  | 
| 
 | 
    14  | 
  lprod :: "('a * 'a) set \<Rightarrow> ('a list * 'a list) set"
 | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
inductive "lprod R"
  | 
| 
 | 
    17  | 
intros
  | 
| 
 | 
    18  | 
  lprod_single[intro!]: "(a, b) \<in> R \<Longrightarrow> ([a], [b]) \<in> lprod R"
  | 
| 
 | 
    19  | 
  lprod_list[intro!]: "(ah@at, bh@bt) \<in> lprod R \<Longrightarrow> (a,b) \<in> R \<or> a = b \<Longrightarrow> (ah@a#at, bh@b#bt) \<in> lprod R"
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma "(as,bs) \<in> lprod R \<Longrightarrow> length as = length bs"
  | 
| 
 | 
    22  | 
  apply (induct as bs rule: lprod.induct)
  | 
| 
 | 
    23  | 
  apply auto
  | 
| 
 | 
    24  | 
  done
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
lemma "(as, bs) \<in> lprod R \<Longrightarrow> 1 \<le> length as \<and> 1 \<le> length bs"
  | 
| 
 | 
    27  | 
  apply (induct as bs rule: lprod.induct)
  | 
| 
 | 
    28  | 
  apply auto
  | 
| 
 | 
    29  | 
  done
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma lprod_subset_elem: "(as, bs) \<in> lprod S \<Longrightarrow> S \<subseteq> R \<Longrightarrow> (as, bs) \<in> lprod R"
  | 
| 
 | 
    32  | 
  apply (induct as bs rule: lprod.induct)
  | 
| 
 | 
    33  | 
  apply (auto)
  | 
| 
 | 
    34  | 
  done
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
lemma lprod_subset: "S \<subseteq> R \<Longrightarrow> lprod S \<subseteq> lprod R"
  | 
| 
 | 
    37  | 
  by (auto intro: lprod_subset_elem)
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma lprod_implies_mult: "(as, bs) \<in> lprod R \<Longrightarrow> trans R \<Longrightarrow> (multiset_of as, multiset_of bs) \<in> mult R"
  | 
| 
 | 
    40  | 
proof (induct as bs rule: lprod.induct)
  | 
| 
 | 
    41  | 
  case (lprod_single a b)
  | 
| 
 | 
    42  | 
  note step = one_step_implies_mult[
  | 
| 
 | 
    43  | 
    where r=R and I="{#}" and K="{#a#}" and J="{#b#}", simplified]    
 | 
| 
 | 
    44  | 
  show ?case by (auto intro: lprod_single step)
  | 
| 
 | 
    45  | 
next
  | 
| 
 | 
    46  | 
  case (lprod_list a ah at b bh bt) 
  | 
| 
 | 
    47  | 
  from prems have transR: "trans R" by auto
  | 
| 
 | 
    48  | 
  have as: "multiset_of (ah @ a # at) = multiset_of (ah @ at) + {#a#}" (is "_ = ?ma + _")
 | 
| 
 | 
    49  | 
    by (simp add: ring_eq_simps)
  | 
| 
 | 
    50  | 
  have bs: "multiset_of (bh @ b # bt) = multiset_of (bh @ bt) + {#b#}" (is "_ = ?mb + _")
 | 
| 
 | 
    51  | 
    by (simp add: ring_eq_simps)
  | 
| 
 | 
    52  | 
  from prems have "(?ma, ?mb) \<in> mult R"
  | 
| 
 | 
    53  | 
    by auto
  | 
| 
 | 
    54  | 
  with mult_implies_one_step[OF transR] have 
  | 
| 
 | 
    55  | 
    "\<exists>I J K. ?mb = I + J \<and> ?ma = I + K \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> R)"
 | 
| 
 | 
    56  | 
    by blast
  | 
| 
 | 
    57  | 
  then obtain I J K where 
  | 
| 
 | 
    58  | 
    decomposed: "?mb = I + J \<and> ?ma = I + K \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> R)"
 | 
| 
 | 
    59  | 
    by blast   
  | 
| 
 | 
    60  | 
  show ?case
  | 
| 
 | 
    61  | 
  proof (cases "a = b")
  | 
| 
 | 
    62  | 
    case True    
  | 
| 
 | 
    63  | 
    have "((I + {#b#}) + K, (I + {#b#}) + J) \<in> mult R"
 | 
| 
 | 
    64  | 
      apply (rule one_step_implies_mult[OF transR])
  | 
| 
 | 
    65  | 
      apply (auto simp add: decomposed)
  | 
| 
 | 
    66  | 
      done
  | 
| 
 | 
    67  | 
    then show ?thesis
  | 
| 
 | 
    68  | 
      apply (simp only: as bs)
  | 
| 
 | 
    69  | 
      apply (simp only: decomposed True)
  | 
| 
 | 
    70  | 
      apply (simp add: ring_eq_simps)
  | 
| 
 | 
    71  | 
      done
  | 
| 
 | 
    72  | 
  next
  | 
| 
 | 
    73  | 
    case False
  | 
| 
 | 
    74  | 
    from False lprod_list have False: "(a, b) \<in> R" by blast
