| 
0
 | 
     1  | 
(*  Title: 	FOLP/ifol.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Tactics and lemmas for ifol.thy (intuitionistic first-order logic)
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open IFOLP;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
signature IFOLP_LEMMAS = 
  | 
| 
 | 
    12  | 
  sig
  | 
| 
 | 
    13  | 
  val allE: thm
  | 
| 
 | 
    14  | 
  val all_cong: thm
  | 
| 
 | 
    15  | 
  val all_dupE: thm
  | 
| 
 | 
    16  | 
  val all_impE: thm
  | 
| 
 | 
    17  | 
  val box_equals: thm
  | 
| 
 | 
    18  | 
  val conjE: thm
  | 
| 
 | 
    19  | 
  val conj_cong: thm
  | 
| 
 | 
    20  | 
  val conj_impE: thm
  | 
| 
 | 
    21  | 
  val contrapos: thm
  | 
| 
 | 
    22  | 
  val disj_cong: thm
  | 
| 
 | 
    23  | 
  val disj_impE: thm
  | 
| 
 | 
    24  | 
  val eq_cong: thm
  | 
| 
 | 
    25  | 
  val ex1I: thm
  | 
| 
 | 
    26  | 
  val ex1E: thm
  | 
| 
 | 
    27  | 
  val ex1_equalsE: thm
  | 
| 
 | 
    28  | 
(*  val ex1_cong: thm****)
  | 
| 
 | 
    29  | 
  val ex_cong: thm
  | 
| 
 | 
    30  | 
  val ex_impE: thm
  | 
| 
 | 
    31  | 
  val iffD1: thm
  | 
| 
 | 
    32  | 
  val iffD2: thm
  | 
| 
 | 
    33  | 
  val iffE: thm
  | 
| 
 | 
    34  | 
  val iffI: thm
  | 
| 
 | 
    35  | 
  val iff_cong: thm
  | 
| 
 | 
    36  | 
  val iff_impE: thm
  | 
| 
 | 
    37  | 
  val iff_refl: thm
  | 
| 
 | 
    38  | 
  val iff_sym: thm
  | 
| 
 | 
    39  | 
  val iff_trans: thm
  | 
| 
 | 
    40  | 
  val impE: thm
  | 
| 
 | 
    41  | 
  val imp_cong: thm
  | 
| 
 | 
    42  | 
  val imp_impE: thm
  | 
| 
 | 
    43  | 
  val mp_tac: int -> tactic
  | 
| 
 | 
    44  | 
  val notE: thm
  | 
| 
 | 
    45  | 
  val notI: thm
  | 
| 
 | 
    46  | 
  val not_cong: thm
  | 
| 
 | 
    47  | 
  val not_impE: thm
  | 
| 
 | 
    48  | 
  val not_sym: thm
  | 
| 
 | 
    49  | 
  val not_to_imp: thm
  | 
| 
 | 
    50  | 
  val pred1_cong: thm
  | 
| 
 | 
    51  | 
  val pred2_cong: thm
  | 
| 
 | 
    52  | 
  val pred3_cong: thm
  | 
| 
 | 
    53  | 
  val pred_congs: thm list
  | 
| 
 | 
    54  | 
  val refl: thm
  | 
| 
 | 
    55  | 
  val rev_mp: thm
  | 
| 
 | 
    56  | 
  val simp_equals: thm
  | 
| 
 | 
    57  | 
  val subst: thm
  | 
| 
 | 
    58  | 
  val ssubst: thm
  | 
| 
 | 
    59  | 
  val subst_context: thm
  | 
| 
 | 
    60  | 
  val subst_context2: thm
  | 
| 
 | 
    61  | 
  val subst_context3: thm
  | 
| 
 | 
    62  | 
  val sym: thm
  | 
| 
 | 
    63  | 
  val trans: thm
  | 
| 
 | 
    64  | 
  val TrueI: thm
  | 
| 
 | 
    65  | 
  val uniq_assume_tac: int -> tactic
  | 
| 
 | 
    66  | 
  val uniq_mp_tac: int -> tactic
  | 
| 
 | 
    67  | 
  end;
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
structure IFOLP_Lemmas : IFOLP_LEMMAS =
  | 
| 
 | 
    71  | 
struct
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
val TrueI = TrueI;
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
(*** Sequent-style elimination rules for & --> and ALL ***)
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
