doc-src/TutorialI/document/Mutual.tex
author wenzelm
Fri, 27 Jul 2012 13:17:12 +0200
changeset 48546 f81cf2fcd3a0
parent 48519 5deda0549f97
permissions -rw-r--r--
tuned messages;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Mutual}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     9
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    10
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    16
\endisadelimtheory
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10790
diff changeset
    18
\isamarkupsubsection{Mutually Inductive Definitions%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11494
diff changeset
    20
\isamarkuptrue%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    21
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    22
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    23
Just as there are datatypes defined by mutual recursion, there are sets defined
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    24
by mutual induction. As a trivial example we consider the even and odd
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    25
natural numbers:%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    26
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    27
\isamarkuptrue%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    28
\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    29
\isanewline
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    30
\ \ Even\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{and}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    31
\ \ Odd\ \ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 19389
diff changeset
    32
\isakeyword{where}\isanewline
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    33
\ \ zero{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    34
{\isaliteral{7C}{\isacharbar}}\ EvenI{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    35
{\isaliteral{7C}{\isacharbar}}\ OddI{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd{\isaliteral{22}{\isachardoublequoteclose}}%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    36
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    37
\noindent
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    38
The mutually inductive definition of multiple sets is no different from
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    39
that of a single set, except for induction: just as for mutually recursive
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    40
datatypes, induction needs to involve all the simultaneously defined sets. In
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    41
the above case, the induction rule is called \isa{Even{\isaliteral{5F}{\isacharunderscore}}Odd{\isaliteral{2E}{\isachardot}}induct}
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    42
(simply concatenate the names of the sets involved) and has the conclusion
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    43
\begin{isabelle}%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    44
\ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ {\isaliteral{3F}{\isacharquery}}x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\ {\isaliteral{3F}{\isacharquery}}y{\isaliteral{29}{\isacharparenright}}%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    45
\end{isabelle}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    46
11494
23a118849801 revisions and indexing
paulson
parents: 10878
diff changeset
    47
If we want to prove that all even numbers are divisible by two, we have to
10790
520dd8696927 *** empty log message ***
nipkow
parents: 10762
diff changeset
    48
generalize the statement as follows:%
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    49
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    50
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    51
\isacommand{lemma}\isamarkupfalse%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    52
\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}m\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isadigit{2}}\ dvd\ m{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isadigit{2}}\ dvd\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    53
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    54
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    55
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    56
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    57
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    58
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    59
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    60
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    61
The proof is by rule induction. Because of the form of the induction theorem,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    62
it is applied by \isa{rule} rather than \isa{erule} as for ordinary
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    63
inductive definitions:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    64
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    65
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    66
\isacommand{apply}\isamarkupfalse%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    67
{\isaliteral{28}{\isacharparenleft}}rule\ Even{\isaliteral{5F}{\isacharunderscore}}Odd{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    68
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    69
\begin{isabelle}%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    70
\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    71
\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}n{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd{\isaliteral{3B}{\isacharsemicolon}}\ {\isadigit{2}}\ dvd\ Suc\ n{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    72
\ {\isadigit{3}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}n{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{3B}{\isacharsemicolon}}\ {\isadigit{2}}\ dvd\ n{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isadigit{2}}\ dvd\ Suc\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    73
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    74
The first two subgoals are proved by simplification and the final one can be
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    75
proved in the same manner as in \S\ref{sec:rule-induction}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    76
where the same subgoal was encountered before.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    77
We do not show the proof script.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
    78
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    79
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    80
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    81
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    82
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    83
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    84
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    85
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    86
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    87
%
25330
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    88
\isamarkupsubsection{Inductively Defined Predicates\label{sec:ind-predicates}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    89
}
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    90
\isamarkuptrue%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    91
%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    92
\begin{isamarkuptext}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    93
\index{inductive predicates|(}
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    94
Instead of a set of even numbers one can also define a predicate on \isa{nat}:%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    95
\end{isamarkuptext}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    96
\isamarkuptrue%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    97
\isacommand{inductive}\isamarkupfalse%
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    98
\ evn\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
    99
zero{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}evn\ {\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
   100
step{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}evn\ n\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ evn{\isaliteral{28}{\isacharparenleft}}Suc{\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
25330
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   101
\begin{isamarkuptext}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   102
\noindent Everything works as before, except that
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   103
you write \commdx{inductive} instead of \isacommand{inductive\_set} and
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
   104
\isa{evn\ n} instead of \isa{n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}.
35103
d74fe18f01e9 inductive vs inductive_set explanation
nipkow
parents: 25330
diff changeset
   105
When defining an n-ary relation as a predicate, it is recommended to curry
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
   106
the predicate: its type should be \mbox{\isa{{\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub n\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}}
35103
d74fe18f01e9 inductive vs inductive_set explanation
nipkow
parents: 25330
diff changeset
   107
rather than
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
   108
\isa{{\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub n\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}. The curried version facilitates inductions.
25330
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   109
40406
313a24b66a8d updated generated files;
wenzelm
parents: 35103
diff changeset
   110
When should you choose sets and when predicates? If you intend to combine your notion with set theoretic notation, define it as an inductive set. If not, define it as an inductive predicate, thus avoiding the \isa{{\isaliteral{5C3C696E3E}{\isasymin}}} notation. But note that predicates of more than one argument cannot be combined with the usual set theoretic operators: \isa{P\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ Q} is not well-typed if \isa{P{\isaliteral{2C}{\isacharcomma}}\ Q\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{2}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}, you have to write \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x\ y{\isaliteral{2E}{\isachardot}}\ P\ x\ y\ {\isaliteral{5C3C616E643E}{\isasymand}}\ Q\ x\ y} instead.
25330
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   111
\index{inductive predicates|)}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   112
\end{isamarkuptext}%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   113
\isamarkuptrue%
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
   114
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   115
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   116
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   117
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   118
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   119
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   120
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   121
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   122
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   123
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   124
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   125
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   126
\endisadelimtheory
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
   127
\end{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
   128
%%% Local Variables:
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
   129
%%% mode: latex
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
   130
%%% TeX-master: "root"
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
   131
%%% End: