author | paulson |
Tue, 16 Oct 2007 16:18:36 +0200 | |
changeset 25047 | f8712e98756a |
parent 24630 | 351a308ab58d |
child 25481 | aa16cd919dcc |
permissions | -rw-r--r-- |
23164 | 1 |
(* Title: HOL/int_arith1.ML |
2 |
ID: $Id$ |
|
3 |
Authors: Larry Paulson and Tobias Nipkow |
|
4 |
||
5 |
Simprocs and decision procedure for linear arithmetic. |
|
6 |
*) |
|
7 |
||
8 |
(** Misc ML bindings **) |
|
9 |
||
10 |
val succ_Pls = thm "succ_Pls"; |
|
11 |
val succ_Min = thm "succ_Min"; |
|
12 |
val succ_1 = thm "succ_1"; |
|
13 |
val succ_0 = thm "succ_0"; |
|
14 |
||
15 |
val pred_Pls = thm "pred_Pls"; |
|
16 |
val pred_Min = thm "pred_Min"; |
|
17 |
val pred_1 = thm "pred_1"; |
|
18 |
val pred_0 = thm "pred_0"; |
|
19 |
||
20 |
val minus_Pls = thm "minus_Pls"; |
|
21 |
val minus_Min = thm "minus_Min"; |
|
22 |
val minus_1 = thm "minus_1"; |
|
23 |
val minus_0 = thm "minus_0"; |
|
24 |
||
25 |
val add_Pls = thm "add_Pls"; |
|
26 |
val add_Min = thm "add_Min"; |
|
27 |
val add_BIT_11 = thm "add_BIT_11"; |
|
28 |
val add_BIT_10 = thm "add_BIT_10"; |
|
29 |
val add_BIT_0 = thm "add_BIT_0"; |
|
30 |
val add_Pls_right = thm "add_Pls_right"; |
|
31 |
val add_Min_right = thm "add_Min_right"; |
|
32 |
||
33 |
val mult_Pls = thm "mult_Pls"; |
|
34 |
val mult_Min = thm "mult_Min"; |
|
35 |
val mult_num1 = thm "mult_num1"; |
|
36 |
val mult_num0 = thm "mult_num0"; |
|
37 |
||
38 |
val neg_def = thm "neg_def"; |
|
39 |
val iszero_def = thm "iszero_def"; |
|
40 |
||
41 |
val number_of_succ = thm "number_of_succ"; |
|
42 |
val number_of_pred = thm "number_of_pred"; |
|
43 |
val number_of_minus = thm "number_of_minus"; |
|
44 |
val number_of_add = thm "number_of_add"; |
|
45 |
val diff_number_of_eq = thm "diff_number_of_eq"; |
|
46 |
val number_of_mult = thm "number_of_mult"; |
|
47 |
val double_number_of_BIT = thm "double_number_of_BIT"; |
|
48 |
val numeral_0_eq_0 = thm "numeral_0_eq_0"; |
|
49 |
val numeral_1_eq_1 = thm "numeral_1_eq_1"; |
|
50 |
val numeral_m1_eq_minus_1 = thm "numeral_m1_eq_minus_1"; |
|
51 |
val mult_minus1 = thm "mult_minus1"; |
|
52 |
val mult_minus1_right = thm "mult_minus1_right"; |
|
53 |
val minus_number_of_mult = thm "minus_number_of_mult"; |
|
54 |
val zero_less_nat_eq = thm "zero_less_nat_eq"; |
|
55 |
val eq_number_of_eq = thm "eq_number_of_eq"; |
|
56 |
val iszero_number_of_Pls = thm "iszero_number_of_Pls"; |
|
57 |
val nonzero_number_of_Min = thm "nonzero_number_of_Min"; |
|
58 |
val iszero_number_of_BIT = thm "iszero_number_of_BIT"; |
|
59 |
val iszero_number_of_0 = thm "iszero_number_of_0"; |
|
60 |
val iszero_number_of_1 = thm "iszero_number_of_1"; |
|
61 |
val less_number_of_eq_neg = thm "less_number_of_eq_neg"; |
|
62 |
val le_number_of_eq = thm "le_number_of_eq"; |
|
63 |
val not_neg_number_of_Pls = thm "not_neg_number_of_Pls"; |
|
64 |
val neg_number_of_Min = thm "neg_number_of_Min"; |
|
65 |
val neg_number_of_BIT = thm "neg_number_of_BIT"; |
|
66 |
val le_number_of_eq_not_less = thm "le_number_of_eq_not_less"; |
|
67 |
val abs_number_of = thm "abs_number_of"; |
|
68 |
val number_of_reorient = thm "number_of_reorient"; |
|
69 |
val add_number_of_left = thm "add_number_of_left"; |
|
70 |
val mult_number_of_left = thm "mult_number_of_left"; |
|
71 |
val add_number_of_diff1 = thm "add_number_of_diff1"; |
|
72 |
val add_number_of_diff2 = thm "add_number_of_diff2"; |
|
73 |
val less_iff_diff_less_0 = thm "less_iff_diff_less_0"; |
|
74 |
val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0"; |
|
75 |
val le_iff_diff_le_0 = thm "le_iff_diff_le_0"; |
|
76 |
||
77 |
val arith_extra_simps = thms "arith_extra_simps"; |
|
78 |
val arith_simps = thms "arith_simps"; |
|
79 |
val rel_simps = thms "rel_simps"; |
|
80 |
||
81 |
val zless_imp_add1_zle = thm "zless_imp_add1_zle"; |
|
82 |
||
83 |
val combine_common_factor = thm "combine_common_factor"; |
|
84 |
val eq_add_iff1 = thm "eq_add_iff1"; |
|
85 |
val eq_add_iff2 = thm "eq_add_iff2"; |
|
86 |
val less_add_iff1 = thm "less_add_iff1"; |
|
87 |
val less_add_iff2 = thm "less_add_iff2"; |
|
88 |
val le_add_iff1 = thm "le_add_iff1"; |
|
89 |
val le_add_iff2 = thm "le_add_iff2"; |
|
90 |
||
91 |
val arith_special = thms "arith_special"; |
|
92 |
||
93 |
structure Int_Numeral_Base_Simprocs = |
|
94 |
struct |
|
95 |
fun prove_conv tacs ctxt (_: thm list) (t, u) = |
|
96 |
if t aconv u then NONE |
|
97 |
