| author | webertj |
| Thu, 28 Oct 2004 19:40:22 +0200 | |
| changeset 15269 | f856f4f3258f |
| parent 15236 | f289e8ba2bb3 |
| permissions | -rw-r--r-- |
| 15178 | 1 |
theory Float = Hyperreal: |
2 |
||
3 |
constdefs |
|
4 |
pow2 :: "int \<Rightarrow> real" |
|
5 |
"pow2 a == if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a))))" |
|
6 |
float :: "int * int \<Rightarrow> real" |
|
7 |
"float x == (real (fst x)) * (pow2 (snd x))" |
|
8 |
||
9 |
lemma pow2_0[simp]: "pow2 0 = 1" |
|
10 |
by (simp add: pow2_def) |
|
11 |
||
12 |
lemma pow2_1[simp]: "pow2 1 = 2" |
|
13 |
by (simp add: pow2_def) |
|
14 |
||
15 |
lemma pow2_neg: "pow2 x = inverse (pow2 (-x))" |
|
16 |
by (simp add: pow2_def) |
|
17 |
||
18 |
lemma pow2_add1: "pow2 (1 + a) = 2 * (pow2 a)" |
|
19 |
proof - |
|
20 |
have h: "! n. nat (2 + int n) - Suc 0 = nat (1 + int n)" by arith |
|
21 |
have g: "! a b. a - -1 = a + (1::int)" by arith |
|
22 |
have pos: "! n. pow2 (int n + 1) = 2 * pow2 (int n)" |
|
23 |
apply (auto, induct_tac n) |
|
24 |
apply (simp_all add: pow2_def) |
|
25 |
apply (rule_tac m1="2" and n1="nat (2 + int na)" in ssubst[OF realpow_num_eq_if]) |
|
26 |
apply (auto simp add: h) |
|
27 |
apply arith |
|
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15178
diff
changeset
|
28 |
done |
| 15178 | 29 |
show ?thesis |
30 |
proof (induct a) |
|
31 |
case (1 n) |
|
32 |
from pos show ?case by (simp add: ring_eq_simps) |
|
33 |
next |
|
34 |
case (2 n) |
|
35 |
show ?case |
|
36 |
apply (auto) |
|
37 |
apply (subst pow2_neg[of "- int n"]) |
|
38 |
apply (subst pow2_neg[of "-1 - int n"]) |
|
39 |
apply (auto simp add: g pos) |
|
40 |
done |
|
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15178
diff
changeset
|
41 |
qed |
| 15178 | 42 |
qed |
43 |
||
44 |
lemma pow2_add: "pow2 (a+b) = (pow2 a) * (pow2 b)" |
|
45 |
proof (induct b) |
|
46 |
case (1 n) |
|
47 |
show ?case |
|
48 |
proof (induct n) |
|
49 |
case 0 |
|
50 |
show ?case by simp |
|
51 |
next |
|
52 |
case (Suc m) |
|
53 |
show ?case by (auto simp add: ring_eq_simps pow2_add1 prems) |
|
54 |
qed |
|
55 |
next |
|
56 |
case (2 n) |
|
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15178
diff
changeset
|
57 |
show ?case |
| 15178 | 58 |
proof (induct n) |
59 |
case 0 |
|
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15178
diff
changeset
|
60 |
show ?case |
| 15178 | 61 |
apply (auto) |
62 |
apply (subst pow2_neg[of "a + -1"]) |
|
63 |
apply (subst pow2_neg[of "-1"]) |
|
64 |
apply (simp) |
|
65 |
apply (insert pow2_add1[of "-a"]) |
|
66 |
apply (simp add: ring_eq_simps) |
|
67 |
apply (subst pow2_neg[of "-a"]) |
|
68 |
apply (simp) |
|
69 |
done |
|
70 |
case (Suc m) |
|
|
15236
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
nipkow
parents:
15178
diff
changeset
|
71 |
have a: "int m - (a + -2) = 1 + (int m - a + 1)" by arith |
| 15178 | 72 |
have b: "int m - -2 = 1 + (int m + 1)" by arith |
73 |
show ?case |
|
74 |
apply (auto) |
|
75 |
apply (subst pow2_neg[of "a + (-2 - int m)"]) |
|
76 |
apply (subst pow2_neg[of "-2 - int m"]) |
|
77 |
apply (auto simp add: ring_eq_simps) |
|
78 |
apply (subst a) |
|
79 |
apply (subst b) |
|
80 |
apply (simp only: pow2_add1) |
|
81 |
apply (subst pow2_neg[of "int m - a + 1"]) |
|
82 |
apply (subst pow2_neg[of "int m + 1"]) |
