10769
|
1 |
(* Title: TFL/tfl.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Konrad Slind, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1997 University of Cambridge
|
|
5 |
|
|
6 |
First part of main module.
|
|
7 |
*)
|
|
8 |
|
|
9 |
signature PRIM =
|
|
10 |
sig
|
|
11 |
val trace: bool ref
|
|
12 |
type pattern
|
|
13 |
val mk_functional: theory -> term list -> {functional: term, pats: pattern list}
|
|
14 |
val wfrec_definition0: theory -> string -> term -> term -> theory * thm
|
|
15 |
val post_definition: thm list -> theory * (thm * pattern list) ->
|
|
16 |
{theory: theory,
|
|
17 |
rules: thm,
|
|
18 |
rows: int list,
|
|
19 |
TCs: term list list,
|
|
20 |
full_pats_TCs: (term * term list) list}
|
|
21 |
val wfrec_eqns: theory -> xstring -> thm list -> term list ->
|
|
22 |
{WFR: term,
|
|
23 |
SV: term list,
|
|
24 |
proto_def: term,
|
|
25 |
extracta: (thm * term list) list,
|
|
26 |
pats: pattern list}
|
|
27 |
val lazyR_def: theory -> xstring -> thm list -> term list ->
|
|
28 |
{theory: theory,
|
|
29 |
rules: thm,
|
|
30 |
R: term,
|
|
31 |
SV: term list,
|
|
32 |
full_pats_TCs: (term * term list) list,
|
|
33 |
patterns : pattern list}
|
|
34 |
val mk_induction: theory ->
|
|
35 |
{fconst: term, R: term, SV: term list, pat_TCs_list: (term * term list) list} -> thm
|
|
36 |
val postprocess: {wf_tac: tactic, terminator: tactic, simplifier: cterm -> thm} -> theory ->
|
|
37 |
{rules: thm, induction: thm, TCs: term list list} ->
|
|
38 |
{rules: thm, induction: thm, nested_tcs: thm list}
|
|
39 |
end;
|
|
40 |
|
|
41 |
structure Prim: PRIM =
|
|
42 |
struct
|
|
43 |
|
|
44 |
val trace = ref false;
|
|
45 |
|
|
46 |
open BasisLibrary;
|
|
47 |
|
|
48 |
structure R = Rules;
|
|
49 |
structure S = USyntax;
|
|
50 |
structure U = Utils;
|
|
51 |
|
|
52 |
|
|
53 |
fun TFL_ERR func mesg = U.ERR {module = "Tfl", func = func, mesg = mesg};
|
|
54 |
|
|
55 |
val concl = #2 o R.dest_thm;
|
|
56 |
val hyp = #1 o R.dest_thm;
|
|
57 |
|
|
58 |
val list_mk_type = U.end_itlist (curry (op -->));
|
|
59 |
|
|
60 |
fun enumerate xs = ListPair.zip(xs, 0 upto (length xs - 1));
|
|
61 |
|
|
62 |
fun front_last [] = raise TFL_ERR "front_last" "empty list"
|
|
63 |
| front_last [x] = ([],x)
|
|
64 |
| front_last (h::t) =
|
|
65 |
let val (pref,x) = front_last t
|
|
66 |
in
|
|
67 |
(h::pref,x)
|
|
68 |
end;
|
|
69 |
|
|
70 |
|
|
71 |
(*---------------------------------------------------------------------------
|
|
72 |
* The next function is common to pattern-match translation and
|
|
73 |
* proof of completeness of cases for the induction theorem.
|
|
74 |
*
|
|
75 |
* The curried function "gvvariant" returns a function to generate distinct
|
|
76 |
* variables that are guaranteed not to be in names. The names of
|
|
77 |
* the variables go u, v, ..., z, aa, ..., az, ... The returned
|
|
78 |
* function contains embedded refs!
|
|
79 |
*---------------------------------------------------------------------------*)
|
|
80 |
fun gvvariant names =
|
|
81 |
let val slist = ref names
|
|
82 |
val vname = ref "u"
|
|
83 |
fun new() =
|
|
84 |
if !vname mem_string (!slist)
|
|
85 |
then (vname := bump_string (!vname); new())
|
|
86 |
else (slist := !vname :: !slist; !vname)
|
|
87 |
in
|
|
88 |
fn ty => Free(new(), ty)
|
|
89 |
end;
|
|
90 |
|
|
91 |
|
|
92 |
(*---------------------------------------------------------------------------
|
|
93 |
* Used in induction theorem production. This is the simple case of
|
|
94 |
* partitioning up pattern rows by the leading constructor.
|
|
95 |
*---------------------------------------------------------------------------*)
|
|
96 |
fun ipartition gv (constructors,rows) =
|
|
97 |
let fun pfail s = raise TFL_ERR "partition.part" s
|
|
98 |
fun part {constrs = [], rows = [], A} = rev A
|
|
99 |
| part {constrs = [], rows = _::_, A} = pfail"extra cases in defn"
|
|
100 |
| part {constrs = _::_, rows = [], A} = pfail"cases missing in defn"
|
|
101 |
| part {constrs = c::crst, rows, A} =
|
|
102 |
let val (Name,Ty) = dest_Const c
|
|
103 |
val L = binder_types Ty
|
|
104 |
val (in_group, not_in_group) =
|
|
105 |
U.itlist (fn (row as (p::rst, rhs)) =>
|
|
106 |
fn (in_group,not_in_group) =>
|
|
107 |
let val (pc,args) = S.strip_comb p
|
|
108 |
in if (#1(dest_Const pc) = Name)
|
|
109 |
then ((args@rst, rhs)::in_group, not_in_group)
|
|
110 |
else (in_group, row::not_in_group)
|
|
111 |
end) rows ([],[])
|
|
112 |
val col_types = U.take type_of (length L, #1(hd in_group))
|
|
113 |
in
|
|
114 |
part{constrs = crst, rows = not_in_group,
|
|
115 |
A = {constructor = c,
|
|
116 |
new_formals = map gv col_types,
|
|
117 |
group = in_group}::A}
|
|
118 |
end
|
|
119 |
in part{constrs = constructors, rows = rows, A = []}
|
|
120 |
end;
|
|
121 |
|
|
122 |
|
|
123 |
|
|
124 |
(*---------------------------------------------------------------------------
|
|
125 |
* Each pattern carries with it a tag (i,b) where
|
|
126 |
* i is the clause it came from and
|
|
127 |
* b=true indicates that clause was given by the user
|
|
128 |
* (or is an instantiation of a user supplied pattern)
|
|
129 |
* b=false --> i = ~1
|
|
130 |
*---------------------------------------------------------------------------*)
|
|
131 |
|
|
132 |
type pattern = term * (int * bool)
|
|
133 |
|
|
134 |
fun pattern_map f (tm,x) = (f tm, x);
|
|
135 |
|
|
136 |
fun pattern_subst theta = pattern_map (subst_free theta);
|
|
137 |
|
|
138 |
val pat_of = fst;
|
|
139 |
fun row_of_pat x = fst (snd x);
|
|
140 |
fun given x = snd (snd x);
|
|
141 |
|
|
142 |
(*---------------------------------------------------------------------------
|
|
143 |
* Produce an instance of a constructor, plus genvars for its arguments.