else |
|
98 |
let val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u)) |
|
99 |
in SOME (Goal.prove ctxt [] [] eq (K (EVERY tacs))) end |
|
100 |
||
101 |
fun prove_conv_nohyps tacs sg = prove_conv tacs sg []; |
|
102 |
||
103 |
fun prep_simproc (name, pats, proc) = |
|
104 |
Simplifier.simproc (the_context()) name pats proc; |
|
105 |
||
106 |
fun is_numeral (Const(@{const_name Numeral.number_of}, _) $ w) = true |
|
107 |
| is_numeral _ = false |
|
108 |
||
109 |
fun simplify_meta_eq f_number_of_eq f_eq = |
|
110 |
mk_meta_eq ([f_eq, f_number_of_eq] MRS trans) |
|
111 |
||
112 |
(*reorientation simprules using ==, for the following simproc*) |
|
23881 | 113 |
val meta_zero_reorient = @{thm zero_reorient} RS eq_reflection |
114 |
val meta_one_reorient = @{thm one_reorient} RS eq_reflection |
|
23164 | 115 |
val meta_number_of_reorient = number_of_reorient RS eq_reflection |
116 |
||
117 |
(*reorientation simplification procedure: reorients (polymorphic) |
|
118 |
0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*) |
|
119 |
fun reorient_proc sg _ (_ $ t $ u) = |
|
120 |
case u of |
|
121 |
Const(@{const_name HOL.zero}, _) => NONE |
|
122 |
| Const(@{const_name HOL.one}, _) => NONE |
|
123 |
| Const(@{const_name Numeral.number_of}, _) $ _ => NONE |
|
124 |
| _ => SOME (case t of |
|
125 |
Const(@{const_name HOL.zero}, _) => meta_zero_reorient |
|
126 |
| Const(@{const_name HOL.one}, _) => meta_one_reorient |
|
127 |
| Const(@{const_name Numeral.number_of}, _) $ _ => meta_number_of_reorient) |
|
128 |
||
129 |
val reorient_simproc = |
|
130 |
prep_simproc ("reorient_simproc", ["0=x", "1=x", "number_of w = x"], reorient_proc) |
|
131 |
||
132 |
end; |
|
133 |
||
134 |
||
135 |
Addsimprocs [Int_Numeral_Base_Simprocs.reorient_simproc]; |
|
136 |
||
137 |
||
138 |
structure Int_Numeral_Simprocs = |
|
139 |
struct |
|
140 |
||
141 |
(*Maps 0 to Numeral0 and 1 to Numeral1 so that arithmetic in Int_Numeral_Base_Simprocs |
|
142 |
isn't complicated by the abstract 0 and 1.*) |
|
143 |
val numeral_syms = [numeral_0_eq_0 RS sym, numeral_1_eq_1 RS sym]; |
|
144 |
||
145 |
(** New term ordering so that AC-rewriting brings numerals to the front **) |
|
146 |
||
147 |
(*Order integers by absolute value and then by sign. The standard integer |
|
148 |
ordering is not well-founded.*) |
|
149 |
fun num_ord (i,j) = |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
150 |
(case int_ord (abs i, abs j) of |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
151 |
EQUAL => int_ord (Int.sign i, Int.sign j) |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
152 |
| ord => ord); |
23164 | 153 |
|
154 |
(*This resembles Term.term_ord, but it puts binary numerals before other |
|
155 |
non-atomic terms.*) |
|
156 |
local open Term |
|
157 |
in |
|
158 |
fun numterm_ord (Abs (_, T, t), Abs(_, U, u)) = |
|
159 |
(case numterm_ord (t, u) of EQUAL => typ_ord (T, U) | ord => ord) |
|
160 |
| numterm_ord |
|
161 |
(Const(@{const_name Numeral.number_of}, _) $ v, Const(@{const_name Numeral.number_of}, _) $ w) = |
|
162 |
num_ord (HOLogic.dest_numeral v, HOLogic.dest_numeral w) |
|
163 |
| numterm_ord (Const(@{const_name Numeral.number_of}, _) $ _, _) = LESS |
|
164 |
| numterm_ord (_, Const(@{const_name Numeral.number_of}, _) $ _) = GREATER |
|
165 |
| numterm_ord (t, u) = |
|
166 |
(case int_ord (size_of_term t, size_of_term u) of |
|
167 |
EQUAL => |
|
168 |
let val (f, ts) = strip_comb t and (g, us) = strip_comb u in |
|
169 |
(case hd_ord (f, g) of EQUAL => numterms_ord (ts, us) | ord => ord) |
|
170 |
end |
|
171 |
| ord => ord) |
|
172 |
and numterms_ord (ts, us) = list_ord numterm_ord (ts, us) |
|
173 |
end; |
|
174 |
||
175 |
fun numtermless tu = (numterm_ord tu = LESS); |
|
176 |
||
177 |
(*Defined in this file, but perhaps needed only for Int_Numeral_Base_Simprocs of type nat.*) |
|
178 |
val num_ss = HOL_ss settermless numtermless; |
|
179 |
||
180 |
||
181 |
(** Utilities **) |
|
182 |
||
183 |
fun mk_number T n = HOLogic.number_of_const T $ HOLogic.mk_numeral n; |
|
184 |
||
185 |
fun find_first_numeral past (t::terms) = |
|
186 |
((snd (HOLogic.dest_number t), rev past @ terms) |
|
187 |
handle TERM _ => find_first_numeral (t::past) terms) |
|
188 |
| find_first_numeral past [] = raise TERM("find_first_numeral", []); |
|
189 |
||
190 |
val mk_plus = HOLogic.mk_binop @{const_name HOL.plus}; |
