src/HOL/Topological_Spaces.thy
author wenzelm
Thu, 19 Mar 2015 22:30:57 +0100
changeset 59755 f8d164ab0dc1
parent 59582 0fbed69ff081
child 59970 e9f73d87d904
permissions -rw-r--r--
more position information;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51775
diff changeset
     1
(*  Title:      HOL/Topological_Spaces.thy
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     2
    Author:     Brian Huffman
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     3
    Author:     Johannes Hölzl
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     4
*)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     5
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 58729
diff changeset
     6
section {* Topological Spaces *}
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     7
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     8
theory Topological_Spaces
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51641
diff changeset
     9
imports Main Conditionally_Complete_Lattices
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    10
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    11
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
    12
named_theorems continuous_intros "structural introduction rules for continuity"
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
    13
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    14
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    15
subsection {* Topological space *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    16
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    17
class "open" =
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    18
  fixes "open" :: "'a set \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    19
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    20
class topological_space = "open" +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    21
  assumes open_UNIV [simp, intro]: "open UNIV"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    22
  assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    23
  assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    24
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    25
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    26
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    27
  closed :: "'a set \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    28
  "closed S \<longleftrightarrow> open (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    29
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    30
lemma open_empty [continuous_intros, intro, simp]: "open {}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    31
  using open_Union [of "{}"] by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    32
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    33
lemma open_Un [continuous_intros, intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    34
  using open_Union [of "{S, T}"] by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    35
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    36
lemma open_UN [continuous_intros, intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    37
  using open_Union [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    38
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    39
lemma open_Inter [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    40
  by (induct set: finite) auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    41
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    42
lemma open_INT [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    43
  using open_Inter [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    44
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    45
lemma openI:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    46
  assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    47
  shows "open S"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    48
proof -
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    49
  have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    50
  moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    51
  ultimately show "open S" by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    52
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    53
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    54
lemma closed_empty [continuous_intros, intro, simp]:  "closed {}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    55
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    56
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    57
lemma closed_Un [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    58
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    59
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    60
lemma closed_UNIV [continuous_intros, intro, simp]: "closed UNIV"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    61
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    62
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    63
lemma closed_Int [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    64
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    65
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    66
lemma closed_INT [continuous_intros, intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    67
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    68
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    69
lemma closed_Inter [continuous_intros, intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    70
  unfolding closed_def uminus_Inf by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    71
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    72
lemma closed_Union [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    73
  by (induct set: finite) auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    74
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    75
lemma closed_UN [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    76
  using closed_Union [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    77
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    78
lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    79
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    80
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    81
lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    82
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    83
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    84
lemma open_Diff [continuous_intros, intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    85
  unfolding closed_open Diff_eq by (rule open_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    86
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    87
lemma closed_Diff [continuous_intros, intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    88
  unfolding open_closed Diff_eq by (rule closed_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    89
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    90
lemma open_Compl [continuous_intros, intro]: "closed S \<Longrightarrow> open (- S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    91
  unfolding closed_open .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    92
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    93
lemma closed_Compl [continuous_intros, intro]: "open S \<Longrightarrow> closed (- S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    94
  unfolding open_closed .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    95
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    96
lemma open_Collect_neg: "closed {x. P x} \<Longrightarrow> open {x. \<not> P x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    97
  unfolding Collect_neg_eq by (rule open_Compl)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    98
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    99
lemma open_Collect_conj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<and> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   100
  using open_Int[OF assms] by (simp add: Int_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   101
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   102
lemma open_Collect_disj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<or> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   103
  using open_Un[OF assms] by (simp add: Un_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   104
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   105
lemma open_Collect_ex: "(\<And>i. open {x. P i x}) \<Longrightarrow> open {x. \<exists>i. P i x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   106
  using open_UN[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_ex_eq by simp 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   107
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   108
lemma open_Collect_imp: "closed {x. P x} \<Longrightarrow> open {x. Q x} \<Longrightarrow> open {x. P x \<longrightarrow> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   109
  unfolding imp_conv_disj by (intro open_Collect_disj open_Collect_neg)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   110
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   111
lemma open_Collect_const: "open {x. P}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   112
  by (cases P) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   113
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   114
lemma closed_Collect_neg: "open {x. P x} \<Longrightarrow> closed {x. \<not> P x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   115
  unfolding Collect_neg_eq by (rule closed_Compl)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   116
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   117
lemma closed_Collect_conj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<and> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   118
  using closed_Int[OF assms] by (simp add: Int_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   119
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   120
lemma closed_Collect_disj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<or> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   121
  using closed_Un[OF assms] by (simp add: Un_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   122
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   123
lemma closed_Collect_all: "(\<And>i. closed {x. P i x}) \<Longrightarrow> closed {x. \<forall>i. P i x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   124
  using closed_INT[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_all_eq by simp 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   125
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   126
lemma closed_Collect_imp: "open {x. P x} \<Longrightarrow> closed {x. Q x} \<Longrightarrow> closed {x. P x \<longrightarrow> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   127
  unfolding imp_conv_disj by (intro closed_Collect_disj closed_Collect_neg)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   128
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   129
lemma closed_Collect_const: "closed {x. P}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   130
  by (cases P) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   131
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   132
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   133
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   134
subsection{* Hausdorff and other separation properties *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   135
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   136
class t0_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   137
  assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   138
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   139
class t1_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   140
  assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   141
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   142
instance t1_space \<subseteq> t0_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   143
proof qed (fast dest: t1_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   144
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   145
lemma separation_t1:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   146
  fixes x y :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   147
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   148
  using t1_space[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   149
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   150
lemma closed_singleton:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   151
  fixes a :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   152
  shows "closed {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   153
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   154
  let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   155
  have "open ?T" by (simp add: open_Union)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   156
  also have "?T = - {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   157
    by (simp add: set_eq_iff separation_t1, auto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   158
  finally show "closed {a}" unfolding closed_def .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   159
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   160
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   161
lemma closed_insert [continuous_intros, simp]:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   162
  fixes a :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   163
  assumes "closed S" shows "closed (insert a S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   164
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   165
  from closed_singleton assms
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   166
  have "closed ({a} \<union> S)" by (rule closed_Un)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   167
  thus "closed (insert a S)" by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   168
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   169
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   170
lemma finite_imp_closed:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   171
  fixes S :: "'a::t1_space set"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   172
  shows "finite S \<Longrightarrow> closed S"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   173
by (induct set: finite, simp_all)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   174
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   175
text {* T2 spaces are also known as Hausdorff spaces. *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   176
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   177
class t2_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   178
  assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   179
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   180
instance t2_space \<subseteq> t1_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   181
proof qed (fast dest: hausdorff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   182
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   183
lemma separation_t2:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   184
  fixes x y :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   185
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   186
  using hausdorff[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   187
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   188
lemma separation_t0:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   189
  fixes x y :: "'a::t0_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   190
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   191
  using t0_space[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   192
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   193
text {* A perfect space is a topological space with no isolated points. *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   194
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   195
class perfect_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   196
  assumes not_open_singleton: "\<not> open {x}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   197
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   198
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   199
subsection {* Generators for toplogies *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   200