|
83 |
apply auto |
|
84 |
apply (insert prems) |
|
85 |
apply (auto simp add: ring_eq_simps) |
|
86 |
done |
|
87 |
qed |
|
88 |
qed |
|
89 |
||
90 |
lemma "float (a, e) + float (b, e) = float (a + b, e)" |
|
91 |
by (simp add: float_def ring_eq_simps) |
|
92 |
||
93 |
constdefs |
|
94 |
int_of_real :: "real \<Rightarrow> int" |
|
95 |
"int_of_real x == SOME y. real y = x" |
|
96 |
real_is_int :: "real \<Rightarrow> bool" |
|
97 |
"real_is_int x == ? (u::int). x = real u" |
|
98 |
||
99 |
lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))" |
|
100 |
by (auto simp add: real_is_int_def int_of_real_def) |
|
101 |
||
102 |
lemma float_transfer: "real_is_int ((real a)*(pow2 c)) \<Longrightarrow> float (a, b) = float (int_of_real ((real a)*(pow2 c)), b - c)" |
|
103 |
by (simp add: float_def real_is_int_def2 pow2_add[symmetric]) |
|
104 |
||
105 |
lemma pow2_int: "pow2 (int c) = (2::real)^c" |
|
106 |
by (simp add: pow2_def) |
|
107 |
||
108 |
lemma float_transfer_nat: "float (a, b) = float (a * 2^c, b - int c)" |
|
109 |
by (simp add: float_def pow2_int[symmetric] pow2_add[symmetric]) |
|
110 |
||
111 |
lemma real_is_int_real[simp]: "real_is_int (real (x::int))" |
|
112 |
by (auto simp add: real_is_int_def int_of_real_def) |
|
113 |
||
114 |
lemma int_of_real_real[simp]: "int_of_real (real x) = x" |
|
115 |
by (simp add: int_of_real_def) |
|
116 |
||
117 |
lemma real_int_of_real[simp]: "real_is_int x \<Longrightarrow> real (int_of_real x) = x" |
|
118 |
by (auto simp add: int_of_real_def real_is_int_def) |
|
119 |
||
120 |
lemma real_is_int_add_int_of_real: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)" |
|
121 |
by (auto simp add: int_of_real_def real_is_int_def) |
|
122 |
||
123 |
lemma real_is_int_add[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a+b)" |
|
124 |
apply (subst real_is_int_def2) |
|
125 |
apply (simp add: real_is_int_add_int_of_real real_int_of_real) |
|
126 |
done |
|
127 |
||
128 |
lemma int_of_real_sub: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)" |
|
129 |
by (auto simp add: int_of_real_def real_is_int_def) |
|
130 |
||
131 |
lemma real_is_int_sub[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a-b)" |
|
132 |
apply (subst real_is_int_def2) |
|
133 |
apply (simp add: int_of_real_sub real_int_of_real) |
|
134 |
done |
|
135 |
||
136 |
lemma real_is_int_rep: "real_is_int x \<Longrightarrow> ?! (a::int). real a = x" |
|
137 |
by (auto simp add: real_is_int_def) |
|
138 |
||
139 |
lemma int_of_real_mult: |
|
140 |
assumes "real_is_int a" "real_is_int b" |
|
141 |
shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)" |
|
142 |
proof - |
|
143 |
from prems have a: "?! (a'::int). real a' = a" by (rule_tac real_is_int_rep, auto) |
|
144 |
from prems have b: "?! (b'::int). real b' = b" by (rule_tac real_is_int_rep, auto) |
|
145 |
from a obtain a'::int where a':"a = real a'" by auto |
|
146 |
from b obtain b'::int where b':"b = real b'" by auto |
|
147 |
have r: "real a' * real b' = real (a' * b')" by auto |
|
148 |
show ?thesis |
|
149 |
apply (simp add: a' b') |
|
150 |
apply (subst r) |
|
151 |
apply (simp only: int_of_real_real) |
|
152 |
done |
|
153 |
qed |
|
154 |
||
155 |
lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)" |
|
156 |