val conjE = prove_goal IFOLP.thy 
  | 
| 
 | 
    78  | 
    "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R"
  | 
| 
 | 
    79  | 
 (fn prems=>
  | 
| 
 | 
    80  | 
  [ (REPEAT (resolve_tac prems 1
  | 
| 
 | 
    81  | 
      ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN
  | 
| 
 | 
    82  | 
              resolve_tac prems 1))) ]);
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
val impE = prove_goal IFOLP.thy 
  | 
| 
 | 
    85  | 
    "[| p:P-->Q;  q:P;  !!x.x:Q ==> r(x):R |] ==> ?p:R"
  | 
| 
 | 
    86  | 
 (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
val allE = prove_goal IFOLP.thy 
  | 
| 
 | 
    89  | 
    "[| p:ALL x.P(x); !!y.y:P(x) ==> q(y):R |] ==> ?p:R"
  | 
| 
 | 
    90  | 
 (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
(*Duplicates the quantifier; for use with eresolve_tac*)
  | 
| 
 | 
    93  | 
val all_dupE = prove_goal IFOLP.thy 
  | 
| 
 | 
    94  | 
    "[| p:ALL x.P(x);  !!y z.[| y:P(x); z:ALL x.P(x) |] ==> q(y,z):R \
  | 
| 
 | 
    95  | 
\    |] ==> ?p:R"
  | 
| 
 | 
    96  | 
 (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
(*** Negation rules, which translate between ~P and P-->False ***)
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
val notI = prove_goalw IFOLP.thy [not_def]  "(!!x.x:P ==> q(x):False) ==> ?p:~P"
  | 
| 
 | 
   102  | 
 (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]);
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
val notE = prove_goalw IFOLP.thy [not_def] "[| p:~P;  q:P |] ==> ?p:R"
  | 
| 
 | 
   105  | 
 (fn prems=>
  | 
| 
 | 
   106  | 
  [ (resolve_tac [mp RS FalseE] 1),
  | 
| 
 | 
   107  | 
    (REPEAT (resolve_tac prems 1)) ]);
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
(*This is useful with the special implication rules for each kind of P. *)
  | 
| 
 | 
   110  | 
val not_to_imp = prove_goal IFOLP.thy 
  | 
| 
 | 
   111  | 
    "[| p:~P;  !!x.x:(P-->False) ==> q(x):Q |] ==> ?p:Q"
  | 
| 
 | 
   112  | 
 (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]);
  | 
| 
 | 
   113  | 
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
(* For substitution int an assumption P, reduce Q to P-->Q, substitute into
  | 
| 
 | 
   116  | 
   this implication, then apply impI to move P back into the assumptions.
  | 
| 
 | 
   117  | 
   To specify P use something like
  | 
| 
 | 
   118  | 
      eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
 | 
| 
 | 
   119  | 
val rev_mp = prove_goal IFOLP.thy "[| p:P;  q:P --> Q |] ==> ?p:Q"
  | 
| 
 | 
   120  | 
 (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
(*Contrapositive of an inference rule*)
  | 
| 
 | 
   124  | 
val contrapos = prove_goal IFOLP.thy "[| p:~Q;  !!y.y:P==>q(y):Q |] ==> ?a:~P"
  | 
| 
 | 
   125  | 
 (fn [major,minor]=> 
  | 
| 
 | 
   126  | 
  [ (rtac (major RS notE RS notI) 1), 
  | 
| 
 | 
   127  | 
    (etac minor 1) ]);
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
(** Unique assumption tactic.
  | 
| 
 | 
   130  | 
    Ignores proof objects.