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   201
inductive generate_topology for S where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   202
  UNIV: "generate_topology S UNIV"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   203
| Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   204
| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   205
| Basis: "s \<in> S \<Longrightarrow> generate_topology S s"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   206
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   207
hide_fact (open) UNIV Int UN Basis 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   208
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   209
lemma generate_topology_Union: 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   210
  "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
   211
  using generate_topology.UN [of "K ` I"] by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   212
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   213
lemma topological_space_generate_topology:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   214
  "class.topological_space (generate_topology S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   215
  by default (auto intro: generate_topology.intros)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   216
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   217
subsection {* Order topologies *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   218
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   219
class order_topology = order + "open" +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   220
  assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   221
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   222
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   223
subclass topological_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   224
  unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   225
  by (rule topological_space_generate_topology)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   226
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   227
lemma open_greaterThan [continuous_intros, simp]: "open {a <..}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   228
  unfolding open_generated_order by (auto intro: generate_topology.Basis)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   229
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   230
lemma open_lessThan [continuous_intros, simp]: "open {..< a}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   231
  unfolding open_generated_order by (auto intro: generate_topology.Basis)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   232
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   233
lemma open_greaterThanLessThan [continuous_intros, simp]: "open {a <..< b}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   234
   unfolding greaterThanLessThan_eq by (simp add: open_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   235
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   236
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   237
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   238
class linorder_topology = linorder + order_topology
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   239
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   240
lemma closed_atMost [continuous_intros, simp]: "closed {.. a::'a::linorder_topology}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   241
  by (simp add: closed_open)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   242
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   243
lemma closed_atLeast [continuous_intros, simp]: "closed {a::'a::linorder_topology ..}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   244
  by (simp add: closed_open)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   245
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   246
lemma closed_atLeastAtMost [continuous_intros, simp]: "closed {a::'a::linorder_topology .. b}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   247
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   248
  have "{a .. b} = {a ..} \<inter> {.. b}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   249
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   250
  then show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   251
    by (simp add: closed_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   252
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   253
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   254
lemma (in linorder) less_separate:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   255
  assumes "x < y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   256
  shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   257
proof (cases "\<exists>z. x < z \<and> z < y")
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   258
  case True
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   259
  then obtain z where "x < z \<and> z < y" ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   260
  then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   261
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   262
  then show ?thesis by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   263
next
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   264
  case False
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   265
  with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   266
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   267
  then show ?thesis by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   268
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   269
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   270
instance linorder_topology \<subseteq> t2_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   271
proof
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   272
  fix x y :: 'a
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   273
  from less_separate[of x y] less_separate[of y x]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   274
  show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   275
    by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   276
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   277
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   278
lemma (in linorder_topology) open_right:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   279
  assumes "open S" "x \<in> S" and gt_ex: "x < y" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   280
  using assms unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   281
proof induction
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   282
  case (Int A B)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   283
  then obtain a b where "a > x" "{x ..< a} \<subseteq> A"  "b > x" "{x ..< b} \<subseteq> B" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   284
  then show ?case by (auto intro!: exI[of _ "min a b"])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   285
next
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   286
  case (Basis S) then show ?case by (fastforce intro: exI[of _ y] gt_ex)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   287
qed blast+
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   288
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   289
lemma (in linorder_topology) open_left:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   290
  assumes "open S" "x \<in> S" and lt_ex: "y < x" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   291
  using assms unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   292
proof induction
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   293
  case (Int A B)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   294
  then obtain a b where "a < x" "{a <.. x} \<subseteq> A"  "b < x" "{b <.. x} \<subseteq> B" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   295
  then show ?case by (auto intro!: exI[of _ "max a b"])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   296
next
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   297
  case (Basis S) then show ?case by (fastforce intro: exI[of _ y] lt_ex)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   298
qed blast+
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   299
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   300
subsubsection {* Boolean is an order topology *}
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   301
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   302
text {* It also is a discrete topology, but don't have a type class for it (yet). *}
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   303
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   304
instantiation bool :: order_topology
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   305
begin
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   306
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   307
definition open_bool :: "bool set \<Rightarrow> bool" where
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   308
  "open_bool = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   309
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   310
instance
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   311
  proof qed (rule open_bool_def)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   312
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   313
end
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   314
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   315
lemma open_bool[simp, intro!]: "open (A::bool set)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   316
proof -
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   317
  have *: "{False <..} = {True}" "{..< True} = {False}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   318
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   319
  have "A = UNIV \<or> A = {} \<or> A = {False <..} \<or> A = {..< True}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   320
    using subset_UNIV[of A] unfolding UNIV_bool * by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   321
  then show "open A"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   322
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   323
qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   324
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   325
subsection {* Filters *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   326
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   327
text {*
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   328
  This definition also allows non-proper filters.
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   329
*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   330
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   331
locale is_filter =
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   332
  fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   333
  assumes True: "F (\<lambda>x. True)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   334
  assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   335
  assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   336
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   337
typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   338
proof
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   339
  show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   340
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   341
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   342
lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   343
  using Rep_filter [of F] by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   344
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   345
lemma Abs_filter_inverse':
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   346
  assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   347
  using assms by (simp add: Abs_filter_inverse)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   348
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   349
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   350
subsubsection {* Eventually *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   351
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   352
definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   353
  where "eventually P F \<longleftrightarrow> Rep_filter F P"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   354
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   355
lemma eventually_Abs_filter:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   356
  assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   357
  unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   358
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   359
lemma filter_eq_iff:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   360
  shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   361
  unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   362
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   363
lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   364
  unfolding eventually_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   365
  by (rule is_filter.True [OF is_filter_Rep_filter])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   366
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   367
lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   368
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   369
  assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   370
  thus "eventually P F" by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   371
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   372
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   373
lemma eventually_mono:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   374
  "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   375
  unfolding eventually_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   376
  by (rule is_filter.mono [OF is_filter_Rep_filter])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   377
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   378
lemma eventually_conj:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   379
  assumes P: "eventually (\<lambda>x. P x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   380
  assumes Q: "eventually (\<lambda>x. Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   381
  shows "eventually (\<lambda>x. P x \<and> Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   382
  using assms unfolding eventually_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   383
  by (rule is_filter.conj [OF is_filter_Rep_filter])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   384
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   385
lemma eventually_Ball_finite:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   386
  assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   387
  shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   388
using assms by (induct set: finite, simp, simp add: eventually_conj)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   389
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   390
lemma eventually_all_finite:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   391
  fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   392
  assumes "\<And>y. eventually (\<lambda>x. P x y) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   393
  shows "eventually (\<lambda>x. \<forall>y. P x y) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   394
using eventually_Ball_finite [of UNIV P] assms by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   395
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   396
lemma eventually_mp:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   397
  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   398
  assumes "eventually (\<lambda>x. P x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   399
  shows "eventually (\<lambda>x. Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   400
proof (rule eventually_mono)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   401
  show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   402
  show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   403
    using assms by (rule eventually_conj)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   404
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   405
