| author | wenzelm | 
| Wed, 18 Jul 2018 16:44:01 +0200 | |
| changeset 68649 | f849fc1cb65e | 
| parent 68536 | e14848001c4c | 
| child 69593 | 3dda49e08b9d | 
| permissions | -rw-r--r-- | 
| 64785 | 1 | (* Title: HOL/Euclidean_Division.thy | 
| 2 | Author: Manuel Eberl, TU Muenchen | |
| 3 | Author: Florian Haftmann, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 66817 | 6 | section \<open>Division in euclidean (semi)rings\<close> | 
| 64785 | 7 | |
| 8 | theory Euclidean_Division | |
| 66817 | 9 | imports Int Lattices_Big | 
| 64785 | 10 | begin | 
| 11 | ||
| 12 | subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close> | |
| 13 | ||
| 66817 | 14 | class euclidean_semiring = semidom_modulo + | 
| 64785 | 15 | fixes euclidean_size :: "'a \<Rightarrow> nat" | 
| 16 | assumes size_0 [simp]: "euclidean_size 0 = 0" | |
| 17 | assumes mod_size_less: | |
| 18 | "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b" | |
| 19 | assumes size_mult_mono: | |
| 20 | "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)" | |
| 21 | begin | |
| 22 | ||
| 66840 | 23 | lemma euclidean_size_eq_0_iff [simp]: | 
| 24 | "euclidean_size b = 0 \<longleftrightarrow> b = 0" | |
| 25 | proof | |
| 26 | assume "b = 0" | |
| 27 | then show "euclidean_size b = 0" | |
| 28 | by simp | |
| 29 | next | |
| 30 | assume "euclidean_size b = 0" | |
| 31 | show "b = 0" | |
| 32 | proof (rule ccontr) | |
| 33 | assume "b \<noteq> 0" | |
| 34 | with mod_size_less have "euclidean_size (b mod b) < euclidean_size b" . | |
| 35 | with \<open>euclidean_size b = 0\<close> show False | |
| 36 | by simp | |
| 37 | qed | |
| 38 | qed | |
| 39 | ||
| 40 | lemma euclidean_size_greater_0_iff [simp]: | |
| 41 | "euclidean_size b > 0 \<longleftrightarrow> b \<noteq> 0" | |
| 42 | using euclidean_size_eq_0_iff [symmetric, of b] by safe simp | |
| 43 | ||
| 64785 | 44 | lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)" | 
| 45 | by (subst mult.commute) (rule size_mult_mono) | |
| 46 | ||
| 47 | lemma dvd_euclidean_size_eq_imp_dvd: | |
| 48 | assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b" | |
| 49 | and "b dvd a" | |
| 50 | shows "a dvd b" | |
| 51 | proof (rule ccontr) | |
| 52 | assume "\<not> a dvd b" | |
| 53 | hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast | |
| 54 | then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd) | |
| 55 | from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff) | |
| 56 | then obtain c where "b mod a = b * c" unfolding dvd_def by blast | |
| 57 | with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto | |
| 58 | with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b" | |
| 59 | using size_mult_mono by force | |
| 60 | moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close> | |
| 61 | have "euclidean_size (b mod a) < euclidean_size a" | |
| 62 | using mod_size_less by blast | |
| 63 | ultimately show False using \<open>euclidean_size a = euclidean_size b\<close> | |
| 64 | by simp | |
| 65 | qed | |
| 66 | ||
| 67 | lemma euclidean_size_times_unit: | |
| 68 | assumes "is_unit a" | |
| 69 | shows "euclidean_size (a * b) = euclidean_size b" | |
| 70 | proof (rule antisym) | |
| 71 | from assms have [simp]: "a \<noteq> 0" by auto | |
| 72 | thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono') | |
| 73 | from assms have "is_unit (1 div a)" by simp | |
| 74 | hence "1 div a \<noteq> 0" by (intro notI) simp_all | |
| 75 | hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))" | |
| 76 | by (rule size_mult_mono') | |
| 77 | also from assms have "(1 div a) * (a * b) = b" | |
| 78 | by (simp add: algebra_simps unit_div_mult_swap) | |
| 79 | finally show "euclidean_size (a * b) \<le> euclidean_size b" . | |
| 80 | qed | |
| 81 | ||
| 82 | lemma euclidean_size_unit: | |
| 83 | "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1" | |
| 84 | using euclidean_size_times_unit [of a 1] by simp | |
| 85 | ||
| 86 | lemma unit_iff_euclidean_size: | |
| 87 | "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0" | |
| 88 | proof safe | |
| 89 | assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1" | |
| 90 | show "is_unit a" | |
| 91 | by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all | |
| 92 | qed (auto intro: euclidean_size_unit) | |
| 93 | ||
| 94 | lemma euclidean_size_times_nonunit: | |
| 95 | assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a" | |
| 96 | shows "euclidean_size b < euclidean_size (a * b)" | |
| 97 | proof (rule ccontr) | |
| 98 | assume "\<not>euclidean_size b < euclidean_size (a * b)" | |
| 99 | with size_mult_mono'[OF assms(1), of b] | |
| 100 | have eq: "euclidean_size (a * b) = euclidean_size b" by simp | |
| 101 | have "a * b dvd b" | |
| 102 | by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq]) (insert assms, simp_all) | |
| 103 | hence "a * b dvd 1 * b" by simp | |
| 104 | with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff) | |
| 105 | with assms(3) show False by contradiction | |
| 106 | qed | |
| 107 | ||
| 108 | lemma dvd_imp_size_le: | |
| 109 | assumes "a dvd b" "b \<noteq> 0" | |
| 110 | shows "euclidean_size a \<le> euclidean_size b" | |
| 111 | using assms by (auto elim!: dvdE simp: size_mult_mono) | |
| 112 | ||
| 113 | lemma dvd_proper_imp_size_less: | |
| 114 | assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" | |
| 115 | shows "euclidean_size a < euclidean_size b" | |
| 116 | proof - | |
| 117 | from assms(1) obtain c where "b = a * c" by (erule dvdE) | |
| 118 | hence z: "b = c * a" by (simp add: mult.commute) | |
| 119 | from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff) | |
| 120 | with z assms show ?thesis | |
| 121 | by (auto intro!: euclidean_size_times_nonunit) | |
| 122 | qed | |
| 123 | ||
| 66798 | 124 | lemma unit_imp_mod_eq_0: | 
| 125 | "a mod b = 0" if "is_unit b" | |
| 126 | using that by (simp add: mod_eq_0_iff_dvd unit_imp_dvd) | |
| 127 | ||
| 67051 | 128 | lemma coprime_mod_left_iff [simp]: | 
| 129 | "coprime (a mod b) b \<longleftrightarrow> coprime a b" if "b \<noteq> 0" | |
| 130 | by (rule; rule coprimeI) | |
| 131 | (use that in \<open>auto dest!: dvd_mod_imp_dvd coprime_common_divisor simp add: dvd_mod_iff\<close>) | |
| 132 | ||
| 133 | lemma coprime_mod_right_iff [simp]: | |
| 134 | "coprime a (b mod a) \<longleftrightarrow> coprime a b" if "a \<noteq> 0" | |
| 135 | using that coprime_mod_left_iff [of a b] by (simp add: ac_simps) | |
| 136 | ||
| 64785 | 137 | end | 
| 138 | ||
| 139 | class euclidean_ring = idom_modulo + euclidean_semiring | |
| 66886 | 140 | begin | 
| 141 | ||
| 67087 | 142 | lemma dvd_diff_commute [ac_simps]: | 
| 66886 | 143 | "a dvd c - b \<longleftrightarrow> a dvd b - c" | 
| 144 | proof - | |
| 145 | have "a dvd c - b \<longleftrightarrow> a dvd (c - b) * - 1" | |
| 146 | by (subst dvd_mult_unit_iff) simp_all | |
| 147 | then show ?thesis | |
| 148 | by simp | |
| 149 | qed | |
| 150 | ||
| 151 | end | |
| 64785 | 152 | |
| 66840 | 153 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 154 | subsection \<open>Euclidean (semi)rings with cancel rules\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 155 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 156 | class euclidean_semiring_cancel = euclidean_semiring + | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 157 | assumes div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 158 | and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 159 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 160 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 161 | lemma div_mult_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 162 | assumes "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 163 | shows "(a + b * c) div b = c + a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 164 | using assms div_mult_self1 [of b a c] by (simp add: mult.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 165 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 166 | lemma div_mult_self3 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 167 | assumes "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 168 | shows "(c * b + a) div b = c + a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 169 | using assms by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 170 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 171 | lemma div_mult_self4 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 172 | assumes "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 173 | shows "(b * c + a) div b = c + a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 174 | using assms by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 175 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 176 | lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 177 | proof (cases "b = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 178 | case True then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 179 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 180 | case False | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 181 | have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 182 | by (simp add: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 183 | also from False div_mult_self1 [of b a c] have | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 184 | "\<dots> = (c + a div b) * b + (a + c * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 185 | by (simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 186 | finally have "a = a div b * b + (a + c * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 187 | by (simp add: add.commute [of a] add.assoc distrib_right) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 188 | then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 189 | by (simp add: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 190 | then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 191 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 192 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 193 | lemma mod_mult_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 194 | "(a + b * c) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 195 | by (simp add: mult.commute [of b]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 196 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 197 | lemma mod_mult_self3 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 198 | "(c * b + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 199 | by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 200 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 201 | lemma mod_mult_self4 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 202 | "(b * c + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 203 | by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 204 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 205 | lemma mod_mult_self1_is_0 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 206 | "b * a mod b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 207 | using mod_mult_self2 [of 0 b a] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 208 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 209 | lemma mod_mult_self2_is_0 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 210 | "a * b mod b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 211 | using mod_mult_self1 [of 0 a b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 212 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 213 | lemma div_add_self1: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 214 | assumes "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 215 | shows "(b + a) div b = a div b + 1" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 216 | using assms div_mult_self1 [of b a 1] by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 217 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 218 | lemma div_add_self2: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 219 | assumes "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 220 | shows "(a + b) div b = a div b + 1" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 221 | using assms div_add_self1 [of b a] by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 222 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 223 | lemma mod_add_self1 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 224 | "(b + a) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 225 | using mod_mult_self1 [of a 1 b] by (simp add: add.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 226 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 227 | lemma mod_add_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 228 | "(a + b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 229 | using mod_mult_self1 [of a 1 b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 230 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 231 | lemma mod_div_trivial [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 232 | "a mod b div b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 233 | proof (cases "b = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 234 | assume "b = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 235 | thus ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 236 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 237 | assume "b \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 238 | hence "a div b + a mod b div b = (a mod b + a div b * b) div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 239 | by (rule div_mult_self1 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 240 | also have "\<dots> = a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 241 | by (simp only: mod_div_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 242 | also have "\<dots> = a div b + 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 243 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 244 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 245 | by (rule add_left_imp_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 246 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 247 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 248 | lemma mod_mod_trivial [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 249 | "a mod b mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 250 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 251 | have "a mod b mod b = (a mod b + a div b * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 252 | by (simp only: mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 253 | also have "\<dots> = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 254 | by (simp only: mod_div_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 255 | finally show ?thesis . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 256 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 257 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 258 | lemma mod_mod_cancel: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 259 | assumes "c dvd b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 260 | shows "a mod b mod c = a mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 261 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 262 | from \<open>c dvd b\<close> obtain k where "b = c * k" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 263 | by (rule dvdE) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 264 | have "a mod b mod c = a mod (c * k) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 265 | by (simp only: \<open>b = c * k\<close>) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 266 | also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 267 | by (simp only: mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 268 | also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 269 | by (simp only: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 270 | also have "\<dots> = a mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 271 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 272 | finally show ?thesis . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 273 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 274 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 275 | lemma div_mult_mult2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 276 | "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 277 | by (drule div_mult_mult1) (simp add: mult.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 278 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 279 | lemma div_mult_mult1_if [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 280 | "(c * a) div (c * b) = (if c = 0 then 0 else a div b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 281 | by simp_all | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 282 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 283 | lemma mod_mult_mult1: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 284 | "(c * a) mod (c * b) = c * (a mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 285 | proof (cases "c = 0") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 286 | case True then show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 287 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 288 | case False | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 289 | from div_mult_mod_eq | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 290 | have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" . | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 291 | with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 292 | = c * a + c * (a mod b)" by (simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 293 | with div_mult_mod_eq show ?thesis by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 294 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 295 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 296 | lemma mod_mult_mult2: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 297 | "(a * c) mod (b * c) = (a mod b) * c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 298 | using mod_mult_mult1 [of c a b] by (simp add: mult.commute) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 299 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 300 | lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 301 | by (fact mod_mult_mult2 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 302 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 303 | lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 304 | by (fact mod_mult_mult1 [symmetric]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 305 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 306 | lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 307 | unfolding dvd_def by (auto simp add: mod_mult_mult1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 308 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 309 | lemma div_plus_div_distrib_dvd_left: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 310 | "c dvd a \<Longrightarrow> (a + b) div c = a div c + b div c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 311 | by (cases "c = 0") (auto elim: dvdE) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 312 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 313 | lemma div_plus_div_distrib_dvd_right: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 314 | "c dvd b \<Longrightarrow> (a + b) div c = a div c + b div c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 315 | using div_plus_div_distrib_dvd_left [of c b a] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 316 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 317 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 318 | named_theorems mod_simps | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 319 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 320 | text \<open>Addition respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 321 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 322 | lemma mod_add_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 323 | "(a mod c + b) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 324 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 325 | have "(a + b) mod c = (a div c * c + a mod c + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 326 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 327 | also have "\<dots> = (a mod c + b + a div c * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 328 | by (simp only: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 329 | also have "\<dots> = (a mod c + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 330 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 331 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 332 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 333 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 334 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 335 | lemma mod_add_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 336 | "(a + b mod c) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 337 | using mod_add_left_eq [of b c a] by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 338 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 339 | lemma mod_add_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 340 | "(a mod c + b mod c) mod c = (a + b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 341 | by (simp add: mod_add_left_eq mod_add_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 342 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 343 | lemma mod_sum_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 344 | "(\<Sum>i\<in>A. f i mod a) mod a = sum f A mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 345 | proof (induct A rule: infinite_finite_induct) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 346 | case (insert i A) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 347 | then have "(\<Sum>i\<in>insert i A. f i mod a) mod a | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 348 | = (f i mod a + (\<Sum>i\<in>A. f i mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 349 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 350 | also have "\<dots> = (f i + (\<Sum>i\<in>A. f i mod a) mod a) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 351 | by (simp add: mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 352 | also have "\<dots> = (f i + (\<Sum>i\<in>A. f i) mod a) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 353 | by (simp add: insert.hyps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 354 | finally show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 355 | by (simp add: insert.hyps mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 356 | qed simp_all | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 357 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 358 | lemma mod_add_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 359 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 360 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 361 | shows "(a + b) mod c = (a' + b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 362 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 363 | have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 364 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 365 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 366 | by (simp add: mod_add_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 367 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 368 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 369 | text \<open>Multiplication respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 370 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 371 | lemma mod_mult_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 372 | "((a mod c) * b) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 373 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 374 | have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 375 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 376 | also have "\<dots> = (a mod c * b + a div c * b * c) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 377 | by (simp only: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 378 | also have "\<dots> = (a mod c * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 379 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 380 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 381 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 382 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 383 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 384 | lemma mod_mult_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 385 | "(a * (b mod c)) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 386 | using mod_mult_left_eq [of b c a] by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 387 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 388 | lemma mod_mult_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 389 | "((a mod c) * (b mod c)) mod c = (a * b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 390 | by (simp add: mod_mult_left_eq mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 391 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 392 | lemma mod_prod_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 393 | "(\<Prod>i\<in>A. f i mod a) mod a = prod f A mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 394 | proof (induct A rule: infinite_finite_induct) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 395 | case (insert i A) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 396 | then have "(\<Prod>i\<in>insert i A. f i mod a) mod a | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 397 | = (f i mod a * (\<Prod>i\<in>A. f i mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 398 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 399 | also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i mod a) mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 400 | by (simp add: mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 401 | also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i) mod a)) mod a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 402 | by (simp add: insert.hyps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 403 | finally show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 404 | by (simp add: insert.hyps mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 405 | qed simp_all | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 406 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 407 | lemma mod_mult_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 408 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 409 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 410 | shows "(a * b) mod c = (a' * b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 411 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 412 | have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 413 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 414 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 415 | by (simp add: mod_mult_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 416 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 417 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 418 | text \<open>Exponentiation respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 419 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 420 | lemma power_mod [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 421 | "((a mod b) ^ n) mod b = (a ^ n) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 422 | proof (induct n) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 423 | case 0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 424 | then show ?case by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 425 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 426 | case (Suc n) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 427 | have "(a mod b) ^ Suc n mod b = (a mod b) * ((a mod b) ^ n mod b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 428 | by (simp add: mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 429 | with Suc show ?case | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 430 | by (simp add: mod_mult_left_eq mod_mult_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 431 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 432 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 433 | end | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 434 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 435 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 436 | class euclidean_ring_cancel = euclidean_ring + euclidean_semiring_cancel | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 437 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 438 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 439 | subclass idom_divide .