apply (subst real_is_int_def2) |
|
157 |
apply (simp add: int_of_real_mult) |
|
158 |
done |
|
159 |
||
160 |
lemma real_is_int_0[simp]: "real_is_int (0::real)" |
|
161 |
by (simp add: real_is_int_def int_of_real_def) |
|
162 |
||
163 |
lemma real_is_int_1[simp]: "real_is_int (1::real)" |
|
164 |
proof - |
|
165 |
have "real_is_int (1::real) = real_is_int(real (1::int))" by auto |
|
166 |
also have "\<dots> = True" by (simp only: real_is_int_real) |
|
167 |
ultimately show ?thesis by auto |
|
168 |
qed |
|
169 |
||
170 |
lemma real_is_int_n1: "real_is_int (-1::real)" |
|
171 |
proof - |
|
172 |
have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto |
|
173 |
also have "\<dots> = True" by (simp only: real_is_int_real) |
|
174 |
ultimately show ?thesis by auto |
|
175 |
qed |
|
176 |
||
177 |
lemma real_is_int_number_of[simp]: "real_is_int ((number_of::bin\<Rightarrow>real) x)" |
|
178 |
proof - |
|
179 |
have neg1: "real_is_int (-1::real)" |
|
180 |
proof - |
|
181 |
have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto |
|
182 |
also have "\<dots> = True" by (simp only: real_is_int_real) |
|
183 |
ultimately show ?thesis by auto |
|
184 |
qed |
|
185 |
||
186 |
{
|
|
187 |
fix x::int |
|
188 |
have "!! y. real_is_int ((number_of::bin\<Rightarrow>real) (Abs_Bin x))" |
|
189 |
apply (simp add: number_of_eq) |
|
190 |
apply (subst Abs_Bin_inverse) |
|
191 |
apply (simp add: Bin_def) |
|
192 |
apply (induct x) |
|
193 |
apply (induct_tac n) |
|
194 |
apply (simp) |
|
195 |
apply (simp) |
|
196 |
apply (induct_tac n) |
|
197 |
apply (simp add: neg1) |
|
198 |
proof - |
|
199 |
fix n :: nat |
|
200 |
assume rn: "(real_is_int (of_int (- (int (Suc n)))))" |
|
201 |
have s: "-(int (Suc (Suc n))) = -1 + - (int (Suc n))" by simp |
|
202 |
show "real_is_int (of_int (- (int (Suc (Suc n)))))" |
|
203 |
apply (simp only: s of_int_add) |
|
204 |
apply (rule real_is_int_add) |
|
205 |
apply (simp add: neg1) |
|
206 |
apply (simp only: rn) |
|
207 |
done |
|
208 |
qed |
|
209 |
} |
|
210 |
note Abs_Bin = this |
|
211 |
{
|
|
212 |
fix x :: bin |
|
213 |
have "? u. x = Abs_Bin u" |
|
214 |
apply (rule exI[where x = "Rep_Bin x"]) |
|
215 |
apply (simp add: Rep_Bin_inverse) |
|
216 |
done |
|
217 |
} |
|
218 |
then obtain u::int where "x = Abs_Bin u" by auto |
|
219 |
with Abs_Bin show ?thesis by auto |
|
220 |
qed |
|
221 |
||
222 |
lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)" |
|
223 |
by (simp add: int_of_real_def) |
|
224 |
||
225 |
lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)" |
|
226 |
proof - |
|
227 |
have 1: "(1::real) = real (1::int)" by auto |
|
228 |
show ?thesis by (simp only: 1 int_of_real_real) |
|
229 |
qed |
|
230 |
||
231 |
lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b" |
|
232 |
proof - |
|
233 |
have "real_is_int (number_of b)" by simp |
|
234 |
then have uu: "?! u::int. number_of b = real u" by (auto simp add: real_is_int_rep) |
|
235 |
then obtain u::int where u:"number_of b = real u" by auto |
|
236 |
have "number_of b = real ((number_of b)::int)" |
|
237 |
by (simp add: number_of_eq real_of_int_def) |
|
238 |
have ub: "number_of b = real ((number_of b)::int)" |
|
239 |
by (simp add: number_of_eq real_of_int_def) |
|
240 |
from uu u ub have unb: "u = number_of b" |
|
241 |
