| author | webertj | 
| Thu, 28 Oct 2004 19:40:22 +0200 | |
| changeset 15269 | f856f4f3258f | 
| parent 15169 | 2b5da07a0b89 | 
| permissions | -rw-r--r-- | 
| 13482 | 1 | (* Title: HOL/Integ/Equiv.thy | 
| 925 
15539deb6863
new version of HOL/Integ with curried function application
 clasohm parents: diff
changeset | 2 | ID: $Id$ | 
| 2215 | 3 | Authors: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 4 | Copyright 1996 University of Cambridge | |
| 925 
15539deb6863
new version of HOL/Integ with curried function application
 clasohm parents: diff
changeset | 5 | *) | 
| 
15539deb6863
new version of HOL/Integ with curried function application
 clasohm parents: diff
changeset | 6 | |
| 13482 | 7 | header {* Equivalence relations in Higher-Order Set Theory *}
 | 
| 8 | ||
| 15131 | 9 | theory Equiv | 
| 15140 | 10 | imports Relation Finite_Set | 
| 15131 | 11 | begin | 
| 13482 | 12 | |
| 14658 | 13 | subsection {* Equivalence relations *}
 | 
| 13482 | 14 | |
| 15 | locale equiv = | |
| 16 | fixes A and r | |
| 17 | assumes refl: "refl A r" | |
| 18 | and sym: "sym r" | |
| 19 | and trans: "trans r" | |
| 20 | ||
| 21 | text {*
 | |
| 22 |   Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
 | |
| 23 | r = r"}. | |
| 24 | ||
| 25 |   First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
 | |
| 26 | *} | |
| 27 | ||
| 28 | lemma sym_trans_comp_subset: | |
| 29 | "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r" | |
| 30 | by (unfold trans_def sym_def converse_def) blast | |
| 31 | ||
| 32 | lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r" | |
| 33 | by (unfold refl_def) blast | |
| 34 | ||
| 35 | lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r" | |
| 36 | apply (unfold equiv_def) | |
| 37 | apply clarify | |
| 38 | apply (rule equalityI) | |
| 39 | apply (rules intro: sym_trans_comp_subset refl_comp_subset)+ | |
| 40 | done | |
| 41 | ||
| 14658 | 42 | text {* Second half. *}
 | 
| 13482 | 43 | |
| 44 | lemma comp_equivI: | |
| 45 | "r\<inverse> O r = r ==> Domain r = A ==> equiv A r" | |
| 46 | apply (unfold equiv_def refl_def sym_def trans_def) | |
| 47 | apply (erule equalityE) | |
| 48 | apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r") | |
| 49 | apply fast | |
| 50 | apply fast | |
| 51 | done | |
| 52 | ||
| 53 | ||
| 54 | subsection {* Equivalence classes *}
 | |
| 55 | ||
| 56 | lemma equiv_class_subset: | |
| 57 |   "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
 | |
| 58 |   -- {* lemma for the next result *}
 | |
| 59 | by (unfold equiv_def trans_def sym_def) blast | |
| 60 | ||
| 14496 | 61 | theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
 | 
| 13482 | 62 | apply (assumption | rule equalityI equiv_class_subset)+ | 
| 63 | apply (unfold equiv_def sym_def) | |
| 64 | apply blast | |
| 65 | done | |
| 66 | ||
| 67 | lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
 | |
| 68 | by (unfold equiv_def refl_def) blast | |
| 69 | ||
| 70 | lemma subset_equiv_class: | |
| 71 |     "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
 | |
| 72 |   -- {* lemma for the next result *}
 | |
| 73 | by (unfold equiv_def refl_def) blast | |
| 74 | ||
| 75 | lemma eq_equiv_class: | |
| 76 |     "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
 | |
| 77 | by (rules intro: equalityD2 subset_equiv_class) | |
| 78 | ||
| 79 | lemma equiv_class_nondisjoint: | |
| 80 |     "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
 | |
| 81 | by (unfold equiv_def trans_def sym_def) blast | |
| 82 | ||
| 83 | lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A" | |
| 84 | by (unfold equiv_def refl_def) blast | |
| 85 | ||
| 14496 | 86 | theorem equiv_class_eq_iff: | 
| 13482 | 87 |   "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
 | 
| 88 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 89 | ||
| 14512 | 90 | theorem eq_equiv_class_iff: | 
| 13482 | 91 |   "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
 | 
| 92 | by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) | |
| 93 | ||
| 94 | ||
| 95 | subsection {* Quotients *}