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 440 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 441 | lemma div_minus_minus [simp]: "(- a) div (- b) = a div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 442 | using div_mult_mult1 [of "- 1" a b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 443 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 444 | lemma mod_minus_minus [simp]: "(- a) mod (- b) = - (a mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 445 | using mod_mult_mult1 [of "- 1" a b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 446 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 447 | lemma div_minus_right: "a div (- b) = (- a) div b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 448 | using div_minus_minus [of "- a" b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 449 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 450 | lemma mod_minus_right: "a mod (- b) = - ((- a) mod b)" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 451 | using mod_minus_minus [of "- a" b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 452 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 453 | lemma div_minus1_right [simp]: "a div (- 1) = - a" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 454 | using div_minus_right [of a 1] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 455 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 456 | lemma mod_minus1_right [simp]: "a mod (- 1) = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 457 | using mod_minus_right [of a 1] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 458 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 459 | text \<open>Negation respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 460 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 461 | lemma mod_minus_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 462 | "(- (a mod b)) mod b = (- a) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 463 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 464 | have "(- a) mod b = (- (a div b * b + a mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 465 | by (simp only: div_mult_mod_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 466 | also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 467 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 468 | also have "\<dots> = (- (a mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 469 | by (rule mod_mult_self1) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 470 | finally show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 471 | by (rule sym) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 472 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 473 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 474 | lemma mod_minus_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 475 | assumes "a mod b = a' mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 476 | shows "(- a) mod b = (- a') mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 477 | proof - | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 478 | have "(- (a mod b)) mod b = (- (a' mod b)) mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 479 | unfolding assms .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 480 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 481 | by (simp add: mod_minus_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 482 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 483 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 484 | text \<open>Subtraction respects modular equivalence.\<close> | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 485 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 486 | lemma mod_diff_left_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 487 | "(a mod c - b) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 488 | using mod_add_cong [of a c "a mod c" "- b" "- b"] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 489 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 490 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 491 | lemma mod_diff_right_eq [mod_simps]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 492 | "(a - b mod c) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 493 | using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 494 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 495 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 496 | lemma mod_diff_eq: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 497 | "(a mod c - b mod c) mod c = (a - b) mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 498 | using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 499 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 500 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 501 | lemma mod_diff_cong: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 502 | assumes "a mod c = a' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 503 | assumes "b mod c = b' mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 504 | shows "(a - b) mod c = (a' - b') mod c" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 505 | using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 506 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 507 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 508 | lemma minus_mod_self2 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 509 | "(a - b) mod b = a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 510 | using mod_diff_right_eq [of a b b] | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 511 | by (simp add: mod_diff_right_eq) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 512 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 513 | lemma minus_mod_self1 [simp]: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 514 | "(b - a) mod b = - a mod b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 515 | using mod_add_self2 [of "- a" b] by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 516 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 517 | lemma mod_eq_dvd_iff: | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 518 | "a mod c = b mod c \<longleftrightarrow> c dvd a - b" (is "?P \<longleftrightarrow> ?Q") | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 519 | proof | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 520 | assume ?P | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 521 | then have "(a mod c - b mod c) mod c = 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 522 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 523 | then show ?Q | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 524 | by (simp add: dvd_eq_mod_eq_0 mod_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 525 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 526 | assume ?Q | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 527 | then obtain d where d: "a - b = c * d" .. | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 528 | then have "a = c * d + b" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 529 | by (simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 530 | then show ?P by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 531 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 532 | |
| 66837 | 533 | lemma mod_eqE: | 
| 534 | assumes "a mod c = b mod c" | |
| 535 | obtains d where "b = a + c * d" | |
| 536 | proof - | |
| 537 | from assms have "c dvd a - b" | |
| 538 | by (simp add: mod_eq_dvd_iff) | |
| 539 | then obtain d where "a - b = c * d" .. | |
| 540 | then have "b = a + c * - d" | |
| 541 | by (simp add: algebra_simps) | |
| 542 | with that show thesis . | |
| 543 | qed | |
| 544 | ||
| 67051 | 545 | lemma invertible_coprime: | 
| 546 | "coprime a c" if "a * b mod c = 1" | |
| 547 | by (rule coprimeI) (use that dvd_mod_iff [of _ c "a * b"] in auto) | |
| 548 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 549 | end | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 550 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 551 | |
| 64785 | 552 | subsection \<open>Uniquely determined division\<close> | 
| 553 | ||
| 554 | class unique_euclidean_semiring = euclidean_semiring + | |
| 66840 | 555 | assumes euclidean_size_mult: "euclidean_size (a * b) = euclidean_size a * euclidean_size b" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 556 | fixes division_segment :: "'a \<Rightarrow> 'a" | 
| 66839 | 557 | assumes is_unit_division_segment [simp]: "is_unit (division_segment a)" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 558 | and division_segment_mult: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 559 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> division_segment (a * b) = division_segment a * division_segment b" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 560 | and division_segment_mod: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 561 | "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> division_segment (a mod b) = division_segment b" | 
| 64785 | 562 | assumes div_bounded: | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 563 | "b \<noteq> 0 \<Longrightarrow> division_segment r = division_segment b | 
| 64785 | 564 | \<Longrightarrow> euclidean_size r < euclidean_size b | 
| 565 | \<Longrightarrow> (q * b + r) div b = q" | |
| 566 | begin | |
| 567 | ||
| 66839 | 568 | lemma division_segment_not_0 [simp]: | 
| 569 | "division_segment a \<noteq> 0" | |
| 570 | using is_unit_division_segment [of a] is_unitE [of "division_segment a"] by blast | |
| 571 | ||
| 64785 | 572 | lemma divmod_cases [case_names divides remainder by0]: | 
| 573 | obtains | |
| 574 | (divides) q where "b \<noteq> 0" | |
| 575 | and "a div b = q" | |
| 576 | and "a mod b = 0" | |
| 577 | and "a = q * b" | |
| 66814 | 578 | | (remainder) q r where "b \<noteq> 0" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 579 | and "division_segment r = division_segment b" | 
| 64785 | 580 | and "euclidean_size r < euclidean_size b" | 
| 66814 | 581 | and "r \<noteq> 0" | 
| 64785 | 582 | and "a div b = q" | 
| 583 | and "a mod b = r" | |
| 584 | and "a = q * b + r" | |
| 585 | | (by0) "b = 0" | |
| 586 | proof (cases "b = 0") | |
| 587 | case True | |
| 588 | then show thesis | |
| 589 | by (rule by0) | |
| 590 | next | |
| 591 | case False | |
| 592 | show thesis | |
| 593 | proof (cases "b dvd a") | |
| 594 | case True | |
| 595 | then obtain q where "a = b * q" .. | |
| 596 | with \<open>b \<noteq> 0\<close> divides | |
| 597 | show thesis | |
| 598 | by (simp add: ac_simps) | |
| 599 | next | |
| 600 | case False | |
| 601 | then have "a mod b \<noteq> 0" | |
| 602 | by (simp add: mod_eq_0_iff_dvd) | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 603 | moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "division_segment (a mod b) = division_segment b" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 604 | by (rule division_segment_mod) | 
| 64785 | 605 | moreover have "euclidean_size (a mod b) < euclidean_size b" | 
| 606 | using \<open>b \<noteq> 0\<close> by (rule mod_size_less) | |
| 607 | moreover have "a = a div b * b + a mod b" | |
| 608 | by (simp add: div_mult_mod_eq) | |
| 609 | ultimately show thesis | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 610 | using \<open>b \<noteq> 0\<close> by (blast intro!: remainder) | 
| 64785 | 611 | qed | 
| 612 | qed | |
| 613 | ||
| 614 | lemma div_eqI: | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 615 | "a div b = q" if "b \<noteq> 0" "division_segment r = division_segment b" | 
| 64785 | 616 | "euclidean_size r < euclidean_size b" "q * b + r = a" | 
| 617 | proof - | |
| 618 | from that have "(q * b + r) div b = q" | |
| 619 | by (auto intro: div_bounded) | |
| 620 | with that show ?thesis | |
| 621 | by simp | |
| 622 | qed | |
| 623 | ||
| 624 | lemma mod_eqI: | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 625 | "a mod b = r" if "b \<noteq> 0" "division_segment r = division_segment b" | 
| 64785 | 626 | "euclidean_size r < euclidean_size b" "q * b + r = a" | 
| 627 | proof - | |
| 628 | from that have "a div b = q" | |
| 629 | by (rule div_eqI) | |
| 630 | moreover have "a div b * b + a mod b = a" | |
| 631 | by (fact div_mult_mod_eq) | |
| 632 | ultimately have "a div b * b + a mod b = a div b * b + r" | |
| 633 | using \<open>q * b + r = a\<close> by simp | |
| 634 | then show ?thesis | |
| 635 | by simp | |
| 636 | qed | |
| 637 | ||
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 638 | subclass euclidean_semiring_cancel | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 639 | proof | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 640 | show "(a + c * b) div b = c + a div b" if "b \<noteq> 0" for a b c | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 641 | proof (cases a b rule: divmod_cases) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 642 | case by0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 643 | with \<open>b \<noteq> 0\<close> show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 644 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 645 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 646 | case (divides q) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 647 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 648 | by (simp add: ac_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 649 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 650 | case (remainder q r) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 651 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 652 | by (auto intro: div_eqI simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 653 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 654 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 655 | show"(c * a) div (c * b) = a div b" if "c \<noteq> 0" for a b c | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 656 | proof (cases a b rule: divmod_cases) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 657 | case by0 | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 658 | then show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 659 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 660 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 661 | case (divides q) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 662 | with \<open>c \<noteq> 0\<close> show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 663 | by (simp add: mult.left_commute [of c]) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 664 | next | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 665 | case (remainder q r) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 666 | from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have "b * c \<noteq> 0" | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 667 | by simp | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 668 | from remainder \<open>c \<noteq> 0\<close> | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 669 | have "division_segment (r * c) = division_segment (b * c)" | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 670 | and "euclidean_size (r * c) < euclidean_size (b * c)" | 
| 66840 | 671 | by (simp_all add: division_segment_mult division_segment_mod euclidean_size_mult) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 672 | with remainder show ?thesis | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 673 | by (auto intro!: div_eqI [of _ "c * (a mod b)"] simp add: algebra_simps) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 674 | (use \<open>b * c \<noteq> 0\<close> in simp) | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 675 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 676 | qed | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 677 | |
| 66814 | 678 | lemma div_mult1_eq: | 
| 679 | "(a * b) div c = a * (b div c) + a * (b mod c) div c" | |