|
|
144 |
*---------------------------------------------------------------------------*)
|
|
145 |
fun fresh_constr ty_match colty gv c =
|
|
146 |
let val (_,Ty) = dest_Const c
|
|
147 |
val L = binder_types Ty
|
|
148 |
and ty = body_type Ty
|
|
149 |
val ty_theta = ty_match ty colty
|
|
150 |
val c' = S.inst ty_theta c
|
|
151 |
val gvars = map (S.inst ty_theta o gv) L
|
|
152 |
in (c', gvars)
|
|
153 |
end;
|
|
154 |
|
|
155 |
|
|
156 |
(*---------------------------------------------------------------------------
|
|
157 |
* Goes through a list of rows and picks out the ones beginning with a
|
|
158 |
* pattern with constructor = Name.
|
|
159 |
*---------------------------------------------------------------------------*)
|
|
160 |
fun mk_group Name rows =
|
|
161 |
U.itlist (fn (row as ((prfx, p::rst), rhs)) =>
|
|
162 |
fn (in_group,not_in_group) =>
|
|
163 |
let val (pc,args) = S.strip_comb p
|
|
164 |
in if ((#1 (Term.dest_Const pc) = Name) handle TERM _ => false)
|
|
165 |
then (((prfx,args@rst), rhs)::in_group, not_in_group)
|
|
166 |
else (in_group, row::not_in_group) end)
|
|
167 |
rows ([],[]);
|
|
168 |
|
|
169 |
(*---------------------------------------------------------------------------
|
|
170 |
* Partition the rows. Not efficient: we should use hashing.
|
|
171 |
*---------------------------------------------------------------------------*)
|
|
172 |
fun partition _ _ (_,_,_,[]) = raise TFL_ERR "partition" "no rows"
|
|
173 |
| partition gv ty_match
|
|
174 |
(constructors, colty, res_ty, rows as (((prfx,_),_)::_)) =
|
|
175 |
let val fresh = fresh_constr ty_match colty gv
|
|
176 |
fun part {constrs = [], rows, A} = rev A
|
|
177 |
| part {constrs = c::crst, rows, A} =
|
|
178 |
let val (c',gvars) = fresh c
|
|
179 |
val (Name,Ty) = dest_Const c'
|
|
180 |
val (in_group, not_in_group) = mk_group Name rows
|
|
181 |
val in_group' =
|
|
182 |
if (null in_group) (* Constructor not given *)
|
|
183 |
then [((prfx, #2(fresh c)), (S.ARB res_ty, (~1,false)))]
|
|
184 |
else in_group
|
|
185 |
in
|
|
186 |
part{constrs = crst,
|
|
187 |
rows = not_in_group,
|
|
188 |
A = {constructor = c',
|
|
189 |
new_formals = gvars,
|
|
190 |
group = in_group'}::A}
|
|
191 |
end
|
|
192 |
in part{constrs=constructors, rows=rows, A=[]}
|
|
193 |
end;
|
|
194 |
|
|
195 |
(*---------------------------------------------------------------------------
|
|
196 |
* Misc. routines used in mk_case
|
|
197 |
*---------------------------------------------------------------------------*)
|
|
198 |
|
|
199 |
fun mk_pat (c,l) =
|
|
200 |
let val L = length (binder_types (type_of c))
|
|
201 |
fun build (prfx,tag,plist) =
|
|
202 |
let val args = take (L,plist)
|
|
203 |
and plist' = drop(L,plist)
|
|
204 |
in (prfx,tag,list_comb(c,args)::plist') end
|
|
205 |
in map build l end;
|
|
206 |
|
|
207 |
fun v_to_prfx (prfx, v::pats) = (v::prfx,pats)
|
|
208 |
| v_to_prfx _ = raise TFL_ERR "mk_case" "v_to_prfx";
|
|
209 |
|
|
210 |
fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats)
|
|
211 |
| v_to_pats _ = raise TFL_ERR "mk_case" "v_to_pats";
|
|
212 |
|
|
213 |
|
|
214 |
(*----------------------------------------------------------------------------
|
|
215 |
* Translation of pattern terms into nested case expressions.
|
|
216 |
*
|
|
217 |
* This performs the translation and also builds the full set of patterns.
|
|
218 |
* Thus it supports the construction of induction theorems even when an
|
|
219 |
* incomplete set of patterns is given.
|
|
220 |
*---------------------------------------------------------------------------*)
|
|
221 |
|
|
222 |
fun mk_case ty_info ty_match usednames range_ty =
|
|
223 |
let
|
|
224 |
fun mk_case_fail s = raise TFL_ERR "mk_case" s
|
|
225 |
val fresh_var = gvvariant usednames
|
|
226 |
val divide = partition fresh_var ty_match
|
|
227 |
fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
|
|
228 |
| expand constructors ty (row as ((prfx, p::rst), rhs)) =
|
|
229 |
if (is_Free p)
|
|
230 |
then let val fresh = fresh_constr ty_match ty fresh_var
|
|
231 |
fun expnd (c,gvs) =
|
|
232 |
let val capp = list_comb(c,gvs)
|
|
233 |
in ((prfx, capp::rst), pattern_subst[(p,capp)] rhs)
|
|
234 |
end
|
|
235 |
in map expnd (map fresh constructors) end
|
|
236 |
else [row]
|
|
237 |
fun mk{rows=[],...} = mk_case_fail"no rows"
|
|
238 |
| mk{path=[], rows = ((prfx, []), (tm,tag))::_} = (* Done *)
|
|
239 |
([(prfx,tag,[])], tm)
|
|
240 |
| mk{path=[], rows = _::_} = mk_case_fail"blunder"
|
|
241 |
| mk{path as u::rstp, rows as ((prfx, []), rhs)::rst} =
|
|
242 |
mk{path = path,
|
|
243 |
rows = ((prfx, [fresh_var(type_of u)]), rhs)::rst}
|
|
244 |
| mk{path = u::rstp, rows as ((_, p::_), _)::_} =
|
|
245 |
let val (pat_rectangle,rights) = ListPair.unzip rows
|
|
246 |
val col0 = map(hd o #2) pat_rectangle
|
|
247 |
in
|
|
248 |
if (forall is_Free col0)
|
|
249 |
then let val rights' = map (fn(v,e) => pattern_subst[(v,u)] e)
|
|
250 |
(ListPair.zip (col0, rights))
|
|
251 |
val pat_rectangle' = map v_to_prfx pat_rectangle
|
|
252 |
val (pref_patl,tm) = mk{path = rstp,
|
|
253 |
rows = ListPair.zip (pat_rectangle',
|
|
254 |
rights')}
|
|
255 |
in (map v_to_pats pref_patl, tm)
|
|
256 |
end
|
|
257 |
else
|
|
258 |
let val pty as Type (ty_name,_) = type_of p
|
|
259 |
in
|
|
260 |
case (ty_info ty_name)
|
|
261 |
of None => mk_case_fail("Not a known datatype: "^ty_name)
|
|
262 |
| Some{case_const,constructors} =>
|
|
263 |
let
|
|
264 |
val case_const_name = #1(dest_Const case_const)
|
|
265 |
val nrows = List.concat (map (expand constructors pty) rows)
|
|
266 |
val subproblems = divide(constructors, pty, range_ty, nrows)
|
|
267 |
val groups = map #group subproblems
|
|
268 |
and new_formals = map #new_formals subproblems
|
|
269 |
and constructors' = map #constructor subproblems
|
|
270 |
val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
|
|
271 |
(ListPair.zip (new_formals, groups))
|
|