  | 
| 
 | 
   131  | 
    Fails unless one assumption is equal and exactly one is unifiable 
  | 
| 
 | 
   132  | 
**)
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
local
  | 
| 
 | 
   135  | 
    fun discard_proof (Const("Proof",_) $ P $ _) = P;
 | 
| 
 | 
   136  | 
in
  | 
| 
 | 
   137  | 
val uniq_assume_tac =
  | 
| 
 | 
   138  | 
  SUBGOAL
  | 
| 
 | 
   139  | 
    (fn (prem,i) =>
  | 
| 
 | 
   140  | 
      let val hyps = map discard_proof (Logic.strip_assums_hyp prem)
  | 
| 
 | 
   141  | 
          and concl = discard_proof (Logic.strip_assums_concl prem)
  | 
| 
 | 
   142  | 
      in  
  | 
| 
 | 
   143  | 
	  if exists (fn hyp => hyp aconv concl) hyps
  | 
| 
 | 
   144  | 
	  then case distinct (filter (fn hyp=> could_unify(hyp,concl)) hyps) of
  | 
| 
 | 
   145  | 
	           [_] => assume_tac i
  | 
| 
 | 
   146  | 
                 |  _  => no_tac
  | 
| 
 | 
   147  | 
          else no_tac
  | 
| 
 | 
   148  | 
      end);
  | 
| 
 | 
   149  | 
end;
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
(*** Modus Ponens Tactics ***)
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
  | 
| 
 | 
   155  | 
fun mp_tac i = eresolve_tac [notE,make_elim mp] i  THEN  assume_tac i;
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
(*Like mp_tac but instantiates no variables*)
  | 
| 
 | 
   158  | 
fun uniq_mp_tac i = eresolve_tac [notE,impE] i  THEN  uniq_assume_tac i;
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
(*** If-and-only-if ***)
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
val iffI = prove_goalw IFOLP.thy [iff_def]
  | 
| 
 | 
   164  | 
   "[| !!x.x:P ==> q(x):Q;  !!x.x:Q ==> r(x):P |] ==> ?p:P<->Q"
  | 
| 
 | 
   165  | 
 (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]);
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
  | 
| 
 | 
   169  | 
val iffE = prove_goalw IFOLP.thy [iff_def]
  | 
| 
 | 
   170  | 
    "[| p:P <-> Q;  !!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R |] ==> ?p:R"
  | 
| 
 | 
   171  | 
 (fn prems => [ (resolve_tac [conjE] 1), (REPEAT (ares_tac prems 1)) ]);
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
(* Destruct rules for <-> similar to Modus Ponens *)
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
val iffD1 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:P |] ==> ?p:Q"
  | 
| 
 | 
   176  | 
 (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
  | 
| 
 | 
   177  | 
  | 
| 
 | 
   178  | 
val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:Q |] ==> ?p:P"
  | 
| 
 | 
   179  | 
 (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
val iff_refl = prove_goal IFOLP.thy "?p:P <-> P"
  | 
| 
 | 
   182  | 
 (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]);
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
val iff_sym = prove_goal IFOLP.thy "p:Q <-> P ==> ?p:P <-> Q"
  | 
| 
 | 
   185  | 
 (fn [major] =>
  | 
| 
 | 
   186  | 
  [ (rtac (major RS iffE) 1),
  | 
| 
 | 
   187  | 
    (rtac iffI 1),
  | 
| 
 | 
   188  | 
    (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]);
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
val iff_trans = prove_goal IFOLP.thy "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
  | 
| 
 | 
   191  | 
 (fn prems =>
  | 
| 
 | 
   192  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   193  | 
    (rtac iffI 1),
  | 
| 
 | 
   194  | 
    (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]);
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
(*** Unique existence.  NOTE THAT the following 2 quantifications
  | 
| 
 | 
   198  | 
   EX!x such that [EX!y such that P(x,y)]     (sequential)
  | 
| 
 | 
   199  | 
   EX!x,y such that P(x,y)                    (simultaneous)
  | 
| 
 | 
   200  | 
 do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
  | 
| 
 | 
   201  | 