| 680 | proof (cases "a * (b mod c)" c rule: divmod_cases) | |
| 681 | case (divides q) | |
| 682 | have "a * b = a * (b div c * c + b mod c)" | |
| 683 | by (simp add: div_mult_mod_eq) | |
| 684 | also have "\<dots> = (a * (b div c) + q) * c" | |
| 685 | using divides by (simp add: algebra_simps) | |
| 686 | finally have "(a * b) div c = \<dots> div c" | |
| 687 | by simp | |
| 688 | with divides show ?thesis | |
| 689 | by simp | |
| 690 | next | |
| 691 | case (remainder q r) | |
| 692 | from remainder(1-3) show ?thesis | |
| 693 | proof (rule div_eqI) | |
| 694 | have "a * b = a * (b div c * c + b mod c)" | |
| 695 | by (simp add: div_mult_mod_eq) | |
| 696 | also have "\<dots> = a * c * (b div c) + q * c + r" | |
| 697 | using remainder by (simp add: algebra_simps) | |
| 698 | finally show "(a * (b div c) + a * (b mod c) div c) * c + r = a * b" | |
| 699 | using remainder(5-7) by (simp add: algebra_simps) | |
| 700 | qed | |
| 701 | next | |
| 702 | case by0 | |
| 703 | then show ?thesis | |
| 704 | by simp | |
| 705 | qed | |
| 706 | ||
| 707 | lemma div_add1_eq: | |
| 708 | "(a + b) div c = a div c + b div c + (a mod c + b mod c) div c" | |
| 709 | proof (cases "a mod c + b mod c" c rule: divmod_cases) | |
| 710 | case (divides q) | |
| 711 | have "a + b = (a div c * c + a mod c) + (b div c * c + b mod c)" | |
| 712 | using mod_mult_div_eq [of a c] mod_mult_div_eq [of b c] by (simp add: ac_simps) | |
| 713 | also have "\<dots> = (a div c + b div c) * c + (a mod c + b mod c)" | |
| 714 | by (simp add: algebra_simps) | |
| 715 | also have "\<dots> = (a div c + b div c + q) * c" | |
| 716 | using divides by (simp add: algebra_simps) | |
| 717 | finally have "(a + b) div c = (a div c + b div c + q) * c div c" | |
| 718 | by simp | |
| 719 | with divides show ?thesis | |
| 720 | by simp | |
| 721 | next | |
| 722 | case (remainder q r) | |
| 723 | from remainder(1-3) show ?thesis | |
| 724 | proof (rule div_eqI) | |
| 725 | have "(a div c + b div c + q) * c + r + (a mod c + b mod c) = | |
| 726 | (a div c * c + a mod c) + (b div c * c + b mod c) + q * c + r" | |
| 727 | by (simp add: algebra_simps) | |
| 728 | also have "\<dots> = a + b + (a mod c + b mod c)" | |
| 729 | by (simp add: div_mult_mod_eq remainder) (simp add: ac_simps) | |
| 730 | finally show "(a div c + b div c + (a mod c + b mod c) div c) * c + r = a + b" | |
| 731 | using remainder by simp | |
| 732 | qed | |
| 733 | next | |
| 734 | case by0 | |
| 735 | then show ?thesis | |
| 736 | by simp | |
| 737 | qed | |
| 738 | ||
| 66886 | 739 | lemma div_eq_0_iff: | 
| 740 | "a div b = 0 \<longleftrightarrow> euclidean_size a < euclidean_size b \<or> b = 0" (is "_ \<longleftrightarrow> ?P") | |
| 741 | if "division_segment a = division_segment b" | |
| 742 | proof | |
| 743 | assume ?P | |
| 744 | with that show "a div b = 0" | |
| 745 | by (cases "b = 0") (auto intro: div_eqI) | |
| 746 | next | |
| 747 | assume "a div b = 0" | |
| 748 | then have "a mod b = a" | |
| 749 | using div_mult_mod_eq [of a b] by simp | |
| 750 | with mod_size_less [of b a] show ?P | |
| 751 | by auto | |
| 752 | qed | |
| 753 | ||
| 64785 | 754 | end | 
| 755 | ||
| 756 | class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 757 | begin | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 758 | |
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 759 | subclass euclidean_ring_cancel .. | 
| 64785 | 760 | |
| 761 | end | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 762 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 763 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 764 | subsection \<open>Euclidean division on @{typ nat}\<close>
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 765 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 766 | instantiation nat :: normalization_semidom | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 767 | begin | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 768 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 769 | definition normalize_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 770 | where [simp]: "normalize = (id :: nat \<Rightarrow> nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 771 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 772 | definition unit_factor_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 773 | where "unit_factor n = (if n = 0 then 0 else 1 :: nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 774 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 775 | lemma unit_factor_simps [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 776 | "unit_factor 0 = (0::nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 777 | "unit_factor (Suc n) = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 778 | by (simp_all add: unit_factor_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 779 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 780 | definition divide_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 781 |   where "m div n = (if n = 0 then 0 else Max {k::nat. k * n \<le> m})"
 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 782 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 783 | instance | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 784 | by standard (auto simp add: divide_nat_def ac_simps unit_factor_nat_def intro: Max_eqI) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 785 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 786 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 787 | |
| 67051 | 788 | lemma coprime_Suc_0_left [simp]: | 
| 789 | "coprime (Suc 0) n" | |
| 790 | using coprime_1_left [of n] by simp | |
| 791 | ||
| 792 | lemma coprime_Suc_0_right [simp]: | |
| 793 | "coprime n (Suc 0)" | |
| 794 | using coprime_1_right [of n] by simp | |
| 795 | ||
| 796 | lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" | |
| 797 | for a b :: nat | |
| 798 | by (drule coprime_common_divisor [of _ _ x]) simp_all | |
| 799 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 800 | instantiation nat :: unique_euclidean_semiring | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 801 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 802 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 803 | definition euclidean_size_nat :: "nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 804 | where [simp]: "euclidean_size_nat = id" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 805 | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 806 | definition division_segment_nat :: "nat \<Rightarrow> nat" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 807 | where [simp]: "division_segment_nat n = 1" | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 808 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 809 | definition modulo_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 810 | where "m mod n = m - (m div n * (n::nat))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 811 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 812 | instance proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 813 | fix m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 814 | have ex: "\<exists>k. k * n \<le> l" for l :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 815 | by (rule exI [of _ 0]) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 816 |   have fin: "finite {k. k * n \<le> l}" if "n > 0" for l
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 817 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 818 |     from that have "{k. k * n \<le> l} \<subseteq> {k. k \<le> l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 819 | by (cases n) auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 820 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 821 | by (rule finite_subset) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 822 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 823 |   have mult_div_unfold: "n * (m div n) = Max {l. l \<le> m \<and> n dvd l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 824 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 825 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 826 |     moreover have "{l. l = 0 \<and> l \<le> m} = {0::nat}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 827 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 828 | ultimately show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 829 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 830 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 831 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 832 |     with ex [of m] fin have "n * Max {k. k * n \<le> m} = Max (times n ` {k. k * n \<le> m})"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 833 | by (auto simp add: nat_mult_max_right intro: hom_Max_commute) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 834 |     also have "times n ` {k. k * n \<le> m} = {l. l \<le> m \<and> n dvd l}"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 835 | by (auto simp add: ac_simps elim!: dvdE) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 836 | finally show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 837 | using False by (simp add: divide_nat_def ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 838 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 839 | have less_eq: "m div n * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 840 | by (auto simp add: mult_div_unfold ac_simps intro: Max.boundedI) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 841 | then show "m div n * n + m mod n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 842 | by (simp add: modulo_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 843 | assume "n \<noteq> 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 844 | show "euclidean_size (m mod n) < euclidean_size n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 845 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 846 | have "m < Suc (m div n) * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 847 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 848 | assume "\<not> m < Suc (m div n) * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 849 | then have "Suc (m div n) * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 850 | by (simp add: not_less) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 851 |       moreover from \<open>n \<noteq> 0\<close> have "Max {k. k * n \<le> m} < Suc (m div n)"
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 852 | by (simp add: divide_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 853 | with \<open>n \<noteq> 0\<close> ex fin have "\<And>k. k * n \<le> m \<Longrightarrow> k < Suc (m div n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 854 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 855 | ultimately have "Suc (m div n) < Suc (m div n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 856 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 857 | then show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 858 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 859 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 860 | with \<open>n \<noteq> 0\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 861 | by (simp add: modulo_nat_def) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 862 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 863 | show "euclidean_size m \<le> euclidean_size (m * n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 864 | using \<open>n \<noteq> 0\<close> by (cases n) simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 865 | fix q r :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 866 | show "(q * n + r) div n = q" if "euclidean_size r < euclidean_size n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 867 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 868 | from that have "r < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 869 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 870 | have "k \<le> q" if "k * n \<le> q * n + r" for k | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 871 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 872 | assume "\<not> k \<le> q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 873 | then have "q < k" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 874 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 875 | then obtain l where "k = Suc (q + l)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 876 | by (auto simp add: less_iff_Suc_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 877 | with \<open>r < n\<close> that show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 878 | by (simp add: algebra_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 879 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 880 | with \<open>n \<noteq> 0\<close> ex fin show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 881 | by (auto simp add: divide_nat_def Max_eq_iff) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 882 | qed | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 883 | qed simp_all | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 884 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66798diff
changeset | 885 | end | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 886 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 887 | text \<open>Tool support\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 888 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 889 | ML \<open> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 890 | structure Cancel_Div_Mod_Nat = Cancel_Div_Mod | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 891 | ( | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 892 |   val div_name = @{const_name divide};
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 893 |   val mod_name = @{const_name modulo};
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 894 | val mk_binop = HOLogic.mk_binop; | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 895 |   val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
 | 
| 66813 | 896 | val mk_sum = Arith_Data.mk_sum; | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 897 | fun dest_sum tm = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 898 | if HOLogic.is_zero tm then [] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 899 | else | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 900 | (case try HOLogic.dest_Suc tm of | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 901 | SOME t => HOLogic.Suc_zero :: dest_sum t | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 902 | | NONE => | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 903 | (case try dest_plus tm of | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 904 | SOME (t, u) => dest_sum t @ dest_sum u | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 905 | | NONE => [tm])); | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 906 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 907 |   val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 908 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 909 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 910 |     (Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 911 | ) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 912 | \<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 913 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 914 | simproc_setup cancel_div_mod_nat ("(m::nat) + n") =