 | |
| 96 | ||
| 9392 | 97 | constdefs | 
| 13482 | 98 |   quotient :: "['a set, ('a*'a) set] => 'a set set"  (infixl "'/'/" 90)
 | 
| 99 |   "A//r == \<Union>x \<in> A. {r``{x}}"  -- {* set of equiv classes *}
 | |
| 100 | ||
| 101 | lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
 | |
| 102 | by (unfold quotient_def) blast | |
| 103 | ||
| 104 | lemma quotientE: | |
| 105 |   "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
 | |
| 106 | by (unfold quotient_def) blast | |
| 107 | ||
| 108 | lemma Union_quotient: "equiv A r ==> Union (A//r) = A" | |
| 109 | by (unfold equiv_def refl_def quotient_def) blast | |
| 9392 | 110 | |
| 13482 | 111 | lemma quotient_disj: | 
| 112 |   "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
 | |
| 113 | apply (unfold quotient_def) | |
| 114 | apply clarify | |
| 115 | apply (rule equiv_class_eq) | |
| 116 | apply assumption | |
| 117 | apply (unfold equiv_def trans_def sym_def) | |
| 118 | apply blast | |
| 119 | done | |
| 120 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 121 | lemma quotient_eqI: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 122 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 123 | apply (clarify elim!: quotientE) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 124 | apply (rule equiv_class_eq, assumption) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 125 | apply (unfold equiv_def sym_def trans_def, blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 126 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 127 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 128 | lemma quotient_eq_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 129 | "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 130 | apply (rule iffI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 131 | prefer 2 apply (blast del: equalityI intro: quotient_eqI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 132 | apply (clarify elim!: quotientE) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 133 | apply (unfold equiv_def sym_def trans_def, blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 134 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14259diff
changeset | 135 | |
| 13482 | 136 | |
| 15108 | 137 | lemma quotient_empty [simp]: "{}//r = {}"
 | 
| 138 | by(simp add: quotient_def) | |
| 139 | ||
| 140 | lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
 | |
| 141 | by(simp add: quotient_def) | |
| 142 | ||
| 143 | lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
 | |
| 144 | by(simp add: quotient_def) | |
| 145 | ||
| 146 | ||
| 13482 | 147 | subsection {* Defining unary operations upon equivalence classes *}
 | 
| 148 | ||
| 14658 | 149 | text{*A congruence-preserving function*}
 | 
| 13482 | 150 | locale congruent = | 
| 14512 | 151 | fixes r and f | 
| 14658 | 152 | assumes congruent: "(y,z) \<in> r ==> f y = f z" | 
| 13482 | 153 | |
| 15169 | 154 | syntax | 
| 155 |   RESPECTS ::"['a => 'b, ('a * 'a) set] => bool"  (infixr "respects" 80)
 | |
| 156 | ||
| 157 | translations | |
| 158 | "f respects r" == "congruent r f" | |
| 159 | ||
| 160 | ||
| 14512 | 161 | lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c" | 
| 13482 | 162 |   -- {* lemma required to prove @{text UN_equiv_class} *}
 | 
| 163 | by auto | |
| 164 | ||
| 165 | lemma UN_equiv_class: | |
| 15169 | 166 | "equiv A r ==> f respects r ==> a \<in> A | 
| 14512 | 167 |     ==> (\<Union>x \<in> r``{a}. f x) = f a"
 | 
| 13482 | 168 |   -- {* Conversion rule *}
 | 
| 169 | apply (rule equiv_class_self [THEN UN_constant_eq], assumption+) | |
| 170 | apply (unfold equiv_def congruent_def sym_def) | |
| 171 | apply (blast del: equalityI) | |
| 172 | done | |
| 925 
15539deb6863
new version of HOL/Integ with curried function application
 clasohm parents: diff
changeset | 173 | |
| 13482 | 174 | lemma UN_equiv_class_type: | 
| 15169 | 175 | "equiv A r ==> f respects r ==> X \<in> A//r ==> | 
| 14512 | 176 | (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B" | 
| 13482 | 177 | apply (unfold quotient_def) | 
| 178 | apply clarify | |