272 |
val rec_calls = map mk news
|
|
273 |
val (pat_rect,dtrees) = ListPair.unzip rec_calls
|
|
274 |
val case_functions = map S.list_mk_abs
|
|
275 |
(ListPair.zip (new_formals, dtrees))
|
|
276 |
val types = map type_of (case_functions@[u]) @ [range_ty]
|
|
277 |
val case_const' = Const(case_const_name, list_mk_type types)
|
|
278 |
val tree = list_comb(case_const', case_functions@[u])
|
|
279 |
val pat_rect1 = List.concat
|
|
280 |
(ListPair.map mk_pat (constructors', pat_rect))
|
|
281 |
in (pat_rect1,tree)
|
|
282 |
end
|
|
283 |
end end
|
|
284 |
in mk
|
|
285 |
end;
|
|
286 |
|
|
287 |
|
|
288 |
(* Repeated variable occurrences in a pattern are not allowed. *)
|
|
289 |
fun FV_multiset tm =
|
|
290 |
case (S.dest_term tm)
|
|
291 |
of S.VAR{Name,Ty} => [Free(Name,Ty)]
|
|
292 |
| S.CONST _ => []
|
|
293 |
| S.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
|
|
294 |
| S.LAMB _ => raise TFL_ERR "FV_multiset" "lambda";
|
|
295 |
|
|
296 |
fun no_repeat_vars thy pat =
|
|
297 |
let fun check [] = true
|
|
298 |
| check (v::rst) =
|
|
299 |
if mem_term (v,rst) then
|
|
300 |
raise TFL_ERR "no_repeat_vars"
|
|
301 |
(quote (#1 (dest_Free v)) ^
|
|
302 |
" occurs repeatedly in the pattern " ^
|
|
303 |
quote (string_of_cterm (Thry.typecheck thy pat)))
|
|
304 |
else check rst
|
|
305 |
in check (FV_multiset pat)
|
|
306 |
end;
|
|
307 |
|
|
308 |
fun dest_atom (Free p) = p
|
|
309 |
| dest_atom (Const p) = p
|
|
310 |
| dest_atom _ = raise TFL_ERR "dest_atom" "function name not an identifier";
|
|
311 |
|
|
312 |
fun same_name (p,q) = #1(dest_atom p) = #1(dest_atom q);
|
|
313 |
|
|
314 |
local fun mk_functional_err s = raise TFL_ERR "mk_functional" s
|
|
315 |
fun single [_$_] =
|
|
316 |
mk_functional_err "recdef does not allow currying"
|
|
317 |
| single [f] = f
|
|
318 |
| single fs =
|
|
319 |
(*multiple function names?*)
|
|
320 |
if length (gen_distinct same_name fs) < length fs
|
|
321 |
then mk_functional_err
|
|
322 |
"The function being declared appears with multiple types"
|
|
323 |
else mk_functional_err
|
|
324 |
(Int.toString (length fs) ^
|
|
325 |
" distinct function names being declared")
|
|
326 |
in
|
|
327 |
fun mk_functional thy clauses =
|
|
328 |
let val (L,R) = ListPair.unzip (map HOLogic.dest_eq clauses
|
|
329 |
handle TERM _ => raise TFL_ERR "mk_functional"
|
|
330 |
"recursion equations must use the = relation")
|
|
331 |
val (funcs,pats) = ListPair.unzip (map (fn (t$u) =>(t,u)) L)
|
|
332 |
val atom = single (gen_distinct (op aconv) funcs)
|
|
333 |
val (fname,ftype) = dest_atom atom
|
|
334 |
val dummy = map (no_repeat_vars thy) pats
|
|
335 |
val rows = ListPair.zip (map (fn x => ([]:term list,[x])) pats,
|
|
336 |
map (fn (t,i) => (t,(i,true))) (enumerate R))
|
|
337 |
val names = foldr add_term_names (R,[])
|
|
338 |
val atype = type_of(hd pats)
|
|
339 |
and aname = variant names "a"
|
|
340 |
val a = Free(aname,atype)
|
|
341 |
val ty_info = Thry.match_info thy
|
|
342 |
val ty_match = Thry.match_type thy
|
|
343 |
val range_ty = type_of (hd R)
|
|
344 |
val (patts, case_tm) = mk_case ty_info ty_match (aname::names) range_ty
|
|
345 |
{path=[a], rows=rows}
|
|
346 |
val patts1 = map (fn (_,tag,[pat]) => (pat,tag)) patts
|
|
347 |
handle Match => mk_functional_err "error in pattern-match translation"
|
|
348 |
val patts2 = Library.sort (Library.int_ord o Library.pairself row_of_pat) patts1
|
|
349 |
val finals = map row_of_pat patts2
|
|
350 |
val originals = map (row_of_pat o #2) rows
|
|
351 |
val dummy = case (originals\\finals)
|
|
352 |
of [] => ()
|
|
353 |
| L => mk_functional_err
|
|
354 |
("The following clauses are redundant (covered by preceding clauses): " ^
|
|
355 |
commas (map (fn i => Int.toString (i + 1)) L))
|
|
356 |
in {functional = Abs(Sign.base_name fname, ftype,
|
|
357 |
abstract_over (atom,
|
|
358 |
absfree(aname,atype, case_tm))),
|
|
359 |
pats = patts2}
|
|
360 |
end end;
|
|
361 |
|
|
362 |
|
|
363 |
(*----------------------------------------------------------------------------
|
|
364 |
*
|
|
365 |
* PRINCIPLES OF DEFINITION
|
|
366 |
*
|
|
367 |
*---------------------------------------------------------------------------*)
|
|
368 |
|
|
369 |
|
|
370 |
(*For Isabelle, the lhs of a definition must be a constant.*)
|
|
371 |
fun mk_const_def sign (Name, Ty, rhs) =
|
|
372 |
Sign.infer_types sign (K None) (K None) [] false
|
|
373 |
([Const("==",dummyT) $ Const(Name,Ty) $ rhs], propT)
|
|
374 |
|> #1;
|
|
375 |
|
|
376 |
(*Make all TVars available for instantiation by adding a ? to the front*)
|
|
377 |
fun poly_tvars (Type(a,Ts)) = Type(a, map (poly_tvars) Ts)
|
|
378 |
| poly_tvars (TFree (a,sort)) = TVar (("?" ^ a, 0), sort)
|
|
379 |
| poly_tvars (TVar ((a,i),sort)) = TVar (("?" ^ a, i+1), sort);
|
|
380 |
|
|
381 |
local val f_eq_wfrec_R_M =
|
|
382 |
#ant(S.dest_imp(#2(S.strip_forall (concl Thms.WFREC_COROLLARY))))
|
|
383 |
val {lhs=f, rhs} = S.dest_eq f_eq_wfrec_R_M
|
|
384 |
val (fname,_) = dest_Free f
|
|
385 |
val (wfrec,_) = S.strip_comb rhs
|
|
386 |
in
|
|
387 |
fun wfrec_definition0 thy fid R (functional as Abs(Name, Ty, _)) =
|
|
388 |
let val def_name = if Name<>fid then
|
|
389 |
raise TFL_ERR "wfrec_definition0"
|
|
390 |
("Expected a definition of " ^
|
|
391 |
quote fid ^ " but found one of " ^
|
|
392 |
quote Name)
|
|
393 |
else Name ^ "_def"
|
|
394 |
val wfrec_R_M = map_term_types poly_tvars
|
|
395 |
(wfrec $ map_term_types poly_tvars R)
|
|
396 |
$ functional
|
|
397 |
val def_term = mk_const_def (Theory.sign_of thy) (Name, Ty, wfrec_R_M)
|
|
398 |
val (thy', [def]) = PureThy.add_defs_i false [Thm.no_attributes (def_name, def_term)] thy
|
|
399 |
in (thy', def) end;
|
|
400 |
end;
|
|
401 |
|
|
402 |
|
|
403 |
|
|
404 |
(*---------------------------------------------------------------------------
|
|
405 |
* This structure keeps track of congruence rules that aren't derived
|
|
406 |
* from a datatype definition.