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 915 | \<open>K Cancel_Div_Mod_Nat.proc\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 916 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 917 | lemma div_nat_eqI: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 918 | "m div n = q" if "n * q \<le> m" and "m < n * Suc q" for m n q :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 919 | by (rule div_eqI [of _ "m - n * q"]) (use that in \<open>simp_all add: algebra_simps\<close>) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 920 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 921 | lemma mod_nat_eqI: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 922 | "m mod n = r" if "r < n" and "r \<le> m" and "n dvd m - r" for m n r :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 923 | by (rule mod_eqI [of _ _ "(m - r) div n"]) (use that in \<open>simp_all add: algebra_simps\<close>) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 924 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 925 | lemma div_mult_self_is_m [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 926 | "m * n div n = m" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 927 | using that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 928 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 929 | lemma div_mult_self1_is_m [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 930 | "n * m div n = m" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 931 | using that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 932 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 933 | lemma mod_less_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 934 | "m mod n < n" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 935 | using mod_size_less [of n m] that by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 936 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 937 | lemma mod_le_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 938 | "m mod n \<le> n" if "n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 939 | using that by (auto simp add: le_less) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 940 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 941 | lemma div_times_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 942 | "m div n * n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 943 | by (simp add: minus_mod_eq_div_mult [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 944 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 945 | lemma times_div_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 946 | "n * (m div n) \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 947 | using div_times_less_eq_dividend [of m n] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 948 | by (simp add: ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 949 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 950 | lemma dividend_less_div_times: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 951 | "m < n + (m div n) * n" if "0 < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 952 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 953 | from that have "m mod n < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 954 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 955 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 956 | by (simp add: minus_mod_eq_div_mult [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 957 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 958 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 959 | lemma dividend_less_times_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 960 | "m < n + n * (m div n)" if "0 < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 961 | using dividend_less_div_times [of n m] that | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 962 | by (simp add: ac_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 963 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 964 | lemma mod_Suc_le_divisor [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 965 | "m mod Suc n \<le> n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 966 | using mod_less_divisor [of "Suc n" m] by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 967 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 968 | lemma mod_less_eq_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 969 | "m mod n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 970 | proof (rule add_leD2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 971 | from div_mult_mod_eq have "m div n * n + m mod n = m" . | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 972 | then show "m div n * n + m mod n \<le> m" by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 973 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 974 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 975 | lemma | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 976 | div_less [simp]: "m div n = 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 977 | and mod_less [simp]: "m mod n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 978 | if "m < n" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 979 | using that by (auto intro: div_eqI mod_eqI) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 980 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 981 | lemma le_div_geq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 982 | "m div n = Suc ((m - n) div n)" if "0 < n" and "n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 983 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 984 | from \<open>n \<le> m\<close> obtain q where "m = n + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 985 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 986 | with \<open>0 < n\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 987 | by (simp add: div_add_self1) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 988 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 989 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 990 | lemma le_mod_geq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 991 | "m mod n = (m - n) mod n" if "n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 992 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 993 | from \<open>n \<le> m\<close> obtain q where "m = n + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 994 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 995 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 996 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 997 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 998 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 999 | lemma div_if: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1000 | "m div n = (if m < n \<or> n = 0 then 0 else Suc ((m - n) div n))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1001 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1002 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1003 | lemma mod_if: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1004 | "m mod n = (if m < n then m else (m - n) mod n)" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1005 | by (simp add: le_mod_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1006 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1007 | lemma div_eq_0_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1008 | "m div n = 0 \<longleftrightarrow> m < n \<or> n = 0" for m n :: nat | 
| 66886 | 1009 | by (simp add: div_eq_0_iff) | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1010 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1011 | lemma div_greater_zero_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1012 | "m div n > 0 \<longleftrightarrow> n \<le> m \<and> n > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1013 | using div_eq_0_iff [of m n] by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1014 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1015 | lemma mod_greater_zero_iff_not_dvd: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1016 | "m mod n > 0 \<longleftrightarrow> \<not> n dvd m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1017 | by (simp add: dvd_eq_mod_eq_0) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1018 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1019 | lemma div_by_Suc_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1020 | "m div Suc 0 = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1021 | using div_by_1 [of m] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1022 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1023 | lemma mod_by_Suc_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1024 | "m mod Suc 0 = 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1025 | using mod_by_1 [of m] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1026 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1027 | lemma div2_Suc_Suc [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1028 | "Suc (Suc m) div 2 = Suc (m div 2)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1029 | by (simp add: numeral_2_eq_2 le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1030 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1031 | lemma Suc_n_div_2_gt_zero [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1032 | "0 < Suc n div 2" if "n > 0" for n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1033 | using that by (cases n) simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1034 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1035 | lemma div_2_gt_zero [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1036 | "0 < n div 2" if "Suc 0 < n" for n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1037 | using that Suc_n_div_2_gt_zero [of "n - 1"] by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1038 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1039 | lemma mod2_Suc_Suc [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1040 | "Suc (Suc m) mod 2 = m mod 2" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1041 | by (simp add: numeral_2_eq_2 le_mod_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1042 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1043 | lemma add_self_div_2 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1044 | "(m + m) div 2 = m" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1045 | by (simp add: mult_2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1046 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1047 | lemma add_self_mod_2 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1048 | "(m + m) mod 2 = 0" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1049 | by (simp add: mult_2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1050 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1051 | lemma mod2_gr_0 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1052 | "0 < m mod 2 \<longleftrightarrow> m mod 2 = 1" for m :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1053 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1054 | have "m mod 2 < 2" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1055 | by (rule mod_less_divisor) simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1056 | then have "m mod 2 = 0 \<or> m mod 2 = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1057 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1058 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1059 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1060 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1061 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1062 | lemma mod_Suc_eq [mod_simps]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1063 | "Suc (m mod n) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1064 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1065 | have "(m mod n + 1) mod n = (m + 1) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1066 | by (simp only: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1067 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1068 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1069 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1070 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1071 | lemma mod_Suc_Suc_eq [mod_simps]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1072 | "Suc (Suc (m mod n)) mod n = Suc (Suc m) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1073 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1074 | have "(m mod n + 2) mod n = (m + 2) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1075 | by (simp only: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1076 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1077 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1078 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1079 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1080 | lemma | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1081 | Suc_mod_mult_self1 [simp]: "Suc (m + k * n) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1082 | and Suc_mod_mult_self2 [simp]: "Suc (m + n * k) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1083 | and Suc_mod_mult_self3 [simp]: "Suc (k * n + m) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1084 | and Suc_mod_mult_self4 [simp]: "Suc (n * k + m) mod n = Suc m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1085 | by (subst mod_Suc_eq [symmetric], simp add: mod_simps)+ | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1086 | |
| 67083 | 1087 | lemma Suc_0_mod_eq [simp]: | 
| 1088 | "Suc 0 mod n = of_bool (n \<noteq> Suc 0)" | |
| 1089 | by (cases n) simp_all | |