  | 
| 
 | 
    75  | 
    have "(I + (K + {#a#}), I + (J + {#b#})) \<in> mult R"
 | 
| 
 | 
    76  | 
      apply (rule one_step_implies_mult[OF transR])
  | 
| 
 | 
    77  | 
      apply (auto simp add: False decomposed)
  | 
| 
 | 
    78  | 
      done
  | 
| 
 | 
    79  | 
    then show ?thesis
  | 
| 
 | 
    80  | 
      apply (simp only: as bs)
  | 
| 
 | 
    81  | 
      apply (simp only: decomposed)
  | 
| 
 | 
    82  | 
      apply (simp add: ring_eq_simps)
  | 
| 
 | 
    83  | 
      done
  | 
| 
 | 
    84  | 
  qed
  | 
| 
 | 
    85  | 
qed
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma wf_lprod[recdef_wf,simp,intro]:
  | 
| 
 | 
    88  | 
  assumes wf_R: "wf R"
  | 
| 
 | 
    89  | 
  shows "wf (lprod R)"
  | 
| 
 | 
    90  | 
proof -
  | 
| 
 | 
    91  | 
  have subset: "lprod (R^+) \<subseteq> inv_image (mult (R^+)) multiset_of"
  | 
| 
 | 
    92  | 
    by (auto simp add: inv_image_def lprod_implies_mult trans_trancl)
  | 
| 
 | 
    93  | 
  note lprodtrancl = wf_subset[OF wf_inv_image[where r="mult (R^+)" and f="multiset_of", 
  | 
| 
 | 
    94  | 
    OF wf_mult[OF wf_trancl[OF wf_R]]], OF subset]
  | 
| 
 | 
    95  | 
  note lprod = wf_subset[OF lprodtrancl, where p="lprod R", OF lprod_subset, simplified]
  | 
| 
 | 
    96  | 
  show ?thesis by (auto intro: lprod)
  | 
| 
 | 
    97  | 
qed
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
constdefs
  | 
| 
 | 
   100  | 
  gprod_2_2 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
 | 
| 
 | 
   101  | 
  "gprod_2_2 R \<equiv> { ((a,b), (c,d)) . (a = c \<and> (b,d) \<in> R) \<or> (b = d \<and> (a,c) \<in> R) }"
 | 
| 
 | 
   102  | 
  gprod_2_1 :: "('a * 'a) set \<Rightarrow> (('a * 'a) * ('a * 'a)) set"
 | 
| 
 | 
   103  | 
  "gprod_2_1 R \<equiv>  { ((a,b), (c,d)) . (a = d \<and> (b,c) \<in> R) \<or> (b = c \<and> (a,d) \<in> R) }"
 | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
lemma lprod_2_3: "(a, b) \<in> R \<Longrightarrow> ([a, c], [b, c]) \<in> lprod R"
  | 
| 
 | 
   106  | 
  by (auto intro: lprod_list[where a=c and b=c and 
  | 
| 
 | 
   107  | 
    ah = "[a]" and at = "[]" and bh="[b]" and bt="[]", simplified]) 
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
lemma lprod_2_4: "(a, b) \<in> R \<Longrightarrow> ([c, a], [c, b]) \<in> lprod R"
  | 
| 
 | 
   110  | 
  by (auto intro: lprod_list[where a=c and b=c and 
  | 
| 
 | 
   111  | 
    ah = "[]" and at = "[a]" and bh="[]" and bt="[b]", simplified])
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma lprod_2_1: "(a, b) \<in> R \<Longrightarrow> ([c, a], [b, c]) \<in> lprod R"
  | 
| 
 | 
   114  | 
  by (auto intro: lprod_list[where a=c and b=c and 
  | 
| 
 | 
   115  | 
    ah = "[]" and at = "[a]" and bh="[b]" and bt="[]", simplified]) 
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma lprod_2_2: "(a, b) \<in> R \<Longrightarrow> ([a, c], [c, b]) \<in> lprod R"
  | 
| 
 | 
   118  | 
  by (auto intro: lprod_list[where a=c and b=c and 
  | 
| 
 | 
   119  | 
    ah = "[a]" and at = "[]" and bh="[]" and bt="[b]", simplified])
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
lemma [recdef_wf, simp, intro]: 
  | 
| 
 | 
   122  | 
  assumes wfR: "wf R" shows "wf (gprod_2_1 R)"
  | 
| 
 | 
   123  | 
proof -
  | 
| 
 | 
   124  | 
  have "gprod_2_1 R \<subseteq> inv_image (lprod R) (\<lambda> (a,b). [a,b])"
  | 
| 
 | 
   125  | 
    by (auto simp add: inv_image_def gprod_2_1_def lprod_2_1 lprod_2_2)
  | 
| 
 | 
   126  | 
  with wfR show ?thesis
  | 
| 
 | 
   127  | 
    by (rule_tac wf_subset, auto)
  | 
| 
 | 
   128  | 
qed
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
lemma [recdef_wf, simp, intro]: 
  | 
| 
 | 
   131  | 
  assumes wfR: "wf R" shows "wf (gprod_2_2 R)"
  | 
| 
 | 
   132  | 
proof -
  | 
| 
 | 
   133  | 
  have "gprod_2_2 R \<subseteq> inv_image (lprod R) (\<lambda> (a,b). [a,b])"