***)
  | 
| 
 | 
   202  | 
  | 
| 
 | 
   203  | 
val ex1I = prove_goalw IFOLP.thy [ex1_def]
  | 
| 
 | 
   204  | 
    "[| p:P(a);  !!x u.u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)"
  | 
| 
 | 
   205  | 
 (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]);
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
val ex1E = prove_goalw IFOLP.thy [ex1_def]
  | 
| 
 | 
   208  | 
    "[| p:EX! x.P(x);  \
  | 
| 
 | 
   209  | 
\       !!x u v. [| u:P(x);  v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\
  | 
| 
 | 
   210  | 
\    ?a : R"
  | 
| 
 | 
   211  | 
 (fn prems =>
  | 
| 
 | 
   212  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   213  | 
    (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]);
  | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
(*** <-> congruence rules for simplification ***)
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
(*Use iffE on a premise.  For conj_cong, imp_cong, all_cong, ex_cong*)
  | 
| 
 | 
   219  | 
fun iff_tac prems i =
  | 
| 
 | 
   220  | 
    resolve_tac (prems RL [iffE]) i THEN
  | 
| 
 | 
   221  | 
    REPEAT1 (eresolve_tac [asm_rl,mp] i);
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
val conj_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   224  | 
    "[| p:P <-> P';  !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P&Q) <-> (P'&Q')"
  | 
| 
 | 
   225  | 
 (fn prems =>
  | 
| 
 | 
   226  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   227  | 
    (REPEAT  (ares_tac [iffI,conjI] 1
  | 
| 
 | 
   228  | 
      ORELSE  eresolve_tac [iffE,conjE,mp] 1
  | 
| 
 | 
   229  | 
      ORELSE  iff_tac prems 1)) ]);
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
val disj_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   232  | 
    "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')"
  | 
| 
 | 
   233  | 
 (fn prems =>
  | 
| 
 | 
   234  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   235  | 
    (REPEAT  (eresolve_tac [iffE,disjE,disjI1,disjI2] 1
  | 
| 
 | 
   236  | 
      ORELSE  ares_tac [iffI] 1
  | 
| 
 | 
   237  | 
      ORELSE  mp_tac 1)) ]);
  | 
| 
 | 
   238  | 
  | 
| 
 | 
   239  | 
val imp_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   240  | 
    "[| p:P <-> P';  !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P-->Q) <-> (P'-->Q')"
  | 
| 
 | 
   241  | 
 (fn prems =>
  | 
| 
 | 
   242  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   243  | 
    (REPEAT   (ares_tac [iffI,impI] 1
  | 
| 
 | 
   244  | 
      ORELSE  eresolve_tac [iffE] 1
  | 
| 
 | 
   245  | 
      ORELSE  mp_tac 1 ORELSE iff_tac prems 1)) ]);
  | 
| 
 | 
   246  | 
  | 
| 
 | 
   247  | 
val iff_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   248  | 
    "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')"
  | 
| 
 | 
   249  | 
 (fn prems =>
  | 
| 
 | 
   250  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   251  | 
    (REPEAT   (eresolve_tac [iffE] 1
  | 
| 
 | 
   252  | 
      ORELSE  ares_tac [iffI] 1
  | 
| 
 | 
   253  | 
      ORELSE  mp_tac 1)) ]);
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
val not_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   256  | 
    "p:P <-> P' ==> ?p:~P <-> ~P'"
  | 
| 
 | 
   257  | 
 (fn prems =>
  | 
| 
 | 
   258  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   259  | 
    (REPEAT   (ares_tac [iffI,notI] 1
  | 
| 
 | 
   260  | 
      ORELSE  mp_tac 1
  | 
| 
 | 
   261  | 
      ORELSE  eresolve_tac [iffE,notE] 1)) ]);
  | 
| 
 | 
   262  | 
  | 
| 
 | 
   263  | 
val all_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   264  | 
    "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(ALL x.P(x)) <-> (ALL x.Q(x))"
  | 
| 
 | 
   265  | 
 (fn prems =>
  | 
| 
 | 
   266  | 
  [ (REPEAT   (ares_tac [iffI,allI] 1
  | 
| 
 | 