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   406
lemma eventually_rev_mp:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   407
  assumes "eventually (\<lambda>x. P x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   408
  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   409
  shows "eventually (\<lambda>x. Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   410
using assms(2) assms(1) by (rule eventually_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   411
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   412
lemma eventually_conj_iff:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   413
  "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   414
  by (auto intro: eventually_conj elim: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   415
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   416
lemma eventually_elim1:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   417
  assumes "eventually (\<lambda>i. P i) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   418
  assumes "\<And>i. P i \<Longrightarrow> Q i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   419
  shows "eventually (\<lambda>i. Q i) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   420
  using assms by (auto elim!: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   421
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   422
lemma eventually_elim2:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   423
  assumes "eventually (\<lambda>i. P i) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   424
  assumes "eventually (\<lambda>i. Q i) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   425
  assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   426
  shows "eventually (\<lambda>i. R i) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   427
  using assms by (auto elim!: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   428
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   429
lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   430
  by (auto intro: eventually_mp)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   431
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   432
lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   433
  by (metis always_eventually)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   434
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   435
lemma eventually_subst:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   436
  assumes "eventually (\<lambda>n. P n = Q n) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   437
  shows "eventually P F = eventually Q F" (is "?L = ?R")
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   438
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   439
  from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   440
      and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   441
    by (auto elim: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   442
  then show ?thesis by (auto elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   443
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   444
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   445
ML {*
56231
b98813774a63 enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
wenzelm
parents: 56166
diff changeset
   446
  fun eventually_elim_tac ctxt thms = SUBGOAL_CASES (fn (_, _, st) =>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   447
    let
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   448
      val thy = Proof_Context.theory_of ctxt
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   449
      val mp_thms = thms RL [@{thm eventually_rev_mp}]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   450
      val raw_elim_thm =
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   451
        (@{thm allI} RS @{thm always_eventually})
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   452
        |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   453
        |> fold (fn _ => fn thm => @{thm impI} RS thm) thms
59582
0fbed69ff081 tuned signature -- prefer qualified names;
wenzelm
parents: 59452
diff changeset
   454
      val cases_prop = Thm.prop_of (raw_elim_thm RS st)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   455
      val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   456
    in
56231
b98813774a63 enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
wenzelm
parents: 56166
diff changeset
   457
      CASES cases (rtac raw_elim_thm 1)
b98813774a63 enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
wenzelm
parents: 56166
diff changeset
   458
    end) 1
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   459
*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   460
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   461
method_setup eventually_elim = {*
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   462
  Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt))
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   463
*} "elimination of eventually quantifiers"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   464
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   465
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   466
subsubsection {* Finer-than relation *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   467
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   468
text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   469
filter @{term F'}. *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   470
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   471
instantiation filter :: (type) complete_lattice
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   472
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   473
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   474
definition le_filter_def:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   475
  "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   476
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   477
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   478
  "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   479
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   480
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   481
  "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   482
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   483
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   484
  "bot = Abs_filter (\<lambda>P. True)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   485
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   486
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   487
  "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   488
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   489
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   490
  "inf F F' = Abs_filter
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   491
      (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   492
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   493
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   494
  "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   495
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   496
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   497
  "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   498
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   499
lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   500
  unfolding top_filter_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   501
  by (rule eventually_Abs_filter, rule is_filter.intro, auto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   502
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   503
lemma eventually_bot [simp]: "eventually P bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   504
  unfolding bot_filter_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   505
  by (subst eventually_Abs_filter, rule is_filter.intro, auto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   506
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   507
lemma eventually_sup:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   508
  "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   509
  unfolding sup_filter_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   510
  by (rule eventually_Abs_filter, rule is_filter.intro)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   511
     (auto elim!: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   512
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   513
lemma eventually_inf:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   514
  "eventually P (inf F F') \<longleftrightarrow>
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   515
   (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   516
  unfolding inf_filter_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   517
  apply (rule eventually_Abs_filter, rule is_filter.intro)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   518
  apply (fast intro: eventually_True)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   519
  apply clarify
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   520
  apply (intro exI conjI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   521
  apply (erule (1) eventually_conj)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   522
  apply (erule (1) eventually_conj)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   523
  apply simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   524
  apply auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   525
  done
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   526
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   527
lemma eventually_Sup:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   528
  "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   529
  unfolding Sup_filter_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   530
  apply (rule eventually_Abs_filter, rule is_filter.intro)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   531
  apply (auto intro: eventually_conj elim!: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   532
  done
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   533
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   534
instance proof
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   535
  fix F F' F'' :: "'a filter" and S :: "'a filter set"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   536
  { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   537
    by (rule less_filter_def) }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   538
  { show "F \<le> F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   539
    unfolding le_filter_def by simp }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   540
  { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   541
    unfolding le_filter_def by simp }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   542
  { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   543
    unfolding le_filter_def filter_eq_iff by fast }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   544
  { show "inf F F' \<le> F" and "inf F F' \<le> F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   545
    unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   546
  { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   547
    unfolding le_filter_def eventually_inf
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   548
    by (auto elim!: eventually_mono intro: eventually_conj) }
52729
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   549
  { show "F \<le> sup F F'" and "F' \<le> sup F F'"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   550
    unfolding le_filter_def eventually_sup by simp_all }
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   551
  { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   552
    unfolding le_filter_def eventually_sup by simp }
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   553
  { assume "F'' \<in> S" thus "Inf S \<le> F''"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   554
    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   555
  { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   556
    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   557
  { assume "F \<in> S" thus "F \<le> Sup S"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   558
    unfolding le_filter_def eventually_Sup by simp }
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   559
  { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   560
    unfolding le_filter_def eventually_Sup by simp }
52729
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   561
  { show "Inf {} = (top::'a filter)"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   562
    by (auto simp: top_filter_def Inf_filter_def Sup_filter_def)
53859
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   563
      (metis (full_types) top_filter_def always_eventually eventually_top) }
52729
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   564
  { show "Sup {} = (bot::'a filter)"
412c9e0381a1 factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents: 52265
diff changeset
   565
    by (auto simp: bot_filter_def Sup_filter_def) }
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   566
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   567
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   568
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   569
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   570
lemma filter_leD:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   571
  "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   572
  unfolding le_filter_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   573
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   574
lemma filter_leI:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   575
  "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   576
  unfolding le_filter_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   577
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   578
lemma eventually_False:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   579
  "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   580
  unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   581
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   582
abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   583
  where "trivial_limit F \<equiv> F = bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   584
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   585
lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   586
  by (rule eventually_False [symmetric])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   587
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   588
lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   589
  by (cases P) (simp_all add: eventually_False)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   590
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   591
lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   592
proof -
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   593
  let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   594
  
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   595
  { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   596
    proof (rule eventually_Abs_filter is_filter.intro)+
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   597
      show "?F (\<lambda>x. True)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   598
        by (rule exI[of _ "{}"]) (simp add: le_fun_def)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   599
    next
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   600
      fix P Q
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   601
      assume "?F P" then guess X ..
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   602
      moreover
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   603
      assume "?F Q" then guess Y ..
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   604
      ultimately show "?F (\<lambda>x. P x \<and> Q x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   605
        by (intro exI[of _ "X \<union> Y"])
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   606
           (auto simp: Inf_union_distrib eventually_inf)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   607
    next
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   608
      fix P Q
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   609
      assume "?F P" then guess X ..