|
191 |
||
192 |
fun mk_minus t = |
|
193 |
let val T = Term.fastype_of t |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
194 |
in Const (@{const_name HOL.uminus}, T --> T) $ t end; |
23164 | 195 |
|
196 |
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*) |
|
197 |
fun mk_sum T [] = mk_number T 0 |
|
198 |
| mk_sum T [t,u] = mk_plus (t, u) |
|
199 |
| mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts); |
|
200 |
||
201 |
(*this version ALWAYS includes a trailing zero*) |
|
202 |
fun long_mk_sum T [] = mk_number T 0 |
|
203 |
| long_mk_sum T (t :: ts) = mk_plus (t, mk_sum T ts); |
|
204 |
||
205 |
val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} Term.dummyT; |
|
206 |
||
207 |
(*decompose additions AND subtractions as a sum*) |
|
208 |
fun dest_summing (pos, Const (@{const_name HOL.plus}, _) $ t $ u, ts) = |
|
209 |
dest_summing (pos, t, dest_summing (pos, u, ts)) |
|
210 |
| dest_summing (pos, Const (@{const_name HOL.minus}, _) $ t $ u, ts) = |
|
211 |
dest_summing (pos, t, dest_summing (not pos, u, ts)) |
|
212 |
| dest_summing (pos, t, ts) = |
|
213 |
if pos then t::ts else mk_minus t :: ts; |
|
214 |
||
215 |
fun dest_sum t = dest_summing (true, t, []); |
|
216 |
||
217 |
val mk_diff = HOLogic.mk_binop @{const_name HOL.minus}; |
|
218 |
val dest_diff = HOLogic.dest_bin @{const_name HOL.minus} Term.dummyT; |
|
219 |
||
220 |
val mk_times = HOLogic.mk_binop @{const_name HOL.times}; |
|
221 |
||
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
222 |
fun one_of T = Const(@{const_name HOL.one},T); |
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
223 |
|
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
224 |
(* build product with trailing 1 rather than Numeral 1 in order to avoid the |
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
225 |
unnecessary restriction to type class number_ring |
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
226 |
which is not required for cancellation of common factors in divisions. |
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
227 |
*) |
23164 | 228 |
fun mk_prod T = |
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
229 |
let val one = one_of T |
23164 | 230 |
fun mk [] = one |
231 |
| mk [t] = t |
|
232 |
| mk (t :: ts) = if t = one then mk ts else mk_times (t, mk ts) |
|
233 |
in mk end; |
|
234 |
||
235 |
(*This version ALWAYS includes a trailing one*) |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
236 |
fun long_mk_prod T [] = one_of T |
23164 | 237 |
| long_mk_prod T (t :: ts) = mk_times (t, mk_prod T ts); |
238 |
||
239 |
val dest_times = HOLogic.dest_bin @{const_name HOL.times} Term.dummyT; |
|
240 |
||
241 |
fun dest_prod t = |
|
242 |
let val (t,u) = dest_times t |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
243 |
in dest_prod t @ dest_prod u end |
23164 | 244 |
handle TERM _ => [t]; |
245 |
||
246 |
(*DON'T do the obvious simplifications; that would create special cases*) |
|
247 |
fun mk_coeff (k, t) = mk_times (mk_number (Term.fastype_of t) k, t); |
|
248 |
||
249 |
(*Express t as a product of (possibly) a numeral with other sorted terms*) |
|
250 |
fun dest_coeff sign (Const (@{const_name HOL.uminus}, _) $ t) = dest_coeff (~sign) t |
|
251 |
| dest_coeff sign t = |
|
252 |
let val ts = sort Term.term_ord (dest_prod t) |
|
253 |
val (n, ts') = find_first_numeral [] ts |
|
254 |
handle TERM _ => (1, ts) |
|
255 |
in (sign*n, mk_prod (Term.fastype_of t) ts') end; |
|
256 |
||
257 |
(*Find first coefficient-term THAT MATCHES u*) |
|
258 |
fun find_first_coeff past u [] = raise TERM("find_first_coeff", []) |
|
259 |
| find_first_coeff past u (t::terms) = |
|
260 |
let val (n,u') = dest_coeff 1 t |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
261 |
in if u aconv u' then (n, rev past @ terms) |
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
262 |
else find_first_coeff (t::past) u terms |
23164 | 263 |
end |
264 |
handle TERM _ => find_first_coeff (t::past) u terms; |
|
265 |
||
266 |
(*Fractions as pairs of ints. Can't use Rat.rat because the representation |
|
267 |
needs to preserve negative values in the denominator.*) |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
268 |
fun mk_frac (p, q) = if q = 0 then raise Div else (p, q); |
23164 | 269 |
|
270 |
(*Don't reduce fractions; sums must be proved by rule add_frac_eq. |