|
|
407 |
*---------------------------------------------------------------------------*)
|
|
408 |
fun extraction_thms thy =
|
|
409 |
let val {case_rewrites,case_congs} = Thry.extract_info thy
|
|
410 |
in (case_rewrites, case_congs)
|
|
411 |
end;
|
|
412 |
|
|
413 |
|
|
414 |
(*---------------------------------------------------------------------------
|
|
415 |
* Pair patterns with termination conditions. The full list of patterns for
|
|
416 |
* a definition is merged with the TCs arising from the user-given clauses.
|
|
417 |
* There can be fewer clauses than the full list, if the user omitted some
|
|
418 |
* cases. This routine is used to prepare input for mk_induction.
|
|
419 |
*---------------------------------------------------------------------------*)
|
|
420 |
fun merge full_pats TCs =
|
|
421 |
let fun insert (p,TCs) =
|
|
422 |
let fun insrt ((x as (h,[]))::rst) =
|
|
423 |
if (p aconv h) then (p,TCs)::rst else x::insrt rst
|
|
424 |
| insrt (x::rst) = x::insrt rst
|
|
425 |
| insrt[] = raise TFL_ERR "merge.insert" "pattern not found"
|
|
426 |
in insrt end
|
|
427 |
fun pass ([],ptcl_final) = ptcl_final
|
|
428 |
| pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
|
|
429 |
in
|
|
430 |
pass (TCs, map (fn p => (p,[])) full_pats)
|
|
431 |
end;
|
|
432 |
|
|
433 |
|
|
434 |
fun givens pats = map pat_of (filter given pats);
|
|
435 |
|
|
436 |
fun post_definition meta_tflCongs (theory, (def, pats)) =
|
|
437 |
let val tych = Thry.typecheck theory
|
|
438 |
val f = #lhs(S.dest_eq(concl def))
|
|
439 |
val corollary = R.MATCH_MP Thms.WFREC_COROLLARY def
|
|
440 |
val pats' = filter given pats
|
|
441 |
val given_pats = map pat_of pats'
|
|
442 |
val rows = map row_of_pat pats'
|
|
443 |
val WFR = #ant(S.dest_imp(concl corollary))
|
|
444 |
val R = #Rand(S.dest_comb WFR)
|
|
445 |
val corollary' = R.UNDISCH corollary (* put WF R on assums *)
|
|
446 |
val corollaries = map (fn pat => R.SPEC (tych pat) corollary')
|
|
447 |
given_pats
|
|
448 |
val (case_rewrites,context_congs) = extraction_thms theory
|
|
449 |
val corollaries' = map(rewrite_rule case_rewrites) corollaries
|
|
450 |
val extract = R.CONTEXT_REWRITE_RULE
|
|
451 |
(f, [R], cut_apply, meta_tflCongs@context_congs)
|
|
452 |
val (rules, TCs) = ListPair.unzip (map extract corollaries')
|
|
453 |
val rules0 = map (rewrite_rule [Thms.CUT_DEF]) rules
|
|
454 |
val mk_cond_rule = R.FILTER_DISCH_ALL(not o curry (op aconv) WFR)
|
|
455 |
val rules1 = R.LIST_CONJ(map mk_cond_rule rules0)
|
|
456 |
in
|
|
457 |
{theory = theory,
|
|
458 |
rules = rules1,
|
|
459 |
rows = rows,
|
|
460 |
full_pats_TCs = merge (map pat_of pats) (ListPair.zip (given_pats, TCs)),
|
|
461 |
TCs = TCs}
|
|
462 |
end;
|
|
463 |
|
|
464 |
|
|
465 |
(*---------------------------------------------------------------------------
|
|
466 |
* Perform the extraction without making the definition. Definition and
|
|
467 |
* extraction commute for the non-nested case. (Deferred recdefs)
|
|
468 |
*
|
|
469 |
* The purpose of wfrec_eqns is merely to instantiate the recursion theorem
|
|
470 |
* and extract termination conditions: no definition is made.
|
|
471 |
*---------------------------------------------------------------------------*)
|
|
472 |
|
|
473 |
fun wfrec_eqns thy fid tflCongs eqns =
|
|
474 |
let val {lhs,rhs} = S.dest_eq (hd eqns)
|
|
475 |
val (f,args) = S.strip_comb lhs
|
|
476 |
val (fname,fty) = dest_atom f
|
|
477 |
val (SV,a) = front_last args (* SV = schematic variables *)
|
|
478 |
val g = list_comb(f,SV)
|
|
479 |
val h = Free(fname,type_of g)
|
|
480 |
val eqns1 = map (subst_free[(g,h)]) eqns
|
|
481 |
val {functional as Abs(Name, Ty, _), pats} = mk_functional thy eqns1
|
|
482 |
val given_pats = givens pats
|
|
483 |
(* val f = Free(Name,Ty) *)
|
|
484 |
val Type("fun", [f_dty, f_rty]) = Ty
|
|
485 |
val dummy = if Name<>fid then
|
|
486 |
raise TFL_ERR "wfrec_eqns"
|
|
487 |
("Expected a definition of " ^
|
|
488 |
quote fid ^ " but found one of " ^
|
|
489 |
quote Name)
|
|
490 |
else ()
|
|
491 |
val (case_rewrites,context_congs) = extraction_thms thy
|
|
492 |
val tych = Thry.typecheck thy
|
|
493 |
val WFREC_THM0 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
|
|
494 |
val Const("All",_) $ Abs(Rname,Rtype,_) = concl WFREC_THM0
|
|
495 |
val R = Free (variant (foldr add_term_names (eqns,[])) Rname,
|
|
496 |
Rtype)
|
|
497 |
val WFREC_THM = R.ISPECL [tych R, tych g] WFREC_THM0
|
|
498 |
val ([proto_def, WFR],_) = S.strip_imp(concl WFREC_THM)
|
|
499 |
val dummy =
|
|
500 |
if !trace then
|
|
501 |
writeln ("ORIGINAL PROTO_DEF: " ^
|
|
502 |
Sign.string_of_term (Theory.sign_of thy) proto_def)
|
|
503 |
else ()
|
|
504 |
val R1 = S.rand WFR
|
|
505 |
val corollary' = R.UNDISCH(R.UNDISCH WFREC_THM)
|
|
506 |
val corollaries = map (fn pat => R.SPEC (tych pat) corollary') given_pats
|
|
507 |
val corollaries' = map (rewrite_rule case_rewrites) corollaries
|
|
508 |
fun extract X = R.CONTEXT_REWRITE_RULE
|
|
509 |
(f, R1::SV, cut_apply, tflCongs@context_congs) X
|
|
510 |
in {proto_def = proto_def,
|
|
511 |
SV=SV,
|
|
512 |
WFR=WFR,
|
|
513 |
pats=pats,
|
|
514 |
extracta = map extract corollaries'}
|
|
515 |
end;
|
|
516 |
|
|
517 |
|
|
518 |
(*---------------------------------------------------------------------------
|
|
519 |
* Define the constant after extracting the termination conditions. The
|
|
520 |
* wellfounded relation used in the definition is computed by using the
|
|
521 |
* choice operator on the extracted conditions (plus the condition that
|
|
522 |
* such a relation must be wellfounded).