| 1090 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1091 | context | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1092 | fixes m n q :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1093 | begin | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1094 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1095 | private lemma eucl_rel_mult2: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1096 | "m mod n + n * (m div n mod q) < n * q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1097 | if "n > 0" and "q > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1098 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1099 | from \<open>n > 0\<close> have "m mod n < n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1100 | by (rule mod_less_divisor) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1101 | from \<open>q > 0\<close> have "m div n mod q < q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1102 | by (rule mod_less_divisor) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1103 | then obtain s where "q = Suc (m div n mod q + s)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1104 | by (blast dest: less_imp_Suc_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1105 | moreover have "m mod n + n * (m div n mod q) < n * Suc (m div n mod q + s)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1106 | using \<open>m mod n < n\<close> by (simp add: add_mult_distrib2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1107 | ultimately show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1108 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1109 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1110 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1111 | lemma div_mult2_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1112 | "m div (n * q) = (m div n) div q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1113 | proof (cases "n = 0 \<or> q = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1114 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1115 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1116 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1117 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1118 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1119 | with eucl_rel_mult2 show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1120 | by (auto intro: div_eqI [of _ "n * (m div n mod q) + m mod n"] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1121 | simp add: algebra_simps add_mult_distrib2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1122 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1123 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1124 | lemma mod_mult2_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1125 | "m mod (n * q) = n * (m div n mod q) + m mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1126 | proof (cases "n = 0 \<or> q = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1127 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1128 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1129 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1130 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1131 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1132 | with eucl_rel_mult2 show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1133 | by (auto intro: mod_eqI [of _ _ "(m div n) div q"] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1134 | simp add: algebra_simps add_mult_distrib2 [symmetric]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1135 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1136 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1137 | end | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1138 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1139 | lemma div_le_mono: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1140 | "m div k \<le> n div k" if "m \<le> n" for m n k :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1141 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1142 | from that obtain q where "n = m + q" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1143 | by (auto simp add: le_iff_add) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1144 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1145 | by (simp add: div_add1_eq [of m q k]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1146 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1147 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1148 | text \<open>Antimonotonicity of @{const divide} in second argument\<close>
 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1149 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1150 | lemma div_le_mono2: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1151 | "k div n \<le> k div m" if "0 < m" and "m \<le> n" for m n k :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1152 | using that proof (induct k arbitrary: m rule: less_induct) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1153 | case (less k) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1154 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1155 | proof (cases "n \<le> k") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1156 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1157 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1158 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1159 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1160 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1161 | have "(k - n) div n \<le> (k - m) div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1162 | using less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1163 | by (blast intro: div_le_mono diff_le_mono2) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1164 | also have "\<dots> \<le> (k - m) div m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1165 | using \<open>n \<le> k\<close> less.prems less.hyps [of "k - m" m] | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1166 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1167 | finally show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1168 | using \<open>n \<le> k\<close> less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1169 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1170 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1171 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1172 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1173 | lemma div_le_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1174 | "m div n \<le> m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1175 | using div_le_mono2 [of 1 n m] by (cases "n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1176 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1177 | lemma div_less_dividend [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1178 | "m div n < m" if "1 < n" and "0 < m" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1179 | using that proof (induct m rule: less_induct) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1180 | case (less m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1181 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1182 | proof (cases "n < m") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1183 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1184 | with less show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1185 | by (cases "n = m") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1186 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1187 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1188 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1189 | using less.hyps [of "m - n"] less.prems | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1190 | by (simp add: le_div_geq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1191 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1192 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1193 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1194 | lemma div_eq_dividend_iff: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1195 | "m div n = m \<longleftrightarrow> n = 1" if "m > 0" for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1196 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1197 | assume "n = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1198 | then show "m div n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1199 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1200 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1201 | assume P: "m div n = m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1202 | show "n = 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1203 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1204 | have "n \<noteq> 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1205 | by (rule ccontr) (use that P in auto) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1206 | moreover assume "n \<noteq> 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1207 | ultimately have "n > 1" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1208 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1209 | with that have "m div n < m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1210 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1211 | with P show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1212 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1213 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1214 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1215 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1216 | lemma less_mult_imp_div_less: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1217 | "m div n < i" if "m < i * n" for m n i :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1218 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1219 | from that have "i * n > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1220 | by (cases "i * n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1221 | then have "i > 0" and "n > 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1222 | by simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1223 | have "m div n * n \<le> m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1224 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1225 | then have "m div n * n < i * n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1226 | using that by (rule le_less_trans) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1227 | with \<open>n > 0\<close> show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1228 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1229 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1230 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1231 | text \<open>A fact for the mutilated chess board\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1232 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1233 | lemma mod_Suc: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1234 | "Suc m mod n = (if Suc (m mod n) = n then 0 else Suc (m mod n))" (is "_ = ?rhs") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1235 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1236 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1237 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1238 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1239 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1240 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1241 | have "Suc m mod n = Suc (m mod n) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1242 | by (simp add: mod_simps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1243 | also have "\<dots> = ?rhs" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1244 | using False by (auto intro!: mod_nat_eqI intro: neq_le_trans simp add: Suc_le_eq) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1245 | finally show ?thesis . | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1246 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1247 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1248 | lemma Suc_times_mod_eq: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1249 | "Suc (m * n) mod m = 1" if "Suc 0 < m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1250 | using that by (simp add: mod_Suc) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1251 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1252 | lemma Suc_times_numeral_mod_eq [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1253 | "Suc (numeral k * n) mod numeral k = 1" if "numeral k \<noteq> (1::nat)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1254 | by (rule Suc_times_mod_eq) (use that in simp) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1255 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1256 | lemma Suc_div_le_mono [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1257 | "m div n \<le> Suc m div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1258 | by (simp add: div_le_mono) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1259 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1260 | text \<open>These lemmas collapse some needless occurrences of Suc: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1261 | at least three Sucs, since two and fewer are rewritten back to Suc again! | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1262 | We already have some rules to simplify operands smaller than 3.\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1263 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1264 | lemma div_Suc_eq_div_add3 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1265 | "m div Suc (Suc (Suc n)) = m div (3 + n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1266 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1267 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1268 | lemma mod_Suc_eq_mod_add3 [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1269 | "m mod Suc (Suc (Suc n)) = m mod (3 + n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1270 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1271 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1272 | lemma Suc_div_eq_add3_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1273 | "Suc (Suc (Suc m)) div n = (3 + m) div n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1274 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1275 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1276 | lemma Suc_mod_eq_add3_mod: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1277 | "Suc (Suc (Suc m)) mod n = (3 + m) mod n" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1278 | by (simp add: Suc3_eq_add_3) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1279 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1280 | lemmas Suc_div_eq_add3_div_numeral [simp] = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1281 | Suc_div_eq_add3_div [of _ "numeral v"] for v | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1282 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1283 | lemmas Suc_mod_eq_add3_mod_numeral [simp] = | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1284 | Suc_mod_eq_add3_mod [of _ "numeral v"] for v | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1285 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1286 | lemma (in field_char_0) of_nat_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1287 | "of_nat (m div n) = ((of_nat m - of_nat (m mod n)) / of_nat n)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1288 | proof - | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1289 | have "of_nat (m div n) = ((of_nat (m div n * n + m mod n) - of_nat (m mod n)) / of_nat n :: 'a)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1290 | unfolding of_nat_add by (cases "n = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1291 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1292 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1293 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1294 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1295 | text \<open>An ``induction'' law for modulus arithmetic.