by blast |
|
242 |
have "int_of_real (number_of b) = u" by (simp add: u) |
|
243 |
with unb show ?thesis by simp |
|
244 |
qed |
|
245 |
||
246 |
lemma float_transfer_even: "even a \<Longrightarrow> float (a, b) = float (a div 2, b+1)" |
|
247 |
apply (subst float_transfer[where a="a" and b="b" and c="-1", simplified]) |
|
248 |
apply (simp_all add: pow2_def even_def real_is_int_def ring_eq_simps) |
|
249 |
apply (auto) |
|
250 |
proof - |
|
251 |
fix q::int |
|
252 |
have a:"b - (-1\<Colon>int) = (1\<Colon>int) + b" by arith |
|
253 |
show "(float (q, (b - (-1\<Colon>int)))) = (float (q, ((1\<Colon>int) + b)))" |
|
254 |
by (simp add: a) |
|
255 |
qed |
|
256 |
||
257 |
consts |
|
258 |
norm_float :: "int*int \<Rightarrow> int*int" |
|
259 |
||
260 |
lemma int_div_zdiv: "int (a div b) = (int a) div (int b)" |
|
261 |
apply (subst split_div, auto) |
|
262 |
apply (subst split_zdiv, auto) |
|
263 |
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient) |
|
264 |
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) |
|
265 |
done |
|
266 |
||
267 |
lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)" |
|
268 |
apply (subst split_mod, auto) |
|
269 |
apply (subst split_zmod, auto) |
|
270 |
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia in IntDiv.unique_remainder) |
|
271 |
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) |
|
272 |
done |
|
273 |
||
274 |
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a" |
|
275 |
by arith |
|
276 |
||
277 |
lemma terminating_norm_float: "\<forall>a. (a::int) \<noteq> 0 \<and> even a \<longrightarrow> a \<noteq> 0 \<and> \<bar>a div 2\<bar> < \<bar>a\<bar>" |
|
278 |
apply (auto) |
|
279 |
apply (rule abs_div_2_less) |
|
280 |
apply (auto) |
|
281 |
done |
|
282 |
||
283 |
ML {* simp_depth_limit := 2 *}
|
|
284 |
recdef norm_float "measure (% (a,b). nat (abs a))" |
|
285 |
"norm_float (a,b) = (if (a \<noteq> 0) & (even a) then norm_float (a div 2, b+1) else (if a=0 then (0,0) else (a,b)))" |
|
286 |
(hints simp: terminating_norm_float) |
|
287 |
ML {* simp_depth_limit := 1000 *}
|
|
288 |
||
289 |
||
290 |
lemma norm_float: "float x = float (norm_float x)" |
|
291 |
proof - |
|
292 |
{
|
|
293 |
fix a b :: int |
|
294 |
have norm_float_pair: "float (a,b) = float (norm_float (a,b))" |
|
295 |
proof (induct a b rule: norm_float.induct) |
|
296 |
case (1 u v) |
|
297 |
show ?case |
|
298 |
proof cases |
|
299 |
assume u: "u \<noteq> 0 \<and> even u" |
|
300 |
with prems have ind: "float (u div 2, v + 1) = float (norm_float (u div 2, v + 1))" by auto |
|
301 |
with u have "float (u,v) = float (u div 2, v+1)" by (simp add: float_transfer_even) |
|
302 |
then show ?thesis |
|
303 |
apply (subst norm_float.simps) |
|
304 |
apply (simp add: ind) |
|
305 |
done |
|
306 |
next |
|
307 |
assume "~(u \<noteq> 0 \<and> even u)" |
|
308 |
then show ?thesis |
|
309 |
by (simp add: prems float_def) |
|
310 |
qed |
|
311 |
qed |
|
312 |
} |
|
313 |
note helper = this |
|
314 |
have "? a b. x = (a,b)" by auto |
|
315 |
then obtain a b where "x = (a, b)" by blast |
|
316 |
then show ?thesis by (simp only: helper) |
|
317 |
qed |
|
318 |
||
319 |
lemma pow2_int: "pow2 (int n) = 2^n" |
|
320 |
by (simp add: pow2_def) |
|
321 |
||
322 |
lemma float_add: |
|
323 |