|
|
523 |
*---------------------------------------------------------------------------*)
|
|
524 |
|
|
525 |
fun lazyR_def thy fid tflCongs eqns =
|
|
526 |
let val {proto_def,WFR,pats,extracta,SV} =
|
|
527 |
wfrec_eqns thy fid tflCongs eqns
|
|
528 |
val R1 = S.rand WFR
|
|
529 |
val f = #lhs(S.dest_eq proto_def)
|
|
530 |
val (extractants,TCl) = ListPair.unzip extracta
|
|
531 |
val dummy = if !trace
|
|
532 |
then (writeln "Extractants = ";
|
|
533 |
prths extractants;
|
|
534 |
())
|
|
535 |
else ()
|
|
536 |
val TCs = foldr (gen_union (op aconv)) (TCl, [])
|
|
537 |
val full_rqt = WFR::TCs
|
|
538 |
val R' = S.mk_select{Bvar=R1, Body=S.list_mk_conj full_rqt}
|
|
539 |
val R'abs = S.rand R'
|
|
540 |
val proto_def' = subst_free[(R1,R')] proto_def
|
|
541 |
val dummy = if !trace then writeln ("proto_def' = " ^
|
|
542 |
Sign.string_of_term
|
|
543 |
(Theory.sign_of thy) proto_def')
|
|
544 |
else ()
|
|
545 |
val {lhs,rhs} = S.dest_eq proto_def'
|
|
546 |
val (c,args) = S.strip_comb lhs
|
|
547 |
val (Name,Ty) = dest_atom c
|
|
548 |
val defn = mk_const_def (Theory.sign_of thy)
|
|
549 |
(Name, Ty, S.list_mk_abs (args,rhs))
|
|
550 |
val (theory, [def0]) =
|
|
551 |
thy
|
|
552 |
|> PureThy.add_defs_i false
|
|
553 |
[Thm.no_attributes (fid ^ "_def", defn)]
|
|
554 |
val def = freezeT def0;
|
|
555 |
val dummy = if !trace then writeln ("DEF = " ^ string_of_thm def)
|
|
556 |
else ()
|
|
557 |
(* val fconst = #lhs(S.dest_eq(concl def)) *)
|
|
558 |
val tych = Thry.typecheck theory
|
|
559 |
val full_rqt_prop = map (Dcterm.mk_prop o tych) full_rqt
|
|
560 |
(*lcp: a lot of object-logic inference to remove*)
|
|
561 |
val baz = R.DISCH_ALL
|
|
562 |
(U.itlist R.DISCH full_rqt_prop
|
|
563 |
(R.LIST_CONJ extractants))
|
|
564 |
val dum = if !trace then writeln ("baz = " ^ string_of_thm baz)
|
|
565 |
else ()
|
|
566 |
val f_free = Free (fid, fastype_of f) (*'cos f is a Const*)
|
|
567 |
val SV' = map tych SV;
|
|
568 |
val SVrefls = map reflexive SV'
|
|
569 |
val def0 = (U.rev_itlist (fn x => fn th => R.rbeta(combination th x))
|
|
570 |
SVrefls def)
|
|
571 |
RS meta_eq_to_obj_eq
|
|
572 |
val def' = R.MP (R.SPEC (tych R') (R.GEN (tych R1) baz)) def0
|
|
573 |
val body_th = R.LIST_CONJ (map R.ASSUME full_rqt_prop)
|
|
574 |
val bar = R.MP (R.ISPECL[tych R'abs, tych R1] Thms.SELECT_AX)
|
|
575 |
body_th
|
|
576 |
in {theory = theory, R=R1, SV=SV,
|
|
577 |
rules = U.rev_itlist (U.C R.MP) (R.CONJUNCTS bar) def',
|
|
578 |
full_pats_TCs = merge (map pat_of pats) (ListPair.zip (givens pats, TCl)),
|
|
579 |
patterns = pats}
|
|
580 |
end;
|
|
581 |
|
|
582 |
|
|
583 |
|
|
584 |
(*----------------------------------------------------------------------------
|
|
585 |
*
|
|
586 |
* INDUCTION THEOREM
|
|
587 |
*
|
|
588 |
*---------------------------------------------------------------------------*)
|
|
589 |
|
|
590 |
|
|
591 |
(*------------------------ Miscellaneous function --------------------------
|
|
592 |
*
|
|
593 |
* [x_1,...,x_n] ?v_1...v_n. M[v_1,...,v_n]
|
|
594 |
* -----------------------------------------------------------
|
|
595 |
* ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
|
|
596 |
* ...
|
|
597 |
* (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
|
|
598 |
*
|
|
599 |
* This function is totally ad hoc. Used in the production of the induction
|
|
600 |
* theorem. The nchotomy theorem can have clauses that look like
|
|
601 |
*
|
|
602 |
* ?v1..vn. z = C vn..v1
|
|
603 |
*
|
|
604 |
* in which the order of quantification is not the order of occurrence of the
|
|
605 |
* quantified variables as arguments to C. Since we have no control over this
|
|
606 |
* aspect of the nchotomy theorem, we make the correspondence explicit by
|
|
607 |
* pairing the incoming new variable with the term it gets beta-reduced into.