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   610
      moreover assume "\<forall>x. P x \<longrightarrow> Q x"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   611
      ultimately show "?F Q"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   612
        by (intro exI[of _ X]) (auto elim: eventually_elim1)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   613
    qed }
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   614
  note eventually_F = this
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   615
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   616
  have "Inf B = Abs_filter ?F"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   617
  proof (intro antisym Inf_greatest)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   618
    show "Inf B \<le> Abs_filter ?F"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   619
      by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   620
  next
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   621
    fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   622
      by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   623
  qed
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   624
  then show ?thesis
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   625
    by (simp add: eventually_F)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   626
qed
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   627
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   628
lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   629
  unfolding INF_def[of B] eventually_Inf[of P "F`B"]
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   630
  by (metis Inf_image_eq finite_imageI image_mono finite_subset_image)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   631
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   632
lemma Inf_filter_not_bot:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   633
  fixes B :: "'a filter set"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   634
  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   635
  unfolding trivial_limit_def eventually_Inf[of _ B]
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   636
    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   637
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   638
lemma INF_filter_not_bot:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   639
  fixes F :: "'i \<Rightarrow> 'a filter"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   640
  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   641
  unfolding trivial_limit_def eventually_INF[of _ B]
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   642
    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   643
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   644
lemma eventually_Inf_base:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   645
  assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   646
  shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   647
proof (subst eventually_Inf, safe)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   648
  fix X assume "finite X" "X \<subseteq> B"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   649
  then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   650
  proof induct
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   651
    case empty then show ?case
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   652
      using `B \<noteq> {}` by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   653
  next
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   654
    case (insert x X)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   655
    then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   656
      by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   657
    with `insert x X \<subseteq> B` base[of b x] show ?case
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   658
      by (auto intro: order_trans)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   659
  qed
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   660
  then obtain b where "b \<in> B" "b \<le> Inf X"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   661
    by (auto simp: le_Inf_iff)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   662
  then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   663
    by (intro bexI[of _ b]) (auto simp: le_filter_def)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   664
qed (auto intro!: exI[of _ "{x}" for x])
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   665
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   666
lemma eventually_INF_base:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   667
  "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   668
    eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   669
  unfolding INF_def by (subst eventually_Inf_base) auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   670
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   671
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   672
subsubsection {* Map function for filters *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   673
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   674
definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   675
  where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   676
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   677
lemma eventually_filtermap:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   678
  "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   679
  unfolding filtermap_def
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   680
  apply (rule eventually_Abs_filter)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   681
  apply (rule is_filter.intro)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   682
  apply (auto elim!: eventually_rev_mp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   683
  done
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   684
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   685
lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   686
  by (simp add: filter_eq_iff eventually_filtermap)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   687
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   688
lemma filtermap_filtermap:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   689
  "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   690
  by (simp add: filter_eq_iff eventually_filtermap)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   691
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   692
lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   693
  unfolding le_filter_def eventually_filtermap by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   694
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   695
lemma filtermap_bot [simp]: "filtermap f bot = bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   696
  by (simp add: filter_eq_iff eventually_filtermap)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   697
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   698
lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   699
  by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   700
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   701
lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   702
  by (auto simp: le_filter_def eventually_filtermap eventually_inf)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   703
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   704
lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   705
proof -
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   706
  { fix X :: "'c set" assume "finite X"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   707
    then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   708
    proof induct
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   709
      case (insert x X)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   710
      have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   711
        by (rule order_trans[OF _ filtermap_inf]) simp
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   712
      also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   713
        by (intro inf_mono insert order_refl)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   714
      finally show ?case
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   715
        by simp
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   716
    qed simp }
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   717
  then show ?thesis
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   718
    unfolding le_filter_def eventually_filtermap
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   719
    by (subst (1 2) eventually_INF) auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   720
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   721
subsubsection {* Standard filters *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   722
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   723
definition principal :: "'a set \<Rightarrow> 'a filter" where
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   724
  "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   725
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   726
lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   727
  unfolding principal_def
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   728
  by (rule eventually_Abs_filter, rule is_filter.intro) auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   729
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   730
lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   731
  unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   732
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   733
lemma principal_UNIV[simp]: "principal UNIV = top"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   734
  by (auto simp: filter_eq_iff eventually_principal)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   735
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   736
lemma principal_empty[simp]: "principal {} = bot"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   737
  by (auto simp: filter_eq_iff eventually_principal)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   738
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   739
lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   740
  by (auto simp add: filter_eq_iff eventually_principal)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   741
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   742
lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   743
  by (auto simp: le_filter_def eventually_principal)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   744
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   745
lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   746
  unfolding le_filter_def eventually_principal
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   747
  apply safe
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   748
  apply (erule_tac x="\<lambda>x. x \<in> A" in allE)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   749
  apply (auto elim: eventually_elim1)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   750
  done
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   751
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   752
lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   753
  unfolding eq_iff by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   754
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   755
lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   756
  unfolding filter_eq_iff eventually_sup eventually_principal by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   757
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   758
lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   759
  unfolding filter_eq_iff eventually_inf eventually_principal
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   760
  by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   761
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   762
lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   763
  unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   764
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   765
lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   766
  by (induct X rule: finite_induct) auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   767
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   768
lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   769
  unfolding filter_eq_iff eventually_filtermap eventually_principal by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   770
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   771
subsubsection {* Order filters *}
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   772
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   773
definition at_top :: "('a::order) filter"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   774
  where "at_top = (INF k. principal {k ..})"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   775
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   776
lemma at_top_sub: "at_top = (INF k:{c::'a::linorder..}. principal {k ..})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   777
  by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   778
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   779
lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   780
  unfolding at_top_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   781
  by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   782
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   783
lemma eventually_ge_at_top:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   784
  "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   785
  unfolding eventually_at_top_linorder by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   786
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   787
lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   788
proof -
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   789
  have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   790
    by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   791
  also have "(INF k. principal {k::'a <..}) = at_top"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   792
    unfolding at_top_def 
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   793
    by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   794
  finally show ?thesis .
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   795
qed
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   796
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   797
lemma eventually_gt_at_top:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   798
  "eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   799
  unfolding eventually_at_top_dense by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   800
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   801
definition at_bot :: "('a::order) filter"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   802
  where "at_bot = (INF k. principal {.. k})"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   803
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   804
lemma at_bot_sub: "at_bot = (INF k:{.. c::'a::linorder}. principal {.. k})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   805
  by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   806
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   807
lemma eventually_at_bot_linorder:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   808
  fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   809
  unfolding at_bot_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   810
  by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   811
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   812
lemma eventually_le_at_bot:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   813
  "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   814
  unfolding eventually_at_bot_linorder by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   815
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   816
lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   817
proof -
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   818
  have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   819
    by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   820
  also have "(INF k. principal {..< k::'a}) = at_bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   821
    unfolding at_bot_def 
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   822
    by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   823
  finally show ?thesis .