| 179 | apply (subst UN_equiv_class) | |
| 180 | apply auto | |
| 181 | done | |
| 182 | ||
| 183 | text {*
 | |
| 184 | Sufficient conditions for injectiveness. Could weaken premises! | |
| 185 |   major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
 | |
| 14512 | 186 | A ==> f y \<in> B"}. | 
| 13482 | 187 | *} | 
| 188 | ||
| 189 | lemma UN_equiv_class_inject: | |
| 15169 | 190 | "equiv A r ==> f respects r ==> | 
| 14512 | 191 | (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r | 
| 192 | ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r) | |
| 13482 | 193 | ==> X = Y" | 
| 194 | apply (unfold quotient_def) | |
| 195 | apply clarify | |
| 196 | apply (rule equiv_class_eq) | |
| 197 | apply assumption | |
| 14512 | 198 | apply (subgoal_tac "f x = f xa") | 
| 13482 | 199 | apply blast | 
| 200 | apply (erule box_equals) | |
| 201 | apply (assumption | rule UN_equiv_class)+ | |
| 202 | done | |
| 203 | ||
| 204 | ||
| 205 | subsection {* Defining binary operations upon equivalence classes *}
 | |
| 206 | ||
| 14658 | 207 | text{*A congruence-preserving function of two arguments*}
 | 
| 13482 | 208 | locale congruent2 = | 
| 14658 | 209 | fixes r1 and r2 and f | 
| 13482 | 210 | assumes congruent2: | 
| 14658 | 211 | "(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2" | 
| 13482 | 212 | |
| 15169 | 213 | text{*Abbreviation for the common case where the relations are identical*}
 | 
| 214 | syntax | |
| 215 |   RESPECTS2 ::"['a => 'b, ('a * 'a) set] => bool"  (infixr "respects2 " 80)
 | |
| 216 | ||
| 217 | translations | |
| 218 | "f respects2 r" => "congruent2 r r f" | |
| 219 | ||
| 13482 | 220 | lemma congruent2_implies_congruent: | 
| 14658 | 221 | "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)" | 
| 13482 | 222 | by (unfold congruent_def congruent2_def equiv_def refl_def) blast | 
| 223 | ||
| 224 | lemma congruent2_implies_congruent_UN: | |
| 14658 | 225 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==> | 
| 226 |     congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
 | |
| 13482 | 227 | apply (unfold congruent_def) | 
| 228 | apply clarify | |
| 229 | apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) | |
| 230 | apply (simp add: UN_equiv_class congruent2_implies_congruent) | |
| 231 | apply (unfold congruent2_def equiv_def refl_def) | |
| 232 | apply (blast del: equalityI) | |
| 233 | done | |
| 234 | ||
| 235 | lemma UN_equiv_class2: | |
| 14658 | 236 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2 | 
| 237 |     ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
 | |
| 13482 | 238 | by (simp add: UN_equiv_class congruent2_implies_congruent | 
| 239 | congruent2_implies_congruent_UN) | |
| 9392 | 240 | |
| 13482 | 241 | lemma UN_equiv_class_type2: | 
| 14658 | 242 | "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f | 
| 243 | ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2 | |
| 244 | ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B) | |
| 14512 | 245 | ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" | 
| 13482 | 246 | apply (unfold quotient_def) | 
| 247 | apply clarify | |
| 248 | apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN | |
| 249 | congruent2_implies_congruent quotientI) | |
| 250 | done | |
| 251 | ||
| 252 | lemma UN_UN_split_split_eq: | |
| 253 | "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = | |
| 254 | (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" | |
| 255 |   -- {* Allows a natural expression of binary operators, *}
 | |
| 256 |   -- {* without explicit calls to @{text split} *}
 | |
| 257 | by auto | |
| 258 | ||
| 259 | lemma congruent2I: | |
| 14658 | 260 | "equiv A1 r1 ==> equiv A2 r2 | 
| 261 | ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w) | |
| 262 | ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z) | |
| 263 | ==> congruent2 r1 r2 f" | |
| 13482 | 264 |   -- {* Suggested by John Harrison -- the two subproofs may be *}
 | 
| 265 |   -- {* \emph{much} simpler than the direct proof. *}
 | |
| 266 | apply (unfold congruent2_def equiv_def refl_def) | |