|
271 |
Fractions are reduced later by the cancel_numeral_factor simproc.*) |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
272 |
fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2); |
23164 | 273 |
|
274 |
val mk_divide = HOLogic.mk_binop @{const_name HOL.divide}; |
|
275 |
||
276 |
(*Build term (p / q) * t*) |
|
277 |
fun mk_fcoeff ((p, q), t) = |
|
278 |
let val T = Term.fastype_of t |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
279 |
in mk_times (mk_divide (mk_number T p, mk_number T q), t) end; |
23164 | 280 |
|
281 |
(*Express t as a product of a fraction with other sorted terms*) |
|
282 |
fun dest_fcoeff sign (Const (@{const_name HOL.uminus}, _) $ t) = dest_fcoeff (~sign) t |
|
283 |
| dest_fcoeff sign (Const (@{const_name HOL.divide}, _) $ t $ u) = |
|
284 |
let val (p, t') = dest_coeff sign t |
|
285 |
val (q, u') = dest_coeff 1 u |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
286 |
in (mk_frac (p, q), mk_divide (t', u')) end |
23164 | 287 |
| dest_fcoeff sign t = |
288 |
let val (p, t') = dest_coeff sign t |
|
289 |
val T = Term.fastype_of t |
|
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
290 |
in (mk_frac (p, 1), mk_divide (t', one_of T)) end; |
23164 | 291 |
|
292 |
||
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
293 |
(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1, 1*x, x*1, x/1 *) |
23164 | 294 |
val add_0s = thms "add_0s"; |
23400
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents:
23365
diff
changeset
|
295 |
val mult_1s = thms "mult_1s" @ [thm"mult_1_left", thm"mult_1_right", thm"divide_1"]; |
23164 | 296 |
|
297 |
(*Simplify inverse Numeral1, a/Numeral1*) |
|
298 |
val inverse_1s = [@{thm inverse_numeral_1}]; |
|
299 |
val divide_1s = [@{thm divide_numeral_1}]; |
|
300 |
||
301 |
(*To perform binary arithmetic. The "left" rewriting handles patterns |
|
302 |
created by the Int_Numeral_Base_Simprocs, such as 3 * (5 * x). *) |
|
303 |
val simps = [numeral_0_eq_0 RS sym, numeral_1_eq_1 RS sym, |
|
304 |
add_number_of_left, mult_number_of_left] @ |
|
305 |
arith_simps @ rel_simps; |
|
306 |
||
307 |
(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms |
|
308 |
during re-arrangement*) |
|
309 |
val non_add_simps = |
|
310 |
subtract Thm.eq_thm [add_number_of_left, number_of_add RS sym] simps; |
|
311 |
||
312 |
(*To evaluate binary negations of coefficients*) |
|
313 |
val minus_simps = [numeral_m1_eq_minus_1 RS sym, number_of_minus RS sym, |
|
314 |
minus_1, minus_0, minus_Pls, minus_Min, |
|
315 |
pred_1, pred_0, pred_Pls, pred_Min]; |
|
316 |
||
317 |
(*To let us treat subtraction as addition*) |
|
318 |
val diff_simps = [@{thm diff_minus}, @{thm minus_add_distrib}, @{thm minus_minus}]; |
|
319 |
||
320 |
(*To let us treat division as multiplication*) |
|
321 |
val divide_simps = [@{thm divide_inverse}, @{thm inverse_mult_distrib}, @{thm inverse_inverse_eq}]; |
|
322 |
||
323 |
(*push the unary minus down: - x * y = x * - y *) |
|
324 |
val minus_mult_eq_1_to_2 = |
|
325 |
[@{thm minus_mult_left} RS sym, @{thm minus_mult_right}] MRS trans |> standard; |
|
326 |
||
327 |
(*to extract again any uncancelled minuses*) |
|
328 |
val minus_from_mult_simps = |
|
329 |
[@{thm minus_minus}, @{thm minus_mult_left} RS sym, @{thm minus_mult_right} RS sym]; |
|
330 |
||
331 |
(*combine unary minus with numeric literals, however nested within a product*) |
|
332 |
val mult_minus_simps = |
|
333 |
[@{thm mult_assoc}, @{thm minus_mult_left}, minus_mult_eq_1_to_2]; |
|
334 |
||
335 |
(*Apply the given rewrite (if present) just once*) |
|
336 |
fun trans_tac NONE = all_tac |
|
337 |
| trans_tac (SOME th) = ALLGOALS (rtac (th RS trans)); |
|
338 |
||
339 |
fun simplify_meta_eq rules = |
|
340 |
let val ss0 = HOL_basic_ss addeqcongs [eq_cong2] addsimps rules |
|
341 |
in fn ss => simplify (Simplifier.inherit_context ss ss0) o mk_meta_eq end |
|
342 |
||
343 |
structure CancelNumeralsCommon = |
|
344 |
struct |
|
345 |
val mk_sum = mk_sum |
|
346 |
val dest_sum = dest_sum |
|
347 |
val mk_coeff = mk_coeff |
|
348 |
val dest_coeff = dest_coeff 1 |
|
349 |
val find_first_coeff = find_first_coeff [] |
|
350 |
val trans_tac = fn _ => trans_tac |
|
351 |
||
352 |
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ |
|
23881 | 353 |
diff_simps @ minus_simps @ @{thms add_ac} |