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   824
qed
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   825
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   826
lemma eventually_gt_at_bot:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   827
  "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   828
  unfolding eventually_at_bot_dense by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   829
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   830
lemma trivial_limit_at_bot_linorder: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   831
  unfolding trivial_limit_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   832
  by (metis eventually_at_bot_linorder order_refl)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   833
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   834
lemma trivial_limit_at_top_linorder: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   835
  unfolding trivial_limit_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   836
  by (metis eventually_at_top_linorder order_refl)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   837
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   838
subsection {* Sequentially *}
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   839
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   840
abbreviation sequentially :: "nat filter"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   841
  where "sequentially \<equiv> at_top"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   842
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   843
lemma eventually_sequentially:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   844
  "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   845
  by (rule eventually_at_top_linorder)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   846
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   847
lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   848
  unfolding filter_eq_iff eventually_sequentially by auto
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   849
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   850
lemmas trivial_limit_sequentially = sequentially_bot
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   851
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   852
lemma eventually_False_sequentially [simp]:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   853
  "\<not> eventually (\<lambda>n. False) sequentially"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   854
  by (simp add: eventually_False)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   855
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   856
lemma le_sequentially:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   857
  "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   858
  by (simp add: at_top_def le_INF_iff le_principal)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   859
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   860
lemma eventually_sequentiallyI:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   861
  assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   862
  shows "eventually P sequentially"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   863
using assms by (auto simp: eventually_sequentially)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   864
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   865
lemma eventually_sequentially_seg:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   866
  "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   867
  unfolding eventually_sequentially
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   868
  apply safe
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   869
   apply (rule_tac x="N + k" in exI)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   870
   apply rule
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   871
   apply (erule_tac x="n - k" in allE)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   872
   apply auto []
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   873
  apply (rule_tac x=N in exI)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   874
  apply auto []
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   875
  done
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   876
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   877
subsubsection {* Topological filters *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   878
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   879
definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   880
  where "nhds a = (INF S:{S. open S \<and> a \<in> S}. principal S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   881
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   882
definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" ("at (_) within (_)" [1000, 60] 60)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   883
  where "at a within s = inf (nhds a) (principal (s - {a}))"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   884
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   885
abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter" ("at") where
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   886
  "at x \<equiv> at x within (CONST UNIV)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   887
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   888
abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" where
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   889
  "at_right x \<equiv> at x within {x <..}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   890
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   891
abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" where
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   892
  "at_left x \<equiv> at x within {..< x}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   893
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   894
lemma (in topological_space) nhds_generated_topology:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   895
  "open = generate_topology T \<Longrightarrow> nhds x = (INF S:{S\<in>T. x \<in> S}. principal S)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   896
  unfolding nhds_def
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   897
proof (safe intro!: antisym INF_greatest)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   898
  fix S assume "generate_topology T S" "x \<in> S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   899
  then show "(INF S:{S \<in> T. x \<in> S}. principal S) \<le> principal S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   900
    by induction 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   901
       (auto intro: INF_lower order_trans simp add: inf_principal[symmetric] simp del: inf_principal)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   902
qed (auto intro!: INF_lower intro: generate_topology.intros)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   903
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   904
lemma (in topological_space) eventually_nhds:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   905
  "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   906
  unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   907
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   908
lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   909
  unfolding trivial_limit_def eventually_nhds by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   910
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   911
lemma at_within_eq: "at x within s = (INF S:{S. open S \<and> x \<in> S}. principal (S \<inter> s - {x}))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   912
  unfolding nhds_def at_within_def by (subst INF_inf_const2[symmetric]) (auto simp add: Diff_Int_distrib)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   913
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   914
lemma eventually_at_filter:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   915
  "eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   916
  unfolding at_within_def eventually_inf_principal by (simp add: imp_conjL[symmetric] conj_commute)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   917
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   918
lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   919
  unfolding at_within_def by (intro inf_mono) auto
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   920
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   921
lemma eventually_at_topological:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   922
  "eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   923
  unfolding eventually_nhds eventually_at_filter by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   924
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
   925
lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   926
  unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
   927
53859
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   928
lemma at_within_empty [simp]: "at a within {} = bot"
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   929
  unfolding at_within_def by simp
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   930
53860
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   931
lemma at_within_union: "at x within (S \<union> T) = sup (at x within S) (at x within T)"
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   932
  unfolding filter_eq_iff eventually_sup eventually_at_filter
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   933
  by (auto elim!: eventually_rev_mp)
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   934
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   935
lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   936
  unfolding trivial_limit_def eventually_at_topological
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   937
  by (safe, case_tac "S = {a}", simp, fast, fast)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   938
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   939
lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   940
  by (simp add: at_eq_bot_iff not_open_singleton)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   941
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   942
lemma (in order_topology) nhds_order: "nhds x =
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   943
  inf (INF a:{x <..}. principal {..< a}) (INF a:{..< x}. principal {a <..})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   944
proof -
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   945
  have 1: "{S \<in> range lessThan \<union> range greaterThan. x \<in> S} = 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   946
      (\<lambda>a. {..< a}) ` {x <..} \<union> (\<lambda>a. {a <..}) ` {..< x}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   947
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   948
  show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   949
    unfolding nhds_generated_topology[OF open_generated_order] INF_union 1 INF_image comp_def ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   950
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   951
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   952
lemma (in linorder_topology) at_within_order: "UNIV \<noteq> {x} \<Longrightarrow> 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   953
  at x within s = inf (INF a:{x <..}. principal ({..< a} \<inter> s - {x}))
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   954
                      (INF a:{..< x}. principal ({a <..} \<inter> s - {x}))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   955
proof (cases "{x <..} = {}" "{..< x} = {}" rule: case_split[case_product case_split])
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   956
  assume "UNIV \<noteq> {x}" "{x<..} = {}" "{..< x} = {}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   957
  moreover have "UNIV = {..< x} \<union> {x} \<union> {x <..}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   958
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   959
  ultimately show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   960
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   961
qed (auto simp: at_within_def nhds_order Int_Diff inf_principal[symmetric] INF_inf_const2
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   962
                inf_sup_aci[where 'a="'a filter"]
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   963
          simp del: inf_principal)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   964
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   965
lemma (in linorder_topology) at_left_eq:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   966
  "y < x \<Longrightarrow> at_left x = (INF a:{..< x}. principal {a <..< x})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   967
  by (subst at_within_order)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   968
     (auto simp: greaterThan_Int_greaterThan greaterThanLessThan_eq[symmetric] min.absorb2 INF_constant
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   969
           intro!: INF_lower2 inf_absorb2)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   970
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   971
lemma (in linorder_topology) eventually_at_left:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   972
  "y < x \<Longrightarrow> eventually P (at_left x) \<longleftrightarrow> (\<exists>b<x. \<forall>y>b. y < x \<longrightarrow> P y)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   973
  unfolding at_left_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   974
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   975
lemma (in linorder_topology) at_right_eq:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   976
  "x < y \<Longrightarrow> at_right x = (INF a:{x <..}. principal {x <..< a})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   977
  by (subst at_within_order)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   978
     (auto simp: lessThan_Int_lessThan greaterThanLessThan_eq[symmetric] max.absorb2 INF_constant Int_commute
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   979
           intro!: INF_lower2 inf_absorb1)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   980
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   981
lemma (in linorder_topology) eventually_at_right:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   982
  "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   983
  unfolding at_right_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   984
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   985
lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   986
  unfolding filter_eq_iff eventually_at_topological by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   987
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   988
lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   989
  unfolding filter_eq_iff eventually_at_topological by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   990
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   991
lemma trivial_limit_at_left_real [simp]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   992
