src/ZF/Main_ZF.thy
author paulson <lp15@cam.ac.uk>
Tue, 15 Dec 2015 14:41:47 +0000
changeset 61849 f8741f200f91
parent 61397 6204c86280ff
permissions -rw-r--r--
Merge
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
     1
section\<open>Theory Main: Everything Except AC\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     2
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     3
theory Main_ZF imports List_ZF IntDiv_ZF CardinalArith begin
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     4
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     5
(*The theory of "iterates" logically belongs to Nat, but can't go there because
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     6
  primrec isn't available into after Datatype.*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     7
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
     8
subsection\<open>Iteration of the function @{term F}\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     9
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    10
consts  iterates :: "[i=>i,i,i] => i"   ("(_^_ '(_'))" [60,1000,1000] 60)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    11
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    12
primrec
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    13
    "F^0 (x) = x"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    14
    "F^(succ(n)) (x) = F(F^n (x))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    15
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    16
definition
61397
6204c86280ff tuned syntax -- more symbols;
wenzelm
parents: 61378
diff changeset
    17
  iterates_omega :: "[i=>i,i] => i" ("(_^\<omega> '(_'))" [60,1000] 60) where
6204c86280ff tuned syntax -- more symbols;
wenzelm
parents: 61378
diff changeset
    18
    "F^\<omega> (x) == \<Union>n\<in>nat. F^n (x)"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    19
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    20
lemma iterates_triv:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    21
     "[| n\<in>nat;  F(x) = x |] ==> F^n (x) = x"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    22
by (induct n rule: nat_induct, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    23
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    24
lemma iterates_type [TC]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    25
     "[| n \<in> nat;  a \<in> A; !!x. x \<in> A ==> F(x) \<in> A |]
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    26
      ==> F^n (a) \<in> A"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    27
by (induct n rule: nat_induct, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    28
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    29
lemma iterates_omega_triv:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    30
    "F(x) = x ==> F^\<omega> (x) = x"
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    31
by (simp add: iterates_omega_def iterates_triv)
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    32
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    33
lemma Ord_iterates [simp]:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    34
     "[| n\<in>nat;  !!i. Ord(i) ==> Ord(F(i));  Ord(x) |]
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    35
      ==> Ord(F^n (x))"
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    36
by (induct n rule: nat_induct, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    37
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    38
lemma iterates_commute: "n \<in> nat ==> F(F^n (x)) = F^n (F(x))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    39
by (induct_tac n, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    40
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    41
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
    42
subsection\<open>Transfinite Recursion\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    43
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
    44
text\<open>Transfinite recursion for definitions based on the
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
    45
    three cases of ordinals\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    46
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    47
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    48
  transrec3 :: "[i, i, [i,i]=>i, [i,i]=>i] =>i" where
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    49
    "transrec3(k, a, b, c) ==
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    50
       transrec(k, \<lambda>x r.
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    51
         if x=0 then a
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    52
         else if Limit(x) then c(x, \<lambda>y\<in>x. r`y)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    53
         else b(Arith.pred(x), r ` Arith.pred(x)))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    54
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    55
lemma transrec3_0 [simp]: "transrec3(0,a,b,c) = a"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    56
by (rule transrec3_def [THEN def_transrec, THEN trans], simp)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    57
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    58
lemma transrec3_succ [simp]:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    59
     "transrec3(succ(i),a,b,c) = b(i, transrec3(i,a,b,c))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    60
by (rule transrec3_def [THEN def_transrec, THEN trans], simp)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    61
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    62
lemma transrec3_Limit:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46820
diff changeset
    63
     "Limit(i) ==>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    64
      transrec3(i,a,b,c) = c(i, \<lambda>j\<in>i. transrec3(j,a,b,c))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    65
by (rule transrec3_def [THEN def_transrec, THEN trans], force)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    66
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    67
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
    68
declaration \<open>fn _ =>
59647
c6f413b660cf clarified Drule.gen_all: observe context more carefully;
wenzelm
parents: 58871
diff changeset
    69
  Simplifier.map_ss (Simplifier.set_mksimps (fn ctxt =>
60822
4f58f3662e7d more explicit context;
wenzelm
parents: 60770
diff changeset
    70
    map mk_eq o Ord_atomize o Variable.gen_all ctxt))
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 59647
diff changeset
    71
\<close>
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    72
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    73
end