| 267 | apply clarify | |
| 268 | apply (blast intro: trans) | |
| 269 | done | |
| 270 | ||
| 271 | lemma congruent2_commuteI: | |
| 272 | assumes equivA: "equiv A r" | |
| 14512 | 273 | and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y" | 
| 14658 | 274 | and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z" | 
| 15169 | 275 | shows "f respects2 r" | 
| 14658 | 276 | apply (rule congruent2I [OF equivA equivA]) | 
| 13482 | 277 | apply (rule commute [THEN trans]) | 
| 278 | apply (rule_tac [3] commute [THEN trans, symmetric]) | |
| 279 | apply (rule_tac [5] sym) | |
| 280 | apply (assumption | rule congt | | |
| 281 | erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ | |
| 282 | done | |
| 283 | ||
| 284 | ||
| 285 | subsection {* Cardinality results *}
 | |
| 286 | ||
| 15169 | 287 | text {*Suggested by Florian Kammüller*}
 | 
| 13482 | 288 | |
| 289 | lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)" | |
| 290 |   -- {* recall @{thm equiv_type} *}
 | |
| 291 | apply (rule finite_subset) | |
| 292 | apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) | |
| 293 | apply (unfold quotient_def) | |
| 294 | apply blast | |
| 295 | done | |
| 296 | ||
| 297 | lemma finite_equiv_class: | |
| 298 | "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X" | |
| 299 | apply (unfold quotient_def) | |
| 300 | apply (rule finite_subset) | |
| 301 | prefer 2 apply assumption | |
| 302 | apply blast | |
| 303 | done | |
| 304 | ||
| 305 | lemma equiv_imp_dvd_card: | |
| 306 | "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X | |
| 307 | ==> k dvd card A" | |
| 308 | apply (rule Union_quotient [THEN subst]) | |
| 309 | apply assumption | |
| 310 | apply (rule dvd_partition) | |
| 311 | prefer 4 apply (blast dest: quotient_disj) | |
| 312 | apply (simp_all add: Union_quotient equiv_type finite_quotient) | |
| 313 | done | |
| 314 | ||
| 14259 | 315 | ML | 
| 316 | {*
 | |
| 317 | val UN_UN_split_split_eq = thm "UN_UN_split_split_eq"; | |
| 318 | val UN_constant_eq = thm "UN_constant_eq"; | |
| 319 | val UN_equiv_class = thm "UN_equiv_class"; | |
| 320 | val UN_equiv_class2 = thm "UN_equiv_class2"; | |
| 321 | val UN_equiv_class_inject = thm "UN_equiv_class_inject"; | |
| 322 | val UN_equiv_class_type = thm "UN_equiv_class_type"; | |
| 323 | val UN_equiv_class_type2 = thm "UN_equiv_class_type2"; | |
| 324 | val Union_quotient = thm "Union_quotient"; | |
| 325 | val comp_equivI = thm "comp_equivI"; | |
| 326 | val congruent2I = thm "congruent2I"; | |
| 327 | val congruent2_commuteI = thm "congruent2_commuteI"; | |
| 328 | val congruent2_def = thm "congruent2_def"; | |
| 329 | val congruent2_implies_congruent = thm "congruent2_implies_congruent"; | |
| 330 | val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN"; | |
| 331 | val congruent_def = thm "congruent_def"; | |
| 332 | val eq_equiv_class = thm "eq_equiv_class"; | |
| 333 | val eq_equiv_class_iff = thm "eq_equiv_class_iff"; | |
| 334 | val equiv_class_eq = thm "equiv_class_eq"; | |
| 335 | val equiv_class_eq_iff = thm "equiv_class_eq_iff"; | |
| 336 | val equiv_class_nondisjoint = thm "equiv_class_nondisjoint"; | |
| 337 | val equiv_class_self = thm "equiv_class_self"; | |
| 338 | val equiv_comp_eq = thm "equiv_comp_eq"; | |
| 339 | val equiv_def = thm "equiv_def"; | |
| 340 | val equiv_imp_dvd_card = thm "equiv_imp_dvd_card"; | |
| 341 | val equiv_type = thm "equiv_type"; | |
| 342 | val finite_equiv_class = thm "finite_equiv_class"; | |
| 343 | val finite_quotient = thm "finite_quotient"; | |
| 344 | val quotientE = thm "quotientE"; | |
| 345 | val quotientI = thm "quotientI"; | |
| 346 | val quotient_def = thm "quotient_def"; | |
| 347 | val quotient_disj = thm "quotient_disj"; | |
| 348 | val refl_comp_subset = thm "refl_comp_subset"; | |
| 349 | val subset_equiv_class = thm "subset_equiv_class"; | |
| 350 | val sym_trans_comp_subset = thm "sym_trans_comp_subset"; | |
| 351 | *} | |
| 352 | ||
| 925 
15539deb6863
new version of HOL/Integ with curried function application
 clasohm parents: diff
changeset | 353 | end |