\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1296 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1297 | lemma mod_induct [consumes 3, case_names step]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1298 | "P m" if "P n" and "n < p" and "m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1299 | and step: "\<And>n. n < p \<Longrightarrow> P n \<Longrightarrow> P (Suc n mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1300 | using \<open>m < p\<close> proof (induct m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1301 | case 0 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1302 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1303 | proof (rule ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1304 | assume "\<not> P 0" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1305 | from \<open>n < p\<close> have "0 < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1306 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1307 | from \<open>n < p\<close> obtain m where "0 < m" and "p = n + m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1308 | by (blast dest: less_imp_add_positive) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1309 | with \<open>P n\<close> have "P (p - m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1310 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1311 | moreover have "\<not> P (p - m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1312 | using \<open>0 < m\<close> proof (induct m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1313 | case 0 | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1314 | then show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1315 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1316 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1317 | case (Suc m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1318 | show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1319 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1320 | assume P: "P (p - Suc m)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1321 | with \<open>\<not> P 0\<close> have "Suc m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1322 | by (auto intro: ccontr) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1323 | then have "Suc (p - Suc m) = p - m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1324 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1325 | moreover from \<open>0 < p\<close> have "p - Suc m < p" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1326 | by arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1327 | with P step have "P ((Suc (p - Suc m)) mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1328 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1329 | ultimately show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1330 | using \<open>\<not> P 0\<close> Suc.hyps by (cases "m = 0") simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1331 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1332 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1333 | ultimately show False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1334 | by blast | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1335 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1336 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1337 | case (Suc m) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1338 | then have "m < p" and mod: "Suc m mod p = Suc m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1339 | by simp_all | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1340 | from \<open>m < p\<close> have "P m" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1341 | by (rule Suc.hyps) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1342 | with \<open>m < p\<close> have "P (Suc m mod p)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1343 | by (rule step) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1344 | with mod show ?case | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1345 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1346 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1347 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1348 | lemma split_div: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1349 | "P (m div n) \<longleftrightarrow> (n = 0 \<longrightarrow> P 0) \<and> (n \<noteq> 0 \<longrightarrow> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1350 | (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P i))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1351 | (is "?P = ?Q") for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1352 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1353 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1354 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1355 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1356 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1357 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1358 | show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1359 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1360 | assume ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1361 | with False show ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1362 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1363 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1364 | assume ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1365 | with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P i" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1366 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1367 | with False show ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1368 | by (auto intro: * [of "m mod n"]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1369 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1370 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1371 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1372 | lemma split_div': | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1373 | "P (m div n) \<longleftrightarrow> n = 0 \<and> P 0 \<or> (\<exists>q. (n * q \<le> m \<and> m < n * Suc q) \<and> P q)" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1374 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1375 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1376 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1377 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1378 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1379 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1380 | then have "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> m div n = q" for q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1381 | by (auto intro: div_nat_eqI dividend_less_times_div) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1382 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1383 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1384 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1385 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1386 | lemma split_mod: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1387 | "P (m mod n) \<longleftrightarrow> (n = 0 \<longrightarrow> P m) \<and> (n \<noteq> 0 \<longrightarrow> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1388 | (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P j))" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1389 | (is "?P \<longleftrightarrow> ?Q") for m n :: nat | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1390 | proof (cases "n = 0") | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1391 | case True | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1392 | then show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1393 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1394 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1395 | case False | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1396 | show ?thesis | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1397 | proof | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1398 | assume ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1399 | with False show ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1400 | by auto | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1401 | next | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1402 | assume ?Q | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1403 | with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P j" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1404 | by simp | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1405 | with False show ?P | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1406 | by (auto intro: * [of _ "m div n"]) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1407 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1408 | qed | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1409 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1410 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1411 | subsection \<open>Euclidean division on @{typ int}\<close>
 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1412 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1413 | instantiation int :: normalization_semidom | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1414 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1415 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1416 | definition normalize_int :: "int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1417 | where [simp]: "normalize = (abs :: int \<Rightarrow> int)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1418 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1419 | definition unit_factor_int :: "int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1420 | where [simp]: "unit_factor = (sgn :: int \<Rightarrow> int)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1421 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1422 | definition divide_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1423 | where "k div l = (if l = 0 then 0 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1424 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1425 | then int (nat \<bar>k\<bar> div nat \<bar>l\<bar>) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1426 | else - int (nat \<bar>k\<bar> div nat \<bar>l\<bar> + of_bool (\<not> l dvd k)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1427 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1428 | lemma divide_int_unfold: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1429 | "(sgn k * int m) div (sgn l * int n) = | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1430 | (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then 0 | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1431 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1432 | then int (m div n) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1433 | else - int (m div n + of_bool (\<not> n dvd m)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1434 | by (auto simp add: divide_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult | 
| 67118 | 1435 | nat_mult_distrib) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1436 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1437 | instance proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1438 | fix k :: int show "k div 0 = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1439 | by (simp add: divide_int_def) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1440 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1441 | fix k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1442 | assume "l \<noteq> 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1443 | obtain n m and s t where k: "k = sgn s * int n" and l: "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1444 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1445 | then have "k * l = sgn (s * t) * int (n * m)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1446 | by (simp add: ac_simps sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1447 | with k l \<open>l \<noteq> 0\<close> show "k * l div l = k" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1448 | by (simp only: divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1449 | (auto simp add: algebra_simps sgn_mult sgn_1_pos sgn_0_0) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1450 | qed (auto simp add: sgn_mult mult_sgn_abs abs_eq_iff') | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1451 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1452 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1453 | |
| 67051 | 1454 | lemma coprime_int_iff [simp]: | 
| 1455 | "coprime (int m) (int n) \<longleftrightarrow> coprime m n" (is "?P \<longleftrightarrow> ?Q") | |
| 1456 | proof | |
| 1457 | assume ?P | |
| 1458 | show ?Q | |
| 1459 | proof (rule coprimeI) | |
| 1460 | fix q | |
| 1461 | assume "q dvd m" "q dvd n" | |
| 1462 | then have "int q dvd int m" "int q dvd int n" | |
| 67118 | 1463 | by simp_all | 
| 67051 | 1464 | with \<open>?P\<close> have "is_unit (int q)" | 
| 1465 | by (rule coprime_common_divisor) | |
| 1466 | then show "is_unit q" | |
| 1467 | by simp | |
| 1468 | qed | |
| 1469 | next | |
| 1470 | assume ?Q | |
| 1471 | show ?P | |
| 1472 | proof (rule coprimeI) | |
| 1473 | fix k | |
| 1474 | assume "k dvd int m" "k dvd int n" | |
| 1475 | then have "nat \<bar>k\<bar> dvd m" "nat \<bar>k\<bar> dvd n" | |
| 67118 | 1476 | by simp_all | 
| 67051 | 1477 | with \<open>?Q\<close> have "is_unit (nat \<bar>k\<bar>)" | 
| 1478 | by (rule coprime_common_divisor) | |
| 1479 | then show "is_unit k" | |
| 1480 | by simp | |
| 1481 | qed | |
| 1482 | qed | |
| 1483 | ||
| 1484 | lemma coprime_abs_left_iff [simp]: | |
| 1485 | "coprime \<bar>k\<bar> l \<longleftrightarrow> coprime k l" for k l :: int | |
| 1486 | using coprime_normalize_left_iff [of k l] by simp | |
| 1487 | ||
| 1488 | lemma coprime_abs_right_iff [simp]: | |
| 1489 | "coprime k \<bar>l\<bar> \<longleftrightarrow> coprime k l" for k l :: int | |
| 1490 | using coprime_abs_left_iff [of l k] by (simp add: ac_simps) | |
| 1491 | ||
| 1492 | lemma coprime_nat_abs_left_iff [simp]: | |
| 1493 | "coprime (nat \<bar>k\<bar>) n \<longleftrightarrow> coprime k (int n)" | |
| 1494 | proof - | |
| 1495 | define m where "m = nat \<bar>k\<bar>" | |
| 1496 | then have "\<bar>k\<bar> = int m" | |