|
|
608 |
*---------------------------------------------------------------------------*)
|
|
609 |
|
|
610 |
fun alpha_ex_unroll (xlist, tm) =
|
|
611 |
let val (qvars,body) = S.strip_exists tm
|
|
612 |
val vlist = #2(S.strip_comb (S.rhs body))
|
|
613 |
val plist = ListPair.zip (vlist, xlist)
|
|
614 |
val args = map (fn qv => the (gen_assoc (op aconv) (plist, qv))) qvars
|
|
615 |
handle Library.OPTION => sys_error
|
|
616 |
"TFL fault [alpha_ex_unroll]: no correspondence"
|
|
617 |
fun build ex [] = []
|
|
618 |
| build (_$rex) (v::rst) =
|
|
619 |
let val ex1 = betapply(rex, v)
|
|
620 |
in ex1 :: build ex1 rst
|
|
621 |
end
|
|
622 |
val (nex::exl) = rev (tm::build tm args)
|
|
623 |
in
|
|
624 |
(nex, ListPair.zip (args, rev exl))
|
|
625 |
end;
|
|
626 |
|
|
627 |
|
|
628 |
|
|
629 |
(*----------------------------------------------------------------------------
|
|
630 |
*
|
|
631 |
* PROVING COMPLETENESS OF PATTERNS
|
|
632 |
*
|
|
633 |
*---------------------------------------------------------------------------*)
|
|
634 |
|
|
635 |
fun mk_case ty_info usednames thy =
|
|
636 |
let
|
|
637 |
val divide = ipartition (gvvariant usednames)
|
|
638 |
val tych = Thry.typecheck thy
|
|
639 |
fun tych_binding(x,y) = (tych x, tych y)
|
|
640 |
fun fail s = raise TFL_ERR "mk_case" s
|
|
641 |
fun mk{rows=[],...} = fail"no rows"
|
|
642 |
| mk{path=[], rows = [([], (thm, bindings))]} =
|
|
643 |
R.IT_EXISTS (map tych_binding bindings) thm
|
|
644 |
| mk{path = u::rstp, rows as (p::_, _)::_} =
|
|
645 |
let val (pat_rectangle,rights) = ListPair.unzip rows
|
|
646 |
val col0 = map hd pat_rectangle
|
|
647 |
val pat_rectangle' = map tl pat_rectangle
|
|
648 |
in
|
|
649 |
if (forall is_Free col0) (* column 0 is all variables *)
|
|
650 |
then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[(u,v)]))
|
|
651 |
(ListPair.zip (rights, col0))
|
|
652 |
in mk{path = rstp, rows = ListPair.zip (pat_rectangle', rights')}
|
|
653 |
end
|
|
654 |
else (* column 0 is all constructors *)
|
|
655 |
let val Type (ty_name,_) = type_of p
|
|
656 |
in
|
|
657 |
case (ty_info ty_name)
|
|
658 |
of None => fail("Not a known datatype: "^ty_name)
|
|
659 |
| Some{constructors,nchotomy} =>
|
|
660 |
let val thm' = R.ISPEC (tych u) nchotomy
|
|
661 |
val disjuncts = S.strip_disj (concl thm')
|
|
662 |
val subproblems = divide(constructors, rows)
|
|
663 |
val groups = map #group subproblems
|
|
664 |
and new_formals = map #new_formals subproblems
|
|
665 |
val existentials = ListPair.map alpha_ex_unroll
|
|
666 |
(new_formals, disjuncts)
|
|
667 |
val constraints = map #1 existentials
|
|
668 |
val vexl = map #2 existentials
|
|
669 |
fun expnd tm (pats,(th,b)) = (pats,(R.SUBS[R.ASSUME(tych tm)]th,b))
|
|
670 |
val news = map (fn (nf,rows,c) => {path = nf@rstp,
|
|
671 |
rows = map (expnd c) rows})
|
|
672 |
(U.zip3 new_formals groups constraints)
|
|
673 |
val recursive_thms = map mk news
|
|
674 |
val build_exists = foldr
|
|
675 |
(fn((x,t), th) =>
|
|
676 |
R.CHOOSE (tych x, R.ASSUME (tych t)) th)
|
|
677 |
val thms' = ListPair.map build_exists (vexl, recursive_thms)
|
|
678 |
val same_concls = R.EVEN_ORS thms'
|
|
679 |
in R.DISJ_CASESL thm' same_concls
|
|
680 |
end
|
|
681 |
end end
|
|
682 |
in mk
|
|
683 |
end;
|
|
684 |
|
|
685 |
|
|
686 |
fun complete_cases thy =
|
|
687 |
let val tych = Thry.typecheck thy
|
|
688 |
val ty_info = Thry.induct_info thy
|
|
689 |
in fn pats =>
|
|
690 |
let val names = foldr add_term_names (pats,[])
|
|
691 |
val T = type_of (hd pats)
|
|
692 |
val aname = Term.variant names "a"
|
|
693 |
val vname = Term.variant (aname::names) "v"
|
|
694 |
val a = Free (aname, T)
|
|
695 |
val v = Free (vname, T)
|
|
696 |
val a_eq_v = HOLogic.mk_eq(a,v)
|
|
697 |
val ex_th0 = R.EXISTS (tych (S.mk_exists{Bvar=v,Body=a_eq_v}), tych a)
|
|
698 |
(R.REFL (tych a))
|
|
699 |
val th0 = R.ASSUME (tych a_eq_v)
|
|
700 |
val rows = map (fn x => ([x], (th0,[]))) pats
|
|
701 |
in
|
|
702 |
R.GEN (tych a)
|
|
703 |
(R.RIGHT_ASSOC
|
|
704 |
(R.CHOOSE(tych v, ex_th0)
|
|
705 |
(mk_case ty_info (vname::aname::names)
|
|
706 |
thy {path=[v], rows=rows})))
|
|
707 |
end end;
|
|
708 |
|
|
709 |
|
|
710 |
(*---------------------------------------------------------------------------
|
|
711 |
* Constructing induction hypotheses: one for each recursive call.
|
|
712 |
*
|
|
713 |
* Note. R will never occur as a variable in the ind_clause, because
|
|
714 |
* to do so, it would have to be from a nested definition, and we don't
|
|
715 |
* allow nested defns to have R variable.
|
|
716 |
*
|
|
717 |
* Note. When the context is empty, there can be no local variables.
|
|
718 |
*---------------------------------------------------------------------------*)
|
|
719 |
(*
|
|
720 |
local infix 5 ==>
|
|
721 |
fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
|
|
722 |
in
|
|
723 |
fun build_ih f P (pat,TCs) =
|
|
724 |
let val globals = S.free_vars_lr pat
|
|
725 |
fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
|
|
726 |
fun dest_TC tm =
|
|
727 |
let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
|
|
728 |
val (R,y,_) = S.dest_relation R_y_pat
|
|
729 |
val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
|
|
730 |
in case cntxt
|
|
731 |
of [] => (P_y, (tm,[]))
|
|
732 |
| _ => let
|
|
733 |
val imp = S.list_mk_conj cntxt ==> P_y
|
|
734 |
val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
|
|
735 |
val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
|
|
736 |
in (S.list_mk_forall(locals,imp), (tm,locals)) end
|
|
737 |
end
|
|
738 |
in case TCs
|
|
739 |
of [] => (S.list_mk_forall(globals, P$pat), [])
|
|
740 |
| _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
|
|
741 |
val ind_clause = S.list_mk_conj ihs ==> P$pat
|
|
742 |
in (S.list_mk_forall(globals,ind_clause), TCs_locals)
|
|
743 |
end
|
|
744 |
end
|
|
745 |
end;
|
|
746 |
*)
|
|
747 |
|
|
748 |
local infix 5 ==>
|
|
749 |
fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
|
|
750 |
in
|
|
751 |
fun build_ih f (P,SV) (pat,TCs) =
|
|
752 |
let val pat_vars = S.free_vars_lr pat
|
|
753 |
val globals = pat_vars@SV
|
|
754 |
fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
|
|
755 |
fun dest_TC tm =
|
|
756 |
let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
|
|
757 |
val (R,y,_) = S.dest_relation R_y_pat
|
|
758 |
val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
|
|
759 |
in case cntxt
|
|
760 |
of [] => (P_y, (tm,[]))
|
|
761 |
| _ => let
|
|
762 |
val imp = S.list_mk_conj cntxt ==> P_y
|
|
763 |
val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
|
|
764 |
val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
|
|
765 |
in (S.list_mk_forall(locals,imp), (tm,locals)) end
|
|
766 |
end
|
|
767 |
in case TCs
|
|
768 |
of [] => (S.list_mk_forall(pat_vars, P$pat), [])
|
|
769 |
| _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
|
|
770 |
val ind_clause = S.list_mk_conj ihs ==> P$pat
|
|
771 |
in (S.list_mk_forall(pat_vars,ind_clause), TCs_locals)
|
|
772 |
end
|
|
773 |
end
|
|
774 |
end;
|
|
775 |
|
|
776 |
(*---------------------------------------------------------------------------
|
|
777 |
* This function makes good on the promise made in "build_ih".