   267  | 
      ORELSE   mp_tac 1
  | 
| 
 | 
   268  | 
      ORELSE   eresolve_tac [allE] 1 ORELSE iff_tac prems 1)) ]);
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
val ex_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   271  | 
    "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX x.P(x)) <-> (EX x.Q(x))"
  | 
| 
 | 
   272  | 
 (fn prems =>
  | 
| 
 | 
   273  | 
  [ (REPEAT   (eresolve_tac [exE] 1 ORELSE ares_tac [iffI,exI] 1
  | 
| 
 | 
   274  | 
      ORELSE   mp_tac 1
  | 
| 
 | 
   275  | 
      ORELSE   iff_tac prems 1)) ]);
  | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
(*NOT PROVED
  | 
| 
 | 
   278  | 
val ex1_cong = prove_goal IFOLP.thy 
  | 
| 
 | 
   279  | 
    "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))"
  | 
| 
 | 
   280  | 
 (fn prems =>
  | 
| 
 | 
   281  | 
  [ (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1
  | 
| 
 | 
   282  | 
      ORELSE   mp_tac 1
  | 
| 
 | 
   283  | 
      ORELSE   iff_tac prems 1)) ]);
  | 
| 
 | 
   284  | 
*)
  | 
| 
 | 
   285  | 
  | 
| 
 | 
   286  | 
(*** Equality rules ***)
  | 
| 
 | 
   287  | 
  | 
| 
 | 
   288  | 
val refl = ieqI;
  | 
| 
 | 
   289  | 
  | 
| 
 | 
   290  | 
val subst = prove_goal IFOLP.thy "[| p:a=b;  q:P(a) |] ==> ?p : P(b)"
  | 
| 
 | 
   291  | 
 (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1), 
  | 
| 
 | 
   292  | 
                        rtac impI 1, atac 1 ]);
  | 
| 
 | 
   293  | 
  | 
| 
 | 
   294  | 
val sym = prove_goal IFOLP.thy "q:a=b ==> ?c:b=a"
  | 
| 
 | 
   295  | 
 (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]);
  | 
| 
 | 
   296  | 
  | 
| 
 | 
   297  | 
val trans = prove_goal IFOLP.thy "[| p:a=b;  q:b=c |] ==> ?d:a=c"
  | 
| 
 | 
   298  | 
 (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]);
  | 
| 
 | 
   299  | 
  | 
| 
 | 
   300  | 
(** ~ b=a ==> ~ a=b **)
  | 
| 
 | 
   301  | 
val not_sym = prove_goal IFOLP.thy "p:~ b=a ==> ?q:~ a=b"
  | 
| 
 | 
   302  | 
 (fn [prem] => [ (rtac (prem RS contrapos) 1), (etac sym 1) ]);
  | 
| 
 | 
   303  | 
  | 
| 
 | 
   304  | 
(*calling "standard" reduces maxidx to 0*)
  | 
| 
 | 
   305  | 
val ssubst = standard (sym RS subst);
  | 
| 
 | 
   306  | 
  | 
| 
 | 
   307  | 
(*A special case of ex1E that would otherwise need quantifier expansion*)
  | 
| 
 | 
   308  | 
val ex1_equalsE = prove_goal IFOLP.thy
  | 
| 
 | 
   309  | 
    "[| p:EX! x.P(x);  q:P(a);  r:P(b) |] ==> ?d:a=b"
  | 
| 
 | 
   310  | 
 (fn prems =>
  | 
| 
 | 
   311  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   312  | 
    (etac ex1E 1),
  | 
| 
 | 
   313  | 
    (rtac trans 1),
  | 
| 
 | 
   314  | 
    (rtac sym 2),
  | 
| 
 | 
   315  | 
    (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]);
  | 
| 
 | 
   316  | 
  | 
| 
 | 
   317  | 
(** Polymorphic congruence rules **)
  | 
| 
 | 
   318  | 
  | 
| 
 | 
   319  | 
val subst_context = prove_goal IFOLP.thy 
  | 
| 
 | 
   320  | 
   "[| p:a=b |]  ==>  ?d:t(a)=t(b)"
  | 
| 
 | 
   321  | 
 (fn prems=>
  | 
| 
 | 
   322  | 
  [ (resolve_tac (prems RL [ssubst]) 1),
  | 
| 
 | 
   323  | 
    (resolve_tac [refl] 1) ]);
  | 
| 
 | 
   324  | 
  | 
| 
 | 
   325  | 
val subst_context2 = prove_goal IFOLP.thy 
  | 
| 
 | 
   326  | 
   "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)"
  | 
| 
 | 
   327  | 
 (fn prems=>
  | 
| 
 | 
   328  | 
  [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
  | 
| 
 | 
   329  | 
  | 
| 
 | 
   330  | 
val subst_context3 = prove_goal IFOLP.thy 
  | 
| 
 | 
   331  | 
   "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)"
  | 
| 
 | 
   332  | 
 (fn prems=>
  | 
| 
 | 
   333  | 
  [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
  | 
| 
 | 
   334  | 
  | 
| 
 | 
   335  | 
(*Useful with eresolve_tac for proving equalties from known equalities.