  | 
| 
 | 
   134  | 
    by (auto simp add: inv_image_def gprod_2_2_def lprod_2_3 lprod_2_4)
  | 
| 
 | 
   135  | 
  with wfR show ?thesis
  | 
| 
 | 
   136  | 
    by (rule_tac wf_subset, auto)
  | 
| 
 | 
   137  | 
qed
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
lemma lprod_3_1: assumes "(x', x) \<in> R" shows "([y, z, x'], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   140  | 
  apply (rule lprod_list[where a="y" and b="y" and ah="[]" and at="[z,x']" and bh="[x]" and bt="[z]", simplified])
  | 
| 
 | 
   141  | 
  apply (auto simp add: lprod_2_1 prems)
  | 
| 
 | 
   142  | 
  done
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
lemma lprod_3_2: assumes "(z',z) \<in> R" shows "([z', x, y], [x,y,z]) \<in> lprod R"
  | 
| 
 | 
   145  | 
  apply (rule lprod_list[where a="y" and b="y" and ah="[z',x]" and at="[]" and bh="[x]" and bt="[z]", simplified])
  | 
| 
 | 
   146  | 
  apply (auto simp add: lprod_2_2 prems)
  | 
| 
 | 
   147  | 
  done
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
lemma lprod_3_3: assumes xr: "(xr, x) \<in> R" shows "([xr, y, z], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   150  | 
  apply (rule lprod_list[where a="y" and b="y" and ah="[xr]" and at="[z]" and bh="[x]" and bt="[z]", simplified])
  | 
| 
 | 
   151  | 
  apply (simp add: xr lprod_2_3)
  | 
| 
 | 
   152  | 
  done
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
lemma lprod_3_4: assumes yr: "(yr, y) \<in> R" shows "([x, yr, z], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   155  | 
  apply (rule lprod_list[where a="x" and b="x" and ah="[]" and at="[yr,z]" and bh="[]" and bt="[y,z]", simplified])
  | 
| 
 | 
   156  | 
  apply (simp add: yr lprod_2_3)
  | 
| 
 | 
   157  | 
  done
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma lprod_3_5: assumes zr: "(zr, z) \<in> R" shows "([x, y, zr], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   160  | 
  apply (rule lprod_list[where a="x" and b="x" and ah="[]" and at="[y,zr]" and bh="[]" and bt="[y,z]", simplified])
  | 
| 
 | 
   161  | 
  apply (simp add: zr lprod_2_4)
  | 
| 
 | 
   162  | 
  done
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
lemma lprod_3_6: assumes y': "(y', y) \<in> R" shows "([x, z, y'], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   165  | 
  apply (rule lprod_list[where a="z" and b="z" and ah="[x]" and at="[y']" and bh="[x,y]" and bt="[]", simplified])
  | 
| 
 | 
   166  | 
  apply (simp add: y' lprod_2_4)
  | 
| 
 | 
   167  | 
  done
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
lemma lprod_3_7: assumes z': "(z',z) \<in> R" shows "([x, z', y], [x, y, z]) \<in> lprod R"
  | 
| 
 | 
   170  | 
  apply (rule lprod_list[where a="y" and b="y" and ah="[x, z']" and at="[]" and bh="[x]" and bt="[z]", simplified])
  | 
| 
 | 
   171  | 
  apply (simp add: z' lprod_2_4)
  | 
| 
 | 
   172  | 
  done
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
constdefs
  | 
| 
 | 
   175  | 
   perm :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set \<Rightarrow> bool"
 | 
| 
 | 
   176  | 
   "perm f A \<equiv> inj_on f A \<and> f ` A = A"
  | 
| 
 | 
   177  | 
  | 
| 
 | 
   178  | 
lemma "((as,bs) \<in> lprod R) = 
  | 
| 
 | 
   179  | 
  (\<exists> f. perm f {0 ..< (length as)} \<and> 
 | 
| 
 | 
   180  | 
  (\<forall> j. j < length as \<longrightarrow> ((nth as j, nth bs (f j)) \<in> R \<or> (nth as j = nth bs (f j)))) \<and> 
  | 
| 
 | 
   181  | 
  (\<exists> i. i < length as \<and> (nth as i, nth bs (f i)) \<in> R))"
  | 
| 
 | 
   182  | 
oops
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
lemma "trans R \<Longrightarrow> (ah@a#at, bh@b#bt) \<in> lprod R \<Longrightarrow> (b, a) \<in> R \<or> a = b \<Longrightarrow> (ah@at, bh@bt) \<in> lprod R" 
  | 
| 
 | 
   185  | 
oops
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
end  |