23164 | 354 |
val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps |
23881 | 355 |
val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac} |
23164 | 356 |
fun norm_tac ss = |
357 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
358 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
359 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3)) |
|
360 |
||
361 |
val numeral_simp_ss = HOL_ss addsimps add_0s @ simps |
|
362 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
363 |
val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s) |
|
364 |
end; |
|
365 |
||
366 |
||
367 |
structure EqCancelNumerals = CancelNumeralsFun |
|
368 |
(open CancelNumeralsCommon |
|
369 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv |
|
370 |
val mk_bal = HOLogic.mk_eq |
|
371 |
val dest_bal = HOLogic.dest_bin "op =" Term.dummyT |
|
372 |
val bal_add1 = eq_add_iff1 RS trans |
|
373 |
val bal_add2 = eq_add_iff2 RS trans |
|
374 |
); |
|
375 |
||
376 |
structure LessCancelNumerals = CancelNumeralsFun |
|
377 |
(open CancelNumeralsCommon |
|
378 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv |
|
23881 | 379 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less} |
380 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} Term.dummyT |
|
23164 | 381 |
val bal_add1 = less_add_iff1 RS trans |
382 |
val bal_add2 = less_add_iff2 RS trans |
|
383 |
); |
|
384 |
||
385 |
structure LeCancelNumerals = CancelNumeralsFun |
|
386 |
(open CancelNumeralsCommon |
|
387 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv |
|
23881 | 388 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq} |
389 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} Term.dummyT |
|
23164 | 390 |
val bal_add1 = le_add_iff1 RS trans |
391 |
val bal_add2 = le_add_iff2 RS trans |
|
392 |
); |
|
393 |
||
394 |
val cancel_numerals = |
|
395 |
map Int_Numeral_Base_Simprocs.prep_simproc |
|
396 |
[("inteq_cancel_numerals", |
|
397 |
["(l::'a::number_ring) + m = n", |
|
398 |
"(l::'a::number_ring) = m + n", |
|
399 |
"(l::'a::number_ring) - m = n", |
|
400 |
"(l::'a::number_ring) = m - n", |
|
401 |
"(l::'a::number_ring) * m = n", |
|
402 |
"(l::'a::number_ring) = m * n"], |
|
403 |
K EqCancelNumerals.proc), |
|
404 |
("intless_cancel_numerals", |
|
405 |
["(l::'a::{ordered_idom,number_ring}) + m < n", |
|
406 |
"(l::'a::{ordered_idom,number_ring}) < m + n", |
|
407 |
"(l::'a::{ordered_idom,number_ring}) - m < n", |
|
408 |
"(l::'a::{ordered_idom,number_ring}) < m - n", |
|
409 |
"(l::'a::{ordered_idom,number_ring}) * m < n", |
|
410 |
"(l::'a::{ordered_idom,number_ring}) < m * n"], |
|
411 |
K LessCancelNumerals.proc), |
|
412 |
("intle_cancel_numerals", |
|
413 |
["(l::'a::{ordered_idom,number_ring}) + m <= n", |
|
414 |
"(l::'a::{ordered_idom,number_ring}) <= m + n", |
|
415 |
"(l::'a::{ordered_idom,number_ring}) - m <= n", |
|
416 |
"(l::'a::{ordered_idom,number_ring}) <= m - n", |
|
417 |
"(l::'a::{ordered_idom,number_ring}) * m <= n", |
|
418 |
"(l::'a::{ordered_idom,number_ring}) <= m * n"], |
|
419 |
K LeCancelNumerals.proc)]; |
|
420 |
||
421 |
||
422 |
structure CombineNumeralsData = |
|
423 |
struct |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
424 |
type coeff = int |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
425 |
val iszero = (fn x => x = 0) |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
426 |
val add = op + |
23164 | 427 |
val mk_sum = long_mk_sum (*to work for e.g. 2*x + 3*x *) |
428 |
val dest_sum = dest_sum |
|
429 |
val mk_coeff = mk_coeff |
|
430 |
val dest_coeff = dest_coeff 1 |
|
431 |
val left_distrib = combine_common_factor RS trans |
|
432 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps |
|
433 |
val trans_tac = fn _ => trans_tac |
|
434 |
||
435 |
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ |
|
23881 | 436 |
diff_simps @ minus_simps @ @{thms add_ac} |
23164 | 437 |
val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps |
23881 | 438 |
val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac} |
23164 | 439 |
fun norm_tac ss = |
440 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
441 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
442 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3)) |
|
443 |
||
444 |
val numeral_simp_ss = HOL_ss addsimps add_0s @ simps |
|
445 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