  "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_order, linorder_topology}))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   993
  using lt_ex[of x]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   994
  by safe (auto simp add: trivial_limit_def eventually_at_left dest: dense)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   995
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   996
lemma trivial_limit_at_right_real [simp]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   997
  "\<not> trivial_limit (at_right (x::'a::{no_top, dense_order, linorder_topology}))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   998
  using gt_ex[of x]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   999
  by safe (auto simp add: trivial_limit_def eventually_at_right dest: dense)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1000
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1001
lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1002
  by (auto simp: eventually_at_filter filter_eq_iff eventually_sup 
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1003
           elim: eventually_elim2 eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1004
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1005
lemma eventually_at_split:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1006
  "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1007
  by (subst at_eq_sup_left_right) (simp add: eventually_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1008
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1009
subsection {* Limits *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1010
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1011
definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1012
  "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1013
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1014
syntax
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1015
  "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1016
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1017
translations
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1018
  "LIM x F1. f :> F2"   == "CONST filterlim (%x. f) F2 F1"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1019
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1020
lemma filterlim_iff:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1021
  "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1022
  unfolding filterlim_def le_filter_def eventually_filtermap ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1023
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1024
lemma filterlim_compose:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1025
  "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1026
  unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1027
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1028
lemma filterlim_mono:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1029
  "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1030
  unfolding filterlim_def by (metis filtermap_mono order_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1031
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1032
lemma filterlim_ident: "LIM x F. x :> F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1033
  by (simp add: filterlim_def filtermap_ident)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1034
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1035
lemma filterlim_cong:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1036
  "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1037
  by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1038
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1039
lemma filterlim_mono_eventually:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1040
  assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1041
  assumes eq: "eventually (\<lambda>x. f x = f' x) G'"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1042
  shows "filterlim f' F' G'"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1043
  apply (rule filterlim_cong[OF refl refl eq, THEN iffD1])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1044
  apply (rule filterlim_mono[OF _ ord])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1045
  apply fact
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1046
  done
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1047
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1048
lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1049
  apply (auto intro!: filtermap_mono) []
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1050
  apply (auto simp: le_filter_def eventually_filtermap)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1051
  apply (erule_tac x="\<lambda>x. P (inv f x)" in allE)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1052
  apply auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1053
  done
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1054
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1055
lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1056
  by (simp add: filtermap_mono_strong eq_iff)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1057
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1058
lemma filterlim_principal:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1059
  "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1060
  unfolding filterlim_def eventually_filtermap le_principal ..
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1061
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1062
lemma filterlim_inf:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1063
  "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1064
  unfolding filterlim_def by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1065
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1066
lemma filterlim_INF:
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1067
  "(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1068
  unfolding filterlim_def le_INF_iff ..
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1069
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1070
lemma filterlim_INF_INF:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1071
  "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (INF i:I. F i). f x :> (INF j:J. G j)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1072
  unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono])
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1073
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1074
lemma filterlim_base:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1075
  "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1076
    LIM x (INF i:I. principal (F i)). f x :> (INF j:J. principal (G j))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1077
  by (force intro!: filterlim_INF_INF simp: image_subset_iff)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1078
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1079
lemma filterlim_base_iff: 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1080
  assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1081
  shows "(LIM x (INF i:I. principal (F i)). f x :> INF j:J. principal (G j)) \<longleftrightarrow>
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1082
    (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1083
  unfolding filterlim_INF filterlim_principal
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1084
proof (subst eventually_INF_base)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1085
  fix i j assume "i \<in> I" "j \<in> I"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1086
  with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1087
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1088
qed (auto simp: eventually_principal `I \<noteq> {}`)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1089
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1090
lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1091
  unfolding filterlim_def filtermap_filtermap ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1092
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1093
lemma filterlim_sup:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1094
  "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1095
  unfolding filterlim_def filtermap_sup by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1096
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1097
lemma eventually_sequentially_Suc: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1098
  unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1099
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1100
lemma filterlim_sequentially_Suc:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1101
  "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1102
  unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1103
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1104
lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1105
  by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1106
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1107
subsubsection {* Tendsto *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1108
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1109
abbreviation (in topological_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1110
  tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1111
  "(f ---> l) F \<equiv> filterlim f (nhds l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1112
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1113
definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1114
  "Lim A f = (THE l. (f ---> l) A)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1115
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1116
lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1117
  by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1118
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
  1119
named_theorems tendsto_intros "introduction rules for tendsto"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1120
setup {*
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1121
  Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
  1122
    fn context =>
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
  1123
      Named_Theorems.get (Context.proof_of context) @{named_theorems tendsto_intros}
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
  1124
      |> map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])))
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1125
*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1126
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1127
lemma (in topological_space) tendsto_def:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1128
   "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1129
   unfolding nhds_def filterlim_INF filterlim_principal by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1130
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1131
lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1132
  unfolding tendsto_def le_filter_def by fast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1133
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1134
lemma tendsto_within_subset: "(f ---> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at x within T)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1135
  by (blast intro: tendsto_mono at_le)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1136
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1137
lemma filterlim_at:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1138
  "(LIM x F. f x :> at b within s) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f ---> b) F)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1139
  by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1140
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1141
lemma (in topological_space) topological_tendstoI:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1142
  "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f ---> l) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1143
  unfolding tendsto_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1144
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1145
lemma (in topological_space) topological_tendstoD:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1146
  "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1147
  unfolding tendsto_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1148
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1149
lemma (in order_topology) order_tendsto_iff:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1150
  "(f ---> x) F \<longleftrightarrow> (\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1151
  unfolding nhds_order filterlim_inf filterlim_INF filterlim_principal by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1152
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1153
lemma (in order_topology) order_tendstoI:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1154
  "(\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F) \<Longrightarrow> (\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F) \<Longrightarrow>
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1155
    (f ---> y) F"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1156
  unfolding order_tendsto_iff by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1157
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1158
lemma (in order_topology) order_tendstoD:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1159
  assumes "(f ---> y) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1160
  shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1161
    and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1162
  using assms unfolding order_tendsto_iff by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1163
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1164
lemma tendsto_bot [simp]: "(f ---> a) bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1165
  unfolding tendsto_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1166
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1167
lemma (in linorder_topology) tendsto_max:
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1168
  assumes X: "(X ---> x) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1169
  assumes Y: "(Y ---> y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1170
  shows "((\<lambda>x. max (X x) (Y x)) ---> max x y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1171
proof (rule order_tendstoI)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1172
  fix a assume "a < max x y"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1173
  then show "eventually (\<lambda>x. a < max (X x) (Y x)) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1174
    using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1175
    by (auto simp: less_max_iff_disj elim: eventually_elim1)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1176
next
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1177
  fix a assume "max x y < a"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1178
  then show "eventually (\<lambda>x. max (X x) (Y x) < a) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1179
    using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1180
    by (auto simp: eventually_conj_iff)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1181
