| author | wenzelm | 
| Tue, 17 Jul 2007 15:59:50 +0200 | |
| changeset 23830 | f838adde842d | 
| parent 23750 | a1db5f819d00 | 
| child 25972 | 94b15338da8d | 
| permissions | -rw-r--r-- | 
| 1120 | 1 | (* Title: HOL/Lambda/ParRed.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 1995 TU Muenchen | |
| 5 | ||
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 6 | Properties of => and "cd", in particular the diamond property of => and | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 7 | confluence of beta. | 
| 1120 | 8 | *) | 
| 9 | ||
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 10 | header {* Parallel reduction and a complete developments *}
 | 
| 1120 | 11 | |
| 16417 | 12 | theory ParRed imports Lambda Commutation begin | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 13 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 14 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 15 | subsection {* Parallel reduction *}
 | 
| 1120 | 16 | |
| 23750 | 17 | inductive par_beta :: "[dB, dB] => bool" (infixl "=>" 50) | 
| 22271 | 18 | where | 
| 19 | var [simp, intro!]: "Var n => Var n" | |
| 20 | | abs [simp, intro!]: "s => t ==> Abs s => Abs t" | |
| 21 | | app [simp, intro!]: "[| s => s'; t => t' |] ==> s \<degree> t => s' \<degree> t'" | |
| 22 | | beta [simp, intro!]: "[| s => s'; t => t' |] ==> (Abs s) \<degree> t => s'[t'/0]" | |
| 1120 | 23 | |
| 23750 | 24 | inductive_cases par_beta_cases [elim!]: | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 25 | "Var n => t" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 26 | "Abs s => Abs t" | 
| 12011 | 27 | "(Abs s) \<degree> t => u" | 
| 28 | "s \<degree> t => u" | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 29 | "Abs s => t" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 30 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 31 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 32 | subsection {* Inclusions *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 33 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 34 | text {* @{text "beta \<subseteq> par_beta \<subseteq> beta^*"} \medskip *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 35 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 36 | lemma par_beta_varL [simp]: | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 37 | "(Var n => t) = (t = Var n)" | 
| 18241 | 38 | by blast | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 39 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 40 | lemma par_beta_refl [simp]: "t => t" (* par_beta_refl [intro!] causes search to blow up *) | 
| 18241 | 41 | by (induct t) simp_all | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 42 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 43 | lemma beta_subset_par_beta: "beta <= par_beta" | 
| 22271 | 44 | apply (rule predicate2I) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 45 | apply (erule beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 46 | apply (blast intro!: par_beta_refl)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 47 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 48 | |
| 22271 | 49 | lemma par_beta_subset_beta: "par_beta <= beta^**" | 
| 50 | apply (rule predicate2I) | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 51 | apply (erule par_beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 52 | apply blast | 
| 23750 | 53 | apply (blast del: rtranclp.rtrancl_refl intro: rtranclp.rtrancl_into_rtrancl)+ | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 54 |       -- {* @{thm[source] rtrancl_refl} complicates the proof by increasing the branching factor *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 55 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 56 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 57 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 58 | subsection {* Misc properties of par-beta *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 59 | |
| 18241 | 60 | lemma par_beta_lift [simp]: | 
| 61 | "t => t' \<Longrightarrow> lift t n => lift t' n" | |
| 20503 | 62 | by (induct t arbitrary: t' n) fastsimp+ | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 63 | |
| 18241 | 64 | lemma par_beta_subst: | 
| 65 | "s => s' \<Longrightarrow> t => t' \<Longrightarrow> t[s/n] => t'[s'/n]" | |
| 20503 | 66 | apply (induct t arbitrary: s s' t' n) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 67 | apply (simp add: subst_Var) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 68 | apply (erule par_beta_cases) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 69 | apply simp | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 70 | apply (simp add: subst_subst [symmetric]) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 71 | apply (fastsimp intro!: par_beta_lift) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 72 | apply fastsimp | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 73 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 74 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 75 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 76 | subsection {* Confluence (directly) *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 77 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 78 | lemma diamond_par_beta: "diamond par_beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 79 | apply (unfold diamond_def commute_def square_def) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 80 | apply (rule impI [THEN allI [THEN allI]]) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 81 | apply (erule par_beta.induct) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 82 | apply (blast intro!: par_beta_subst)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 83 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 84 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 85 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 86 | subsection {* Complete developments *}
 | 
| 1120 | 87 | |
| 88 | consts | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 89 | "cd" :: "dB => dB" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 90 | recdef "cd" "measure size" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 91 | "cd (Var n) = Var n" | 
| 12011 | 92 | "cd (Var n \<degree> t) = Var n \<degree> cd t" | 
| 93 | "cd ((s1 \<degree> s2) \<degree> t) = cd (s1 \<degree> s2) \<degree> cd t" | |
| 94 | "cd (Abs u \<degree> t) = (cd u)[cd t/0]" | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 95 | "cd (Abs s) = Abs (cd s)" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 96 | |
| 18241 | 97 | lemma par_beta_cd: "s => t \<Longrightarrow> t => cd s" | 
| 20503 | 98 | apply (induct s arbitrary: t rule: cd.induct) | 
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 99 | apply auto | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 100 | apply (fast intro!: par_beta_subst) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 101 | done | 
| 1120 | 102 | |
| 9811 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 103 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 104 | subsection {* Confluence (via complete developments) *}
 | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 105 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 106 | lemma diamond_par_beta2: "diamond par_beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 107 | apply (unfold diamond_def commute_def square_def) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 108 | apply (blast intro: par_beta_cd) | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 109 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 110 | |
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 111 | theorem beta_confluent: "confluent beta" | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 112 | apply (rule diamond_par_beta2 diamond_to_confluence | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 113 | par_beta_subset_beta beta_subset_par_beta)+ | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 114 | done | 
| 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 wenzelm parents: 
8624diff
changeset | 115 | |
| 11638 | 116 | end |