|
|
778 |
*
|
|
779 |
* Input is tm = "(!y. R y pat ==> P y) ==> P pat",
|
|
780 |
* TCs = TC_1[pat] ... TC_n[pat]
|
|
781 |
* thm = ih1 /\ ... /\ ih_n |- ih[pat]
|
|
782 |
*---------------------------------------------------------------------------*)
|
|
783 |
fun prove_case f thy (tm,TCs_locals,thm) =
|
|
784 |
let val tych = Thry.typecheck thy
|
|
785 |
val antc = tych(#ant(S.dest_imp tm))
|
|
786 |
val thm' = R.SPEC_ALL thm
|
|
787 |
fun nested tm = is_some (S.find_term (curry (op aconv) f) tm)
|
|
788 |
fun get_cntxt TC = tych(#ant(S.dest_imp(#2(S.strip_forall(concl TC)))))
|
|
789 |
fun mk_ih ((TC,locals),th2,nested) =
|
|
790 |
R.GENL (map tych locals)
|
|
791 |
(if nested then R.DISCH (get_cntxt TC) th2 handle U.ERR _ => th2
|
|
792 |
else if S.is_imp (concl TC) then R.IMP_TRANS TC th2
|
|
793 |
else R.MP th2 TC)
|
|
794 |
in
|
|
795 |
R.DISCH antc
|
|
796 |
(if S.is_imp(concl thm') (* recursive calls in this clause *)
|
|
797 |
then let val th1 = R.ASSUME antc
|
|
798 |
val TCs = map #1 TCs_locals
|
|
799 |
val ylist = map (#2 o S.dest_relation o #2 o S.strip_imp o
|
|
800 |
#2 o S.strip_forall) TCs
|
|
801 |
val TClist = map (fn(TC,lvs) => (R.SPEC_ALL(R.ASSUME(tych TC)),lvs))
|
|
802 |
TCs_locals
|
|
803 |
val th2list = map (U.C R.SPEC th1 o tych) ylist
|
|
804 |
val nlist = map nested TCs
|
|
805 |
val triples = U.zip3 TClist th2list nlist
|
|
806 |
val Pylist = map mk_ih triples
|
|
807 |
in R.MP thm' (R.LIST_CONJ Pylist) end
|
|
808 |
else thm')
|
|
809 |
end;
|
|
810 |
|
|
811 |
|
|
812 |
(*---------------------------------------------------------------------------
|
|
813 |
*
|
|
814 |
* x = (v1,...,vn) |- M[x]
|
|
815 |
* ---------------------------------------------
|
|
816 |
* ?v1 ... vn. x = (v1,...,vn) |- M[x]
|
|
817 |
*
|
|
818 |
*---------------------------------------------------------------------------*)
|
|
819 |
fun LEFT_ABS_VSTRUCT tych thm =
|
|
820 |
let fun CHOOSER v (tm,thm) =
|
|
821 |
let val ex_tm = S.mk_exists{Bvar=v,Body=tm}
|
|
822 |
in (ex_tm, R.CHOOSE(tych v, R.ASSUME (tych ex_tm)) thm)
|
|
823 |
end
|
|
824 |
val [veq] = filter (can S.dest_eq) (#1 (R.dest_thm thm))
|
|
825 |
val {lhs,rhs} = S.dest_eq veq
|
|
826 |
val L = S.free_vars_lr rhs
|
|
827 |
in #2 (U.itlist CHOOSER L (veq,thm)) end;
|
|
828 |
|
|
829 |
|
|
830 |
(*----------------------------------------------------------------------------
|
|
831 |
* Input : f, R, and [(pat1,TCs1),..., (patn,TCsn)]
|
|
832 |
*
|
|
833 |
* Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
|
|
834 |
* recursion induction (Rinduct) by proving the antecedent of Sinduct from
|
|
835 |
* the antecedent of Rinduct.
|
|
836 |
*---------------------------------------------------------------------------*)
|
|
837 |
fun mk_induction thy {fconst, R, SV, pat_TCs_list} =
|
|
838 |
let val tych = Thry.typecheck thy
|
|
839 |
val Sinduction = R.UNDISCH (R.ISPEC (tych R) Thms.WF_INDUCTION_THM)
|
|
840 |
val (pats,TCsl) = ListPair.unzip pat_TCs_list
|
|
841 |
val case_thm = complete_cases thy pats
|
|
842 |
val domain = (type_of o hd) pats
|
|
843 |
val Pname = Term.variant (foldr (foldr add_term_names)
|
|
844 |
(pats::TCsl, [])) "P"
|
|
845 |
val P = Free(Pname, domain --> HOLogic.boolT)
|
|
846 |
val Sinduct = R.SPEC (tych P) Sinduction
|
|
847 |
val Sinduct_assumf = S.rand ((#ant o S.dest_imp o concl) Sinduct)
|
|
848 |
val Rassums_TCl' = map (build_ih fconst (P,SV)) pat_TCs_list
|
|
849 |
val (Rassums,TCl') = ListPair.unzip Rassums_TCl'
|
|
850 |
val Rinduct_assum = R.ASSUME (tych (S.list_mk_conj Rassums))
|
|
851 |
val cases = map (fn pat => betapply (Sinduct_assumf, pat)) pats
|
|
852 |
val tasks = U.zip3 cases TCl' (R.CONJUNCTS Rinduct_assum)
|
|
853 |
val proved_cases = map (prove_case fconst thy) tasks
|
|
854 |
val v = Free (variant (foldr add_term_names (map concl proved_cases, []))
|
|
855 |
"v",
|
|
856 |
domain)
|
|
857 |
val vtyped = tych v
|
|
858 |
val substs = map (R.SYM o R.ASSUME o tych o (curry HOLogic.mk_eq v)) pats
|
|
859 |
val proved_cases1 = ListPair.map (fn (th,th') => R.SUBS[th]th')
|
|
860 |
(substs, proved_cases)
|
|
861 |
val abs_cases = map (LEFT_ABS_VSTRUCT tych) proved_cases1
|
|
862 |
val dant = R.GEN vtyped (R.DISJ_CASESL (R.ISPEC vtyped case_thm) abs_cases)
|
|
863 |
val dc = R.MP Sinduct dant
|
|
864 |
val Parg_ty = type_of(#Bvar(S.dest_forall(concl dc)))
|
|
865 |
val vars = map (gvvariant[Pname]) (S.strip_prod_type Parg_ty)
|
|
866 |
val dc' = U.itlist (R.GEN o tych) vars
|
|
867 |
(R.SPEC (tych(S.mk_vstruct Parg_ty vars)) dc)
|
|
868 |
in
|
|
869 |
R.GEN (tych P) (R.DISCH (tych(concl Rinduct_assum)) dc')
|
|
870 |
end
|
|
871 |
handle U.ERR _ => raise TFL_ERR "mk_induction" "failed derivation";
|
|
872 |
|
|
873 |
|
|
874 |
|
|
875 |
|
|
876 |
(*---------------------------------------------------------------------------
|
|
877 |
*
|
|
878 |
* POST PROCESSING
|
|
879 |
*
|
|
880 |
*---------------------------------------------------------------------------*)
|
|
881 |
|
|
882 |
|
|
883 |
fun simplify_induction thy hth ind =
|
|
884 |
let val tych = Thry.typecheck thy
|
|
885 |
val (asl,_) = R.dest_thm ind
|
|
886 |
val (_,tc_eq_tc') = R.dest_thm hth
|
|
887 |
val tc = S.lhs tc_eq_tc'
|
|
888 |
fun loop [] = ind
|
|
889 |
| loop (asm::rst) =
|
|
890 |
if (can (Thry.match_term thy asm) tc)
|
|
891 |
then R.UNDISCH
|
|
892 |
(R.MATCH_MP
|
|
893 |
(R.MATCH_MP Thms.simp_thm (R.DISCH (tych asm) ind))
|
|
894 |
hth)
|
|
895 |
else loop rst
|
|
896 |
in loop asl
|
|
897 |
end;
|
|
898 |
|
|
899 |
|
|
900 |
(*---------------------------------------------------------------------------
|
|
901 |
* The termination condition is an antecedent to the rule, and an
|
|
902 |
* assumption to the theorem.