446 |
val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s) |
|
447 |
end; |
|
448 |
||
449 |
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData); |
|
450 |
||
451 |
(*Version for fields, where coefficients can be fractions*) |
|
452 |
structure FieldCombineNumeralsData = |
|
453 |
struct |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
454 |
type coeff = int * int |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
24266
diff
changeset
|
455 |
val iszero = (fn (p, q) => p = 0) |
23164 | 456 |
val add = add_frac |
457 |
val mk_sum = long_mk_sum |
|
458 |
val dest_sum = dest_sum |
|
459 |
val mk_coeff = mk_fcoeff |
|
460 |
val dest_coeff = dest_fcoeff 1 |
|
461 |
val left_distrib = combine_common_factor RS trans |
|
462 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps |
|
463 |
val trans_tac = fn _ => trans_tac |
|
464 |
||
465 |
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ |
|
23881 | 466 |
inverse_1s @ divide_simps @ diff_simps @ minus_simps @ @{thms add_ac} |
23164 | 467 |
val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps |
23881 | 468 |
val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac} |
23164 | 469 |
fun norm_tac ss = |
470 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
471 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
472 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3)) |
|
473 |
||
474 |
val numeral_simp_ss = HOL_ss addsimps add_0s @ simps @ [@{thm add_frac_eq}] |
|
475 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
476 |
val simplify_meta_eq = simplify_meta_eq (add_0s @ mult_1s @ divide_1s) |
|
477 |
end; |
|
478 |
||
479 |
structure FieldCombineNumerals = CombineNumeralsFun(FieldCombineNumeralsData); |
|
480 |
||
481 |
val combine_numerals = |
|
482 |
Int_Numeral_Base_Simprocs.prep_simproc |
|
483 |
("int_combine_numerals", |
|
484 |
["(i::'a::number_ring) + j", "(i::'a::number_ring) - j"], |
|
485 |
K CombineNumerals.proc); |
|
486 |
||
487 |
val field_combine_numerals = |
|
488 |
Int_Numeral_Base_Simprocs.prep_simproc |
|
489 |
("field_combine_numerals", |
|
490 |
["(i::'a::{number_ring,field,division_by_zero}) + j", |
|
491 |
"(i::'a::{number_ring,field,division_by_zero}) - j"], |
|
492 |
K FieldCombineNumerals.proc); |
|
493 |
||
494 |
end; |
|
495 |
||
496 |
Addsimprocs Int_Numeral_Simprocs.cancel_numerals; |
|
497 |
Addsimprocs [Int_Numeral_Simprocs.combine_numerals]; |
|
498 |
Addsimprocs [Int_Numeral_Simprocs.field_combine_numerals]; |
|
499 |
||
500 |
(*examples: |
|
501 |
print_depth 22; |
|
502 |
set timing; |
|
503 |
set trace_simp; |
|
504 |
fun test s = (Goal s, by (Simp_tac 1)); |
|
505 |
||
506 |
test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)"; |
|
507 |
||
508 |
test "2*u = (u::int)"; |
|
509 |
test "(i + j + 12 + (k::int)) - 15 = y"; |
|
510 |
test "(i + j + 12 + (k::int)) - 5 = y"; |
|
511 |
||
512 |
test "y - b < (b::int)"; |
|
513 |
test "y - (3*b + c) < (b::int) - 2*c"; |
|
514 |
||
515 |
test "(2*x - (u*v) + y) - v*3*u = (w::int)"; |
|
516 |
test "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)"; |
|
517 |
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)"; |
|
518 |
test "u*v - (x*u*v + (u*v)*4 + y) = (w::int)"; |
|
519 |
||
520 |
test "(i + j + 12 + (k::int)) = u + 15 + y"; |
|
521 |
test "(i + j*2 + 12 + (k::int)) = j + 5 + y"; |
|
522 |
||
523 |
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)"; |
|
524 |
||
525 |
test "a + -(b+c) + b = (d::int)"; |
|
526 |
test "a + -(b+c) - b = (d::int)"; |
|
527 |
||
528 |
(*negative numerals*) |
|
529 |
test "(i + j + -2 + (k::int)) - (u + 5 + y) = zz"; |
|
530 |
test "(i + j + -3 + (k::int)) < u + 5 + y"; |
|
531 |
test "(i + j + 3 + (k::int)) < u + -6 + y"; |
|
532 |
test "(i + j + -12 + (k::int)) - 15 = y"; |
|
533 |
test "(i + j + 12 + (k::int)) - -15 = y"; |
|
534 |
test "(i + j + -12 + (k::int)) - -15 = y"; |
|
535 |
*) |
|
536 |
||
537 |
||
538 |
(** Constant folding for multiplication in semirings **) |
|
539 |
||
540 |
(*We do not need folding for addition: combine_numerals does the same thing*) |
|
541 |
||
542 |
structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA = |
|
543 |
struct |
|
23881 | 544 |
val assoc_ss = HOL_ss addsimps @{thms mult_ac} |
23164 | 545 |
val eq_reflection = eq_reflection |
546 |
end; |
|
547 |
||
548 |
structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data); |
|
549 |
||
550 |
val assoc_fold_simproc = |
|
551 |
Int_Numeral_Base_Simprocs.prep_simproc |
|
552 |
("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"], |
|
553 |
K Semiring_Times_Assoc.proc); |
|
554 |
||
555 |
Addsimprocs [assoc_fold_simproc]; |
|
556 |
||
557 |
||
558 |
||
559 |
||
560 |
(*** decision procedure for linear arithmetic ***) |
|
561 |
||
562 |
(*---------------------------------------------------------------------------*) |
|
563 |
(* Linear arithmetic *) |
|
564 |
(*---------------------------------------------------------------------------*) |
|
565 |
||
566 |
(* |
|
567 |
Instantiation of the generic linear arithmetic package for int. |
|
568 |
*) |
|
569 |
||
570 |
(* Update parameters of arithmetic prover *) |
|
571 |
local |
|
572 |
||
24266
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
573 |
(* reduce contradictory =/</<= to False *) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
574 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
575 |
(* Evaluation of terms of the form "m R n" where R is one of "=", "<=" or "<", |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
576 |
and m and n are ground terms over rings (roughly speaking). |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
577 |
That is, m and n consist only of 1s combined with "+", "-" and "*". |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
578 |
*) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
579 |
local |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
580 |
val zeroth = (symmetric o mk_meta_eq) @{thm of_int_0}; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
581 |
val lhss0 = [@{cpat "0::?'a::ring"}]; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
582 |
fun proc0 phi ss ct = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
583 |
let val T = ctyp_of_term ct |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
584 |
in if typ_of T = @{typ int} then NONE else |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
585 |
SOME (instantiate' [SOME T] [] zeroth) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
586 |
end; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
587 |
val zero_to_of_int_zero_simproc = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
588 |
make_simproc {lhss = lhss0, name = "zero_to_of_int_zero_simproc", |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
589 |
proc = proc0, identifier = []}; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
590 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
591 |
val oneth = (symmetric o mk_meta_eq) @{thm of_int_1}; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
592 |
val lhss1 = [@{cpat "1::?'a::ring_1"}]; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
593 |
fun proc1 phi ss ct = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
594 |
let val T = ctyp_of_term ct |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
595 |
in if typ_of T = @{typ int} then NONE else |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
596 |
SOME (instantiate' [SOME T] [] oneth) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
597 |
end; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
598 |
val one_to_of_int_one_simproc = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
599 |
make_simproc {lhss = lhss1, name = "one_to_of_int_one_simproc", |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
600 |
proc = proc1, identifier = []}; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
601 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
602 |
val allowed_consts = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
603 |
[@{const_name "op ="}, @{const_name "HOL.times"}, @{const_name "HOL.uminus"}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
604 |
@{const_name "HOL.minus"}, @{const_name "HOL.plus"}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
605 |
@{const_name "HOL.zero"}, @{const_name "HOL.one"}, @{const_name "HOL.less"}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
606 |
@{const_name "HOL.less_eq"}]; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
607 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
608 |
fun check t = case t of |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
609 |