qed
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1182
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1183
lemma (in linorder_topology) tendsto_min:
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1184
  assumes X: "(X ---> x) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1185
  assumes Y: "(Y ---> y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1186
  shows "((\<lambda>x. min (X x) (Y x)) ---> min x y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1187
proof (rule order_tendstoI)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1188
  fix a assume "a < min x y"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1189
  then show "eventually (\<lambda>x. a < min (X x) (Y x)) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1190
    using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1191
    by (auto simp: eventually_conj_iff)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1192
next
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1193
  fix a assume "min x y < a"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1194
  then show "eventually (\<lambda>x. min (X x) (Y x) < a) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1195
    using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1196
    by (auto simp: min_less_iff_disj elim: eventually_elim1)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1197
qed
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
  1198
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1199
lemma tendsto_ident_at [tendsto_intros, simp, intro]: "((\<lambda>x. x) ---> a) (at a within s)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1200
  unfolding tendsto_def eventually_at_topological by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1201
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1202
lemma (in topological_space) tendsto_const [tendsto_intros, simp, intro]: "((\<lambda>x. k) ---> k) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1203
  by (simp add: tendsto_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1204
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1205
lemma (in t2_space) tendsto_unique:
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1206
  assumes "F \<noteq> bot" and "(f ---> a) F" and "(f ---> b) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1207
  shows "a = b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1208
proof (rule ccontr)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1209
  assume "a \<noteq> b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1210
  obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1211
    using hausdorff [OF `a \<noteq> b`] by fast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1212
  have "eventually (\<lambda>x. f x \<in> U) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1213
    using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1214
  moreover
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1215
  have "eventually (\<lambda>x. f x \<in> V) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1216
    using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1217
  ultimately
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1218
  have "eventually (\<lambda>x. False) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1219
  proof eventually_elim
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1220
    case (elim x)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1221
    hence "f x \<in> U \<inter> V" by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1222
    with `U \<inter> V = {}` show ?case by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1223
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1224
  with `\<not> trivial_limit F` show "False"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1225
    by (simp add: trivial_limit_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1226
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1227
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1228
lemma (in t2_space) tendsto_const_iff:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1229
  assumes "\<not> trivial_limit F" shows "((\<lambda>x. a :: 'a) ---> b) F \<longleftrightarrow> a = b"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1230
  by (auto intro!: tendsto_unique [OF assms tendsto_const])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1231
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1232
lemma increasing_tendsto:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1233
  fixes f :: "_ \<Rightarrow> 'a::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1234
  assumes bdd: "eventually (\<lambda>n. f n \<le> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1235
      and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1236
  shows "(f ---> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1237
  using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1238
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1239
lemma decreasing_tendsto:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1240
  fixes f :: "_ \<Rightarrow> 'a::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1241
  assumes bdd: "eventually (\<lambda>n. l \<le> f n) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1242
      and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1243
  shows "(f ---> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1244
  using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1245
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1246
lemma tendsto_sandwich:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1247
  fixes f g h :: "'a \<Rightarrow> 'b::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1248
  assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1249
  assumes lim: "(f ---> c) net" "(h ---> c) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1250
  shows "(g ---> c) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1251
proof (rule order_tendstoI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1252
  fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1253
    using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1254
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1255
  fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1256
    using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1257
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1258
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1259
lemma tendsto_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1260
  fixes f g :: "'a \<Rightarrow> 'b::linorder_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1261
  assumes F: "\<not> trivial_limit F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1262
  assumes x: "(f ---> x) F" and y: "(g ---> y) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1263
  assumes ev: "eventually (\<lambda>x. g x \<le> f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1264
  shows "y \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1265
proof (rule ccontr)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1266
  assume "\<not> y \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1267
  with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1268
    by (auto simp: not_le)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1269
  then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1270
    using x y by (auto intro: order_tendstoD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1271
  with ev have "eventually (\<lambda>x. False) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1272
    by eventually_elim (insert xy, fastforce)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1273
  with F show False
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1274
    by (simp add: eventually_False)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1275
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1276
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1277
lemma tendsto_le_const:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1278
  fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1279
  assumes F: "\<not> trivial_limit F"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1280
  assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<le> f i) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1281
  shows "a \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1282
  using F x tendsto_const a by (rule tendsto_le)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1283
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1284
lemma tendsto_ge_const:
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1285
  fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1286
  assumes F: "\<not> trivial_limit F"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1287
  assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<ge> f i) F"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1288
  shows "a \<ge> x"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1289
  by (rule tendsto_le [OF F tendsto_const x a])
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
  1290
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1291
subsubsection {* Rules about @{const Lim} *}
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1292
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1293
lemma tendsto_Lim:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1294
  "\<not>(trivial_limit net) \<Longrightarrow> (f ---> l) net \<Longrightarrow> Lim net f = l"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1295
  unfolding Lim_def using tendsto_unique[of net f] by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1296
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1297
lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1298
  by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1299
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1300
subsection {* Limits to @{const at_top} and @{const at_bot} *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1301
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1302
lemma filterlim_at_top:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1303
  fixes f :: "'a \<Rightarrow> ('b::linorder)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1304
  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1305
  by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1306
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1307
lemma filterlim_at_top_mono:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1308
  "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow>
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1309
    LIM x F. g x :> at_top"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1310
  by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1311
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1312
lemma filterlim_at_top_dense:
53215
5e47c31c6f7c renamed typeclass dense_linorder to unbounded_dense_linorder
hoelzl
parents: 52729
diff changeset
  1313
  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1314
  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1315
  by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1316
            filterlim_at_top[of f F] filterlim_iff[of f at_top F])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1317
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1318
lemma filterlim_at_top_ge:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1319
  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1320
  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1321
  unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1322
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1323
lemma filterlim_at_top_at_top:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1324
  fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1325
  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1326
  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1327
  assumes Q: "eventually Q at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1328
  assumes P: "eventually P at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1329
  shows "filterlim f at_top at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1330
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1331
  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1332
    unfolding eventually_at_top_linorder by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1333
  show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1334
  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1335
    fix z assume "x \<le> z"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1336
    with x have "P z" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1337
    have "eventually (\<lambda>x. g z \<le> x) at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1338
      by (rule eventually_ge_at_top)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1339
    with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1340
      by eventually_elim (metis mono bij `P z`)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1341
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1342
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1343
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1344
lemma filterlim_at_top_gt:
53215
5e47c31c6f7c renamed typeclass dense_linorder to unbounded_dense_linorder
hoelzl
parents: 52729
diff changeset
  1345
  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1346
  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1347
  by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1348
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1349
lemma filterlim_at_bot: 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1350
  fixes f :: "'a \<Rightarrow> ('b::linorder)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1351
  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1352
  by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1353
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1354
lemma filterlim_at_bot_dense:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1355
  fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1356
  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1357
proof (auto simp add: filterlim_at_bot[of f F])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1358
  fix Z :: 'b
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1359
  from lt_ex [of Z] obtain Z' where 1: "Z' < Z" ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1360
  assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1361
  hence "eventually (\<lambda>x. f x \<le> Z') F" by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1362
  thus "eventually (\<lambda>x. f x < Z) F"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1363
    apply (rule eventually_mono[rotated])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1364
    using 1 by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1365
  next 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1366
    fix Z :: 'b 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1367
    show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1368
      by (drule spec [of _ Z], erule eventually_mono[rotated], auto simp add: less_imp_le)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1369
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1370
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1371