| 1497 | by simp | |
| 1498 | moreover have "coprime k (int n) \<longleftrightarrow> coprime \<bar>k\<bar> (int n)" | |
| 1499 | by simp | |
| 1500 | ultimately show ?thesis | |
| 1501 | by simp | |
| 1502 | qed | |
| 1503 | ||
| 1504 | lemma coprime_nat_abs_right_iff [simp]: | |
| 1505 | "coprime n (nat \<bar>k\<bar>) \<longleftrightarrow> coprime (int n) k" | |
| 1506 | using coprime_nat_abs_left_iff [of k n] by (simp add: ac_simps) | |
| 1507 | ||
| 1508 | lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1" | |
| 1509 | for a b :: int | |
| 1510 | by (drule coprime_common_divisor [of _ _ x]) simp_all | |
| 1511 | ||
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1512 | instantiation int :: idom_modulo | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1513 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1514 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1515 | definition modulo_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1516 | where "k mod l = (if l = 0 then k | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1517 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1518 | then sgn l * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1519 | else sgn l * (\<bar>l\<bar> * of_bool (\<not> l dvd k) - int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1520 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1521 | lemma modulo_int_unfold: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1522 | "(sgn k * int m) mod (sgn l * int n) = | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1523 | (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then sgn k * int m | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1524 | else if sgn k = sgn l | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1525 | then sgn l * int (m mod n) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1526 | else sgn l * (int (n * of_bool (\<not> n dvd m)) - int (m mod n)))" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1527 | by (auto simp add: modulo_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult | 
| 67118 | 1528 | nat_mult_distrib) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1529 | |
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1530 | instance proof | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1531 | fix k l :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1532 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1533 | by (blast intro: int_sgnE elim: that) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1534 | then show "k div l * l + k mod l = k" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1535 | by (auto simp add: divide_int_unfold modulo_int_unfold algebra_simps dest!: sgn_not_eq_imp) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1536 | (simp_all add: of_nat_mult [symmetric] of_nat_add [symmetric] | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1537 | distrib_left [symmetric] minus_mult_right | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1538 | del: of_nat_mult minus_mult_right [symmetric]) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1539 | qed | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1540 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1541 | end | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1542 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1543 | instantiation int :: unique_euclidean_ring | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1544 | begin | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1545 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1546 | definition euclidean_size_int :: "int \<Rightarrow> nat" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1547 | where [simp]: "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1548 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1549 | definition division_segment_int :: "int \<Rightarrow> int" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1550 | where "division_segment_int k = (if k \<ge> 0 then 1 else - 1)" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1551 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1552 | lemma division_segment_eq_sgn: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1553 | "division_segment k = sgn k" if "k \<noteq> 0" for k :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1554 | using that by (simp add: division_segment_int_def) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1555 | |
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1556 | lemma abs_division_segment [simp]: | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1557 | "\<bar>division_segment k\<bar> = 1" for k :: int | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1558 | by (simp add: division_segment_int_def) | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1559 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1560 | lemma abs_mod_less: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1561 | "\<bar>k mod l\<bar> < \<bar>l\<bar>" if "l \<noteq> 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1562 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1563 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1564 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1565 | with that show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1566 | by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1567 | abs_mult mod_greater_zero_iff_not_dvd) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1568 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1569 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1570 | lemma sgn_mod: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1571 | "sgn (k mod l) = sgn l" if "l \<noteq> 0" "\<not> l dvd k" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1572 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1573 | obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1574 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1575 | with that show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1576 | by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg | 
| 67118 | 1577 | sgn_mult mod_eq_0_iff_dvd) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1578 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1579 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1580 | instance proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1581 | fix k l :: int | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1582 | show "division_segment (k mod l) = division_segment l" if | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1583 | "l \<noteq> 0" and "\<not> l dvd k" | 
| 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1584 | using that by (simp add: division_segment_eq_sgn dvd_eq_mod_eq_0 sgn_mod) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1585 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1586 | fix l q r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1587 | obtain n m and s t | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1588 | where l: "l = sgn s * int n" and q: "q = sgn t * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1589 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1590 | assume \<open>l \<noteq> 0\<close> | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1591 | with l have "s \<noteq> 0" and "n > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1592 | by (simp_all add: sgn_0_0) | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1593 | assume "division_segment r = division_segment l" | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1594 | moreover have "r = sgn r * \<bar>r\<bar>" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1595 | by (simp add: sgn_mult_abs) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1596 | moreover define u where "u = nat \<bar>r\<bar>" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1597 | ultimately have "r = sgn l * int u" | 
| 66838 
17989f6bc7b2
clarified uniqueness criterion for euclidean rings
 haftmann parents: 
66837diff
changeset | 1598 | using division_segment_eq_sgn \<open>l \<noteq> 0\<close> by (cases "r = 0") simp_all | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1599 | with l \<open>n > 0\<close> have r: "r = sgn s * int u" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1600 | by (simp add: sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1601 | assume "euclidean_size r < euclidean_size l" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1602 | with l r \<open>s \<noteq> 0\<close> have "u < n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1603 | by (simp add: abs_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1604 | show "(q * l + r) div l = q" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1605 | proof (cases "q = 0 \<or> r = 0") | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1606 | case True | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1607 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1608 | proof | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1609 | assume "q = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1610 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1611 | using l r \<open>u < n\<close> by (simp add: divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1612 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1613 | assume "r = 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1614 | from \<open>r = 0\<close> have *: "q * l + r = sgn (t * s) * int (n * m)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1615 | using q l by (simp add: ac_simps sgn_mult) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1616 | from \<open>s \<noteq> 0\<close> \<open>n > 0\<close> show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1617 | by (simp only: *, simp only: q l divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1618 | (auto simp add: sgn_mult sgn_0_0 sgn_1_pos) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1619 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1620 | next | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1621 | case False | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1622 | with q r have "t \<noteq> 0" and "m > 0" and "s \<noteq> 0" and "u > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1623 | by (simp_all add: sgn_0_0) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1624 | moreover from \<open>0 < m\<close> \<open>u < n\<close> have "u \<le> m * n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1625 | using mult_le_less_imp_less [of 1 m u n] by simp | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1626 | ultimately have *: "q * l + r = sgn (s * t) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1627 | * int (if t < 0 then m * n - u else m * n + u)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1628 | using l q r | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1629 | by (simp add: sgn_mult algebra_simps of_nat_diff) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1630 | have "(m * n - u) div n = m - 1" if "u > 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1631 | using \<open>0 < m\<close> \<open>u < n\<close> that | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1632 | by (auto intro: div_nat_eqI simp add: algebra_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1633 | moreover have "n dvd m * n - u \<longleftrightarrow> n dvd u" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1634 | using \<open>u \<le> m * n\<close> dvd_diffD1 [of n "m * n" u] | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1635 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1636 | ultimately show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1637 | using \<open>s \<noteq> 0\<close> \<open>m > 0\<close> \<open>u > 0\<close> \<open>u < n\<close> \<open>u \<le> m * n\<close> | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1638 | by (simp only: *, simp only: l q divide_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1639 | (auto simp add: sgn_mult sgn_0_0 sgn_1_pos algebra_simps dest: dvd_imp_le) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1640 | qed | 
| 68536 | 1641 | qed (use mult_le_mono2 [of 1] in \<open>auto simp add: division_segment_int_def not_le zero_less_mult_iff mult_less_0_iff abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib\<close>) | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1642 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1643 | end | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1644 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1645 | lemma pos_mod_bound [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1646 | "k mod l < l" if "l > 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1647 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1648 | obtain m and s where "k = sgn s * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1649 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1650 | moreover from that obtain n where "l = sgn 1 * int n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1651 | by (cases l) auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1652 | ultimately show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1653 | using that by (simp only: modulo_int_unfold) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1654 | (simp add: mod_greater_zero_iff_not_dvd) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1655 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1656 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1657 | lemma pos_mod_sign [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1658 | "0 \<le> k mod l" if "l > 0" for k l :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1659 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1660 | obtain m and s where "k = sgn s * int m" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1661 | by (blast intro: int_sgnE elim: that) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1662 | moreover from that obtain n where "l = sgn 1 * int n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1663 | by (cases l) auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1664 | ultimately show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1665 | using that by (simp only: modulo_int_unfold) simp | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1666 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1667 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66814diff
changeset | 1668 | |
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1669 | subsection \<open>Code generation\<close> | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1670 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1671 | code_identifier | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1672 | code_module Euclidean_Division \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1673 | |
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1674 | end |