"float (a1, e1) + float (a2, e2) = |
|
324 |
(if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) |
|
325 |
else float (a1*2^(nat (e1-e2))+a2, e2))" |
|
326 |
apply (simp add: float_def ring_eq_simps) |
|
327 |
apply (auto simp add: pow2_int[symmetric] pow2_add[symmetric]) |
|
328 |
done |
|
329 |
||
330 |
lemma float_mult: |
|
331 |
"float (a1, e1) * float (a2, e2) = |
|
332 |
(float (a1 * a2, e1 + e2))" |
|
333 |
by (simp add: float_def pow2_add) |
|
334 |
||
335 |
lemma float_minus: |
|
336 |
"- (float (a,b)) = float (-a, b)" |
|
337 |
by (simp add: float_def) |
|
338 |
||
339 |
lemma zero_less_pow2: |
|
340 |
"0 < pow2 x" |
|
341 |
proof - |
|
342 |
{
|
|
343 |
fix y |
|
344 |
have "0 <= y \<Longrightarrow> 0 < pow2 y" |
|
345 |
by (induct y, induct_tac n, simp_all add: pow2_add) |
|
346 |
} |
|
347 |
note helper=this |
|
348 |
show ?thesis |
|
349 |
apply (case_tac "0 <= x") |
|
350 |
apply (simp add: helper) |
|
351 |
apply (subst pow2_neg) |
|
352 |
apply (simp add: helper) |
|
353 |
done |
|
354 |
qed |
|
355 |
||
356 |
lemma zero_le_float: |
|
357 |
"(0 <= float (a,b)) = (0 <= a)" |
|
358 |
apply (auto simp add: float_def) |
|
359 |
apply (auto simp add: zero_le_mult_iff zero_less_pow2) |
|
360 |
apply (insert zero_less_pow2[of b]) |
|
361 |
apply (simp_all) |
|
362 |
done |
|
363 |
||
364 |
lemma float_abs: |
|
365 |
"abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))" |
|
366 |
apply (auto simp add: abs_if) |
|
367 |
apply (simp_all add: zero_le_float[symmetric, of a b] float_minus) |
|
368 |
done |
|
369 |
||
370 |
lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1" |
|
371 |
by auto |
|
372 |
||
373 |
lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)" |
|
374 |
by simp |
|
375 |
||
376 |
lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)" |
|
377 |
by simp |
|
378 |
||
379 |
lemma mult_left_one: "1 * a = (a::'a::semiring_1)" |
|
380 |
by simp |
|
381 |
||
382 |
lemma mult_right_one: "a * 1 = (a::'a::semiring_1)" |
|
383 |
by simp |
|
384 |
||
385 |
lemma int_pow_0: "(a::int)^(Numeral0) = 1" |
|
386 |
by simp |
|
387 |
||
388 |
lemma int_pow_1: "(a::int)^(Numeral1) = a" |
|
389 |
by simp |
|
390 |
||
391 |
lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0" |
|
392 |
by simp |
|
393 |
||
394 |
lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1" |
|
395 |
by simp |
|
396 |
||
397 |
lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0" |
|
398 |
by simp |
|
399 |
||
400 |
lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1" |
|
401 |
by simp |
|
402 |
||
403 |
lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1" |
|
404 |
by simp |
|
405 |
||
406 |
lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1" |
|
407 |
proof - |
|
408 |
have 1:"((-1)::nat) = 0" |
|
409 |
by simp |
|
410 |
show ?thesis by (simp add: 1) |
|
411 |
qed |
|
412 |
||
413 |
lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)" |
|
414 |
by simp |
|
415 |
||
416 |
lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')" |
|
417 |
by simp |
|
418 |
||
419 |
lemma lift_bool: "x \<Longrightarrow> x=True" |
|
420 |
by simp |
|
421 |
||
422 |
lemma nlift_bool: "~x \<Longrightarrow> x=False" |
|
423 |
by simp |
|
424 |
||
425 |
lemma not_false_eq_true: "(~ False) = True" by simp |
|
426 |
||