lemma filterlim_at_bot_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1372
  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1373
  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1374
  unfolding filterlim_at_bot
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1375
proof safe
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1376
  fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1377
  with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1378
    by (auto elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1379
qed simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1380
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1381
lemma filterlim_at_bot_lt:
53215
5e47c31c6f7c renamed typeclass dense_linorder to unbounded_dense_linorder
hoelzl
parents: 52729
diff changeset
  1382
  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1383
  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1384
  by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1385
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1386
lemma filterlim_at_bot_at_right:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1387
  fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1388
  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1389
  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1390
  assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1391
  assumes P: "eventually P at_bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1392
  shows "filterlim f at_bot (at_right a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1393
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1394
  from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1395
    unfolding eventually_at_bot_linorder by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1396
  show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1397
  proof (intro filterlim_at_bot_le[THEN iffD2] allI impI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1398
    fix z assume "z \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1399
    with x have "P z" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1400
    have "eventually (\<lambda>x. x \<le> g z) (at_right a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1401
      using bound[OF bij(2)[OF `P z`]]
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1402
      unfolding eventually_at_right[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1403
    with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1404
      by eventually_elim (metis bij `P z` mono)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1405
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1406
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1407
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1408
lemma filterlim_at_top_at_left:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1409
  fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1410
  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1411
  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1412
  assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1413
  assumes P: "eventually P at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1414
  shows "filterlim f at_top (at_left a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1415
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1416
  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1417
    unfolding eventually_at_top_linorder by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1418
  show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1419
  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1420
    fix z assume "x \<le> z"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1421
    with x have "P z" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1422
    have "eventually (\<lambda>x. g z \<le> x) (at_left a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1423
      using bound[OF bij(2)[OF `P z`]]
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
  1424
      unfolding eventually_at_left[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1425
    with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1426
      by eventually_elim (metis bij `P z` mono)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1427
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1428
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1429
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1430
lemma filterlim_split_at:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1431
  "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1432
  by (subst at_eq_sup_left_right) (rule filterlim_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1433
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1434
lemma filterlim_at_split:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1435
  "filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1436
  by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1437
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1438
lemma eventually_nhds_top:
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1439
  fixes P :: "'a :: {order_top, linorder_topology} \<Rightarrow> bool"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1440
  assumes "(b::'a) < top"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1441
  shows "eventually P (nhds top) \<longleftrightarrow> (\<exists>b<top. (\<forall>z. b < z \<longrightarrow> P z))"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1442
  unfolding eventually_nhds
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1443
proof safe
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1444
  fix S :: "'a set" assume "open S" "top \<in> S"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1445
  note open_left[OF this `b < top`]
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1446
  moreover assume "\<forall>s\<in>S. P s"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1447
  ultimately show "\<exists>b<top. \<forall>z>b. P z"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1448
    by (auto simp: subset_eq Ball_def)
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1449
next
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1450
  fix b assume "b < top" "\<forall>z>b. P z"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1451
  then show "\<exists>S. open S \<and> top \<in> S \<and> (\<forall>xa\<in>S. P xa)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1452
    by (intro exI[of _ "{b <..}"]) auto
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1453
qed
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1454
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1455
lemma tendsto_at_within_iff_tendsto_nhds:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1456
  "(g ---> g l) (at l within S) \<longleftrightarrow> (g ---> g l) (inf (nhds l) (principal S))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1457
  unfolding tendsto_def eventually_at_filter eventually_inf_principal
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1458
  by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1459
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1460
subsection {* Limits on sequences *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1461
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1462
abbreviation (in topological_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1463
  LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1464
    ("((_)/ ----> (_))" [60, 60] 60) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1465
  "X ----> L \<equiv> (X ---> L) sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1466
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1467
abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1468
  "lim X \<equiv> Lim sequentially X"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1469
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1470
definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1471
  "convergent X = (\<exists>L. X ----> L)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1472
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1473
lemma lim_def: "lim X = (THE L. X ----> L)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1474
  unfolding Lim_def ..
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1475
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1476
subsubsection {* Monotone sequences and subsequences *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1477
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1478
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1479
  monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1480
    --{*Definition of monotonicity.
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1481
        The use of disjunction here complicates proofs considerably.
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1482
        One alternative is to add a Boolean argument to indicate the direction.
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1483
        Another is to develop the notions of increasing and decreasing first.*}
56020
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1484
  "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) \<or> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1485
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1486
abbreviation incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1487
  "incseq X \<equiv> mono X"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1488
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1489
lemma incseq_def: "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<ge> X m)"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1490
  unfolding mono_def ..
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1491
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1492
abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1493
  "decseq X \<equiv> antimono X"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1494
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1495
lemma decseq_def: "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
  1496
  unfolding antimono_def ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1497
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1498
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1499
  subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1500
    --{*Definition of subsequence*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1501
  "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1502
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1503
lemma incseq_SucI:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1504
  "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1505
  using lift_Suc_mono_le[of X]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1506
  by (auto simp: incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1507
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1508
lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1509
  by (auto simp: incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1510
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1511
lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1512
  using incseqD[of A i "Suc i"] by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1513
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1514
lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1515
  by (auto intro: incseq_SucI dest: incseq_SucD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1516
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1517
lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1518
  unfolding incseq_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1519
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1520
lemma decseq_SucI:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1521
  "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1522
  using order.lift_Suc_mono_le[OF dual_order, of X]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1523
  by (auto simp: decseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1524
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1525
lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1526
  by (auto simp: decseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1527
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1528
lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1529
  using decseqD[of A i "Suc i"] by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1530
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1531
lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1532
  by (auto intro: decseq_SucI dest: decseq_SucD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1533
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1534
lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1535
  unfolding decseq_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1536
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1537
lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1538
  unfolding monoseq_def incseq_def decseq_def ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1539
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1540
lemma monoseq_Suc:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1541
  "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1542
  unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1543
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1544
lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1545
by (simp add: monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1546
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1547
lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1548
by (simp add: monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1549
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1550
lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1551
by (simp add: monoseq_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1552
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1553
lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1554
by (simp add: monoseq_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1555
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1556
lemma monoseq_minus:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1557
  fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1558
  assumes "monoseq a"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1559
  shows "monoseq (\<lambda> n. - a n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1560
proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n")
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1561
  case True
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1562
  hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1563
  thus ?thesis by (rule monoI2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1564
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1565
  case False
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1566
  hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1567
  thus ?thesis by (rule monoI1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1568
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1569
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1570
text{*Subsequence (alternative definition, (e.g. Hoskins)*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1571
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1