  | 
| 
 | 
   336  | 
	a = b
  | 
| 
 | 
   337  | 
	|   |
  | 
| 
 | 
   338  | 
	c = d	*)
  | 
| 
 | 
   339  | 
val box_equals = prove_goal IFOLP.thy
  | 
| 
 | 
   340  | 
    "[| p:a=b;  q:a=c;  r:b=d |] ==> ?p:c=d"  
  | 
| 
 | 
   341  | 
 (fn prems=>
  | 
| 
 | 
   342  | 
  [ (resolve_tac [trans] 1),
  | 
| 
 | 
   343  | 
    (resolve_tac [trans] 1),
  | 
| 
 | 
   344  | 
    (resolve_tac [sym] 1),
  | 
| 
 | 
   345  | 
    (REPEAT (resolve_tac prems 1)) ]);
  | 
| 
 | 
   346  | 
  | 
| 
 | 
   347  | 
(*Dual of box_equals: for proving equalities backwards*)
  | 
| 
 | 
   348  | 
val simp_equals = prove_goal IFOLP.thy
  | 
| 
 | 
   349  | 
    "[| p:a=c;  q:b=d;  r:c=d |] ==> ?p:a=b"  
  | 
| 
 | 
   350  | 
 (fn prems=>
  | 
| 
 | 
   351  | 
  [ (resolve_tac [trans] 1),
  | 
| 
 | 
   352  | 
    (resolve_tac [trans] 1),
  | 
| 
 | 
   353  | 
    (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]);
  | 
| 
 | 
   354  | 
  | 
| 
 | 
   355  | 
(** Congruence rules for predicate letters **)
  | 
| 
 | 
   356  | 
  | 
| 
 | 
   357  | 
val pred1_cong = prove_goal IFOLP.thy
  | 
| 
 | 
   358  | 
    "p:a=a' ==> ?p:P(a) <-> P(a')"
  | 
| 
 | 
   359  | 
 (fn prems =>
  | 
| 
 | 
   360  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   361  | 
    (rtac iffI 1),
  | 
| 
 | 
   362  | 
    (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
  | 
| 
 | 
   363  | 
  | 
| 
 | 
   364  | 
val pred2_cong = prove_goal IFOLP.thy
  | 
| 
 | 
   365  | 
    "[| p:a=a';  q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
  | 
| 
 | 
   366  | 
 (fn prems =>
  | 
| 
 | 
   367  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   368  | 
    (rtac iffI 1),
  | 
| 
 | 
   369  | 
    (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
  | 
| 
 | 
   370  | 
  | 
| 
 | 
   371  | 
val pred3_cong = prove_goal IFOLP.thy
  | 
| 
 | 
   372  | 
    "[| p:a=a';  q:b=b';  r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
  | 
| 
 | 
   373  | 
 (fn prems =>
  | 
| 
 | 
   374  | 
  [ (cut_facts_tac prems 1),
  | 
| 
 | 
   375  | 
    (rtac iffI 1),
  | 
| 
 | 
   376  | 
    (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
  | 
| 
 | 
   377  | 
  | 
| 
 | 
   378  | 
(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
  | 
| 
 | 
   379  | 
  | 
| 
 | 
   380  | 
val pred_congs = 
  | 
| 
 | 
   381  | 
    flat (map (fn c => 
  | 
| 
 | 
   382  | 
	       map (fn th => read_instantiate [("P",c)] th)
 | 
| 
 | 
   383  | 
		   [pred1_cong,pred2_cong,pred3_cong])
  | 
| 
 | 
   384  | 
	       (explode"PQRS"));
  | 
| 
 | 
   385  | 
  | 
| 
 | 
   386  | 
(*special case for the equality predicate!*)
  | 
| 
 | 
   387  | 
val eq_cong = read_instantiate [("P","op =")] pred2_cong;
 | 
| 
 | 
   388  | 
  | 
| 
 | 
   389  | 
  | 
| 
 | 
   390  | 
(*** Simplifications of assumed implications.