|
|
903 |
*---------------------------------------------------------------------------*)
|
|
904 |
fun elim_tc tcthm (rule,induction) =
|
|
905 |
(R.MP rule tcthm, R.PROVE_HYP tcthm induction)
|
|
906 |
|
|
907 |
|
|
908 |
fun postprocess{wf_tac, terminator, simplifier} theory {rules,induction,TCs} =
|
|
909 |
let val tych = Thry.typecheck theory
|
|
910 |
|
|
911 |
(*---------------------------------------------------------------------
|
|
912 |
* Attempt to eliminate WF condition. It's the only assumption of rules
|
|
913 |
*---------------------------------------------------------------------*)
|
|
914 |
val (rules1,induction1) =
|
|
915 |
let val thm = R.prove(tych(HOLogic.mk_Trueprop
|
|
916 |
(hd(#1(R.dest_thm rules)))),
|
|
917 |
wf_tac)
|
|
918 |
in (R.PROVE_HYP thm rules, R.PROVE_HYP thm induction)
|
|
919 |
end handle U.ERR _ => (rules,induction);
|
|
920 |
|
|
921 |
(*----------------------------------------------------------------------
|
|
922 |
* The termination condition (tc) is simplified to |- tc = tc' (there
|
|
923 |
* might not be a change!) and then 3 attempts are made:
|
|
924 |
*
|
|
925 |
* 1. if |- tc = T, then eliminate it with eqT; otherwise,
|
|
926 |
* 2. apply the terminator to tc'. If |- tc' = T then eliminate; else
|
|
927 |
* 3. replace tc by tc' in both the rules and the induction theorem.
|
|
928 |
*---------------------------------------------------------------------*)
|
|
929 |
|
|
930 |
fun print_thms s L =
|
|
931 |
if !trace then writeln (cat_lines (s :: map string_of_thm L))
|
|
932 |
else ();
|
|
933 |
|
|
934 |
fun print_cterms s L =
|
|
935 |
if !trace then writeln (cat_lines (s :: map string_of_cterm L))
|
|
936 |
else ();;
|
|
937 |
|
|
938 |
fun simplify_tc tc (r,ind) =
|
|
939 |
let val tc1 = tych tc
|
|
940 |
val _ = print_cterms "TC before simplification: " [tc1]
|
|
941 |
val tc_eq = simplifier tc1
|
|
942 |
val _ = print_thms "result: " [tc_eq]
|
|
943 |
in
|
|
944 |
elim_tc (R.MATCH_MP Thms.eqT tc_eq) (r,ind)
|
|
945 |
handle U.ERR _ =>
|
|
946 |
(elim_tc (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
|
|
947 |
(R.prove(tych(HOLogic.mk_Trueprop(S.rhs(concl tc_eq))),
|
|
948 |
terminator)))
|
|
949 |
(r,ind)
|
|
950 |
handle U.ERR _ =>
|
|
951 |
(R.UNDISCH(R.MATCH_MP (R.MATCH_MP Thms.simp_thm r) tc_eq),
|
|
952 |
simplify_induction theory tc_eq ind))
|
|
953 |
end
|
|
954 |
|
|
955 |
(*----------------------------------------------------------------------
|
|
956 |
* Nested termination conditions are harder to get at, since they are
|
|
957 |
* left embedded in the body of the function (and in induction
|
|
958 |
* theorem hypotheses). Our "solution" is to simplify them, and try to
|
|
959 |
* prove termination, but leave the application of the resulting theorem
|
|
960 |
* to a higher level. So things go much as in "simplify_tc": the
|
|
961 |
* termination condition (tc) is simplified to |- tc = tc' (there might
|
|
962 |
* not be a change) and then 2 attempts are made:
|
|
963 |
*
|
|
964 |
* 1. if |- tc = T, then return |- tc; otherwise,
|
|
965 |
* 2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
|
|
966 |
* 3. return |- tc = tc'
|
|
967 |
*---------------------------------------------------------------------*)
|
|
968 |
fun simplify_nested_tc tc =
|
|
969 |
let val tc_eq = simplifier (tych (#2 (S.strip_forall tc)))
|
|
970 |
in
|
|
971 |
R.GEN_ALL
|
|
972 |
(R.MATCH_MP Thms.eqT tc_eq
|
|
973 |
handle U.ERR _ =>
|
|
974 |
(R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
|
|
975 |
(R.prove(tych(HOLogic.mk_Trueprop (S.rhs(concl tc_eq))),
|
|
976 |
terminator))
|
|
977 |
handle U.ERR _ => tc_eq))
|
|
978 |
end
|
|
979 |
|
|
980 |
(*-------------------------------------------------------------------
|
|
981 |
* Attempt to simplify the termination conditions in each rule and
|
|
982 |
* in the induction theorem.
|
|
983 |
*-------------------------------------------------------------------*)
|
|
984 |
fun strip_imp tm = if S.is_neg tm then ([],tm) else S.strip_imp tm
|
|
985 |
fun loop ([],extras,R,ind) = (rev R, ind, extras)
|
|
986 |
| loop ((r,ftcs)::rst, nthms, R, ind) =
|
|
987 |
let val tcs = #1(strip_imp (concl r))
|
|
988 |
val extra_tcs = gen_rems (op aconv) (ftcs, tcs)
|
|
989 |
val extra_tc_thms = map simplify_nested_tc extra_tcs
|
|
990 |
val (r1,ind1) = U.rev_itlist simplify_tc tcs (r,ind)
|
|
991 |
val r2 = R.FILTER_DISCH_ALL(not o S.is_WFR) r1
|
|
992 |
in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
|
|
993 |
end
|
|
994 |
val rules_tcs = ListPair.zip (R.CONJUNCTS rules1, TCs)
|
|
995 |
val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
|
|
996 |
in
|
|
997 |
{induction = ind2, rules = R.LIST_CONJ rules2, nested_tcs = extras}
|
|
998 |
end;
|
|
999 |
|
|
1000 |
|
|
1001 |
end;
|