427 |
lemma not_true_eq_false: "(~ True) = False" by simp |
|
428 |
||
429 |
||
430 |
lemmas binarith = |
|
431 |
Pls_0_eq Min_1_eq |
|
432 |
bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0 |
|
433 |
bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0 |
|
434 |
bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10 |
|
435 |
bin_add_BIT_11 bin_minus_Pls bin_minus_Min bin_minus_1 |
|
436 |
bin_minus_0 bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 |
|
437 |
bin_add_Pls_right bin_add_Min_right |
|
438 |
||
439 |
thm eq_number_of_eq |
|
440 |
||
441 |
lemma int_eq_number_of_eq: "(((number_of v)::int)=(number_of w)) = iszero ((number_of (bin_add v (bin_minus w)))::int)" |
|
442 |
by simp |
|
443 |
||
444 |
lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)" |
|
445 |
by (simp only: iszero_number_of_Pls) |
|
446 |
||
447 |
lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))" |
|
448 |
by simp |
|
449 |
thm iszero_number_of_1 |
|
450 |
||
451 |
lemma int_iszero_number_of_0: "iszero ((number_of (w BIT False))::int) = iszero ((number_of w)::int)" |
|
452 |
by simp |
|
453 |
||
454 |
lemma int_iszero_number_of_1: "\<not> iszero ((number_of (w BIT True))::int)" |
|
455 |
by simp |
|
456 |
||
457 |
lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (bin_add x (bin_minus y)))::int)" |
|
458 |
by simp |
|
459 |
||
460 |
lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))" |
|
461 |
by simp |
|
462 |
||
463 |
lemma int_neg_number_of_Min: "neg (-1::int)" |
|
464 |
by simp |
|
465 |
||
466 |
lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)" |
|
467 |
by simp |
|
468 |
||
469 |
lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (bin_add y (bin_minus x)))::int))" |
|
470 |
by simp |
|
471 |
||
472 |
lemmas intarithrel = |
|
473 |
(*abs_zero abs_one*) |
|
474 |
int_eq_number_of_eq |
|
475 |
lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_0 |
|
476 |
lift_bool[OF int_iszero_number_of_1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min] |
|
477 |
int_neg_number_of_BIT int_le_number_of_eq |
|
478 |
||
479 |
lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (bin_add v w)" |
|
480 |
by simp |
|
481 |
||
482 |
lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (bin_add v (bin_minus w))" |
|
483 |
by simp |
|
484 |
||
485 |
lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (bin_mult v w)" |
|
486 |
by simp |
|
487 |
||
488 |
lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (bin_minus v)" |
|
489 |
by simp |
|
490 |
||
491 |
lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym |
|
492 |
||
493 |
lemmas natarith = (*zero_eq_Numeral0_nat one_eq_Numeral1_nat*) add_nat_number_of |
|
494 |
diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of |
|
495 |
||
496 |
lemmas powerarith = nat_number_of zpower_number_of_even |
|
497 |
zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] |
|
498 |
zpower_Pls zpower_Min |
|
499 |
||
500 |
lemmas floatarith[simplified norm_0_1] = float_add float_mult float_minus float_abs zero_le_float |
|
501 |
||
502 |
lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false |
|
503 |
||
504 |
(* needed for the verifying code generator *) |
|
505 |
lemmas arith_no_let = arith[simplified Let_def] |
|
506 |
||
507 |
end |
|
508 |