  | 
| 
 | 
   391  | 
     Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
  | 
| 
 | 
   392  | 
     used with mp_tac (restricted to atomic formulae) is COMPLETE for 
  | 
| 
 | 
   393  | 
     intuitionistic propositional logic.  See
  | 
| 
 | 
   394  | 
   R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
  | 
| 
 | 
   395  | 
    (preprint, University of St Andrews, 1991)  ***)
  | 
| 
 | 
   396  | 
  | 
| 
 | 
   397  | 
val conj_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   398  | 
    "[| p:(P&Q)-->S;  !!x.x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R"
  | 
| 
 | 
   399  | 
 (fn major::prems=>
  | 
| 
 | 
   400  | 
  [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
val disj_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   403  | 
    "[| p:(P|Q)-->S;  !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R"
  | 
| 
 | 
   404  | 
 (fn major::prems=>
  | 
| 
 | 
   405  | 
  [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   406  | 
  | 
| 
 | 
   407  | 
(*Simplifies the implication.  Classical version is stronger. 
  | 
| 
 | 
   408  | 
  Still UNSAFE since Q must be provable -- backtracking needed.  *)
  | 
| 
 | 
   409  | 
val imp_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   410  | 
    "[| p:(P-->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  !!x.x:S ==> r(x):R |] ==> \
  | 
| 
 | 
   411  | 
\    ?p:R"
  | 
| 
 | 
   412  | 
 (fn major::prems=>
  | 
| 
 | 
   413  | 
  [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   414  | 
  | 
| 
 | 
   415  | 
(*Simplifies the implication.  Classical version is stronger. 
  | 
| 
 | 
   416  | 
  Still UNSAFE since ~P must be provable -- backtracking needed.  *)
  | 
| 
 | 
   417  | 
val not_impE = prove_goal IFOLP.thy
  | 
| 
 | 
   418  | 
    "[| p:~P --> S;  !!y.y:P ==> q(y):False;  !!y.y:S ==> r(y):R |] ==> ?p:R"
  | 
| 
 | 
   419  | 
 (fn major::prems=>
  | 
| 
 | 
   420  | 
  [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   421  | 
  | 
| 
 | 
   422  | 
(*Simplifies the implication.   UNSAFE.  *)
  | 
| 
 | 
   423  | 
val iff_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   424  | 
    "[| p:(P<->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  \
  | 
| 
 | 
   425  | 
\       !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P;  !!x.x:S ==> s(x):R |] ==> ?p:R"
  | 
| 
 | 
   426  | 
 (fn major::prems=>
  | 
| 
 | 
   427  | 
  [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   428  | 
  | 
| 
 | 
   429  | 
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
  | 
| 
 | 
   430  | 
val all_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   431  | 
    "[| p:(ALL x.P(x))-->S;  !!x.q:P(x);  !!y.y:S ==> r(y):R |] ==> ?p:R"
  | 
| 
 | 
   432  | 
 (fn major::prems=>
  | 
| 
 | 
   433  | 
  [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   434  | 
  | 
| 
 | 
   435  | 
(*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
  | 
| 
 | 
   436  | 
val ex_impE = prove_goal IFOLP.thy 
  | 
| 
 | 
   437  | 
    "[| p:(EX x.P(x))-->S;  !!y.y:P(a)-->S ==> q(y):R |] ==> ?p:R"
  | 
| 
 | 
   438  | 
 (fn major::prems=>
  | 
| 
 | 
   439  | 
  [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]);
  | 
| 
 | 
   440  | 
  | 
| 
 | 
   441  | 
end;
  | 
| 
 | 
   442  | 
  | 
| 
 | 
   443  | 
open IFOLP_Lemmas;
  | 
| 
 | 
   444  | 
  |