Const(s,t) => if s = @{const_name "HOL.one"} then not (t = @{typ int}) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
610 |
else s mem_string allowed_consts |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
611 |
| a$b => check a andalso check b |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
612 |
| _ => false; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
613 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
614 |
val conv = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
615 |
Simplifier.rewrite |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
616 |
(HOL_basic_ss addsimps |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
617 |
((map (fn th => th RS sym) [@{thm of_int_add}, @{thm of_int_mult}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
618 |
@{thm of_int_diff}, @{thm of_int_minus}])@ |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
619 |
[@{thm of_int_less_iff}, @{thm of_int_le_iff}, @{thm of_int_eq_iff}]) |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
620 |
addsimprocs [zero_to_of_int_zero_simproc,one_to_of_int_one_simproc]); |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
621 |
|
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
622 |
fun sproc phi ss ct = if check (term_of ct) then SOME (conv ct) else NONE |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
623 |
val lhss' = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
624 |
[@{cpat "(?x::?'a::ring_char_0) = (?y::?'a)"}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
625 |
@{cpat "(?x::?'a::ordered_idom) < (?y::?'a)"}, |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
626 |
@{cpat "(?x::?'a::ordered_idom) <= (?y::?'a)"}] |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
627 |
in |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
628 |
val zero_one_idom_simproc = |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
629 |
make_simproc {lhss = lhss' , name = "zero_one_idom_simproc", |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
630 |
proc = sproc, identifier = []} |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
631 |
end; |
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
632 |
|
23164 | 633 |
val add_rules = |
634 |
simp_thms @ arith_simps @ rel_simps @ arith_special @ |
|
635 |
[@{thm neg_le_iff_le}, @{thm numeral_0_eq_0}, @{thm numeral_1_eq_1}, |
|
636 |
@{thm minus_zero}, @{thm diff_minus}, @{thm left_minus}, @{thm right_minus}, |
|
637 |
@{thm mult_zero_left}, @{thm mult_zero_right}, @{thm mult_num1}, @{thm mult_1_right}, |
|
638 |
@{thm minus_mult_left} RS sym, @{thm minus_mult_right} RS sym, |
|
639 |
@{thm minus_add_distrib}, @{thm minus_minus}, @{thm mult_assoc}, |
|
23365 | 640 |
@{thm of_nat_0}, @{thm of_nat_1}, @{thm of_nat_Suc}, @{thm of_nat_add}, |
641 |
@{thm of_nat_mult}, @{thm of_int_0}, @{thm of_int_1}, @{thm of_int_add}, |
|
642 |
@{thm of_int_mult}] |
|
23164 | 643 |
|
23365 | 644 |
val nat_inj_thms = [@{thm zle_int} RS iffD2, @{thm int_int_eq} RS iffD2] |
23164 | 645 |
|
24266
bdb48fd8fbdd
extended linear arith capabilities with code by Amine
nipkow
parents:
24196
diff
changeset
|
646 |
val Int_Numeral_Base_Simprocs = assoc_fold_simproc :: zero_one_idom_simproc |
23164 | 647 |
:: Int_Numeral_Simprocs.combine_numerals |
648 |
:: Int_Numeral_Simprocs.cancel_numerals; |
|
649 |
||
650 |
in |
|
651 |
||
652 |
val int_arith_setup = |
|
24093 | 653 |
LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} => |
23164 | 654 |
{add_mono_thms = add_mono_thms, |
655 |
mult_mono_thms = @{thm mult_strict_left_mono} :: @{thm mult_left_mono} :: mult_mono_thms, |
|
656 |
inj_thms = nat_inj_thms @ inj_thms, |
|
657 |
lessD = lessD @ [zless_imp_add1_zle], |
|
658 |
neqE = neqE, |
|
659 |
simpset = simpset addsimps add_rules |
|
660 |
addsimprocs Int_Numeral_Base_Simprocs |
|
661 |
addcongs [if_weak_cong]}) #> |
|
24196 | 662 |
arith_inj_const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT) #> |
23164 | 663 |
arith_discrete "IntDef.int" |
664 |
||
665 |
end; |
|
666 |
||
667 |
val fast_int_arith_simproc = |
|
668 |
Simplifier.simproc @{theory} |
|
669 |
"fast_int_arith" |
|
670 |
["(m::'a::{ordered_idom,number_ring}) < n", |
|
671 |
"(m::'a::{ordered_idom,number_ring}) <= n", |
|
24093 | 672 |
"(m::'a::{ordered_idom,number_ring}) = n"] (K LinArith.lin_arith_simproc); |
23164 | 673 |
|
674 |
Addsimprocs [fast_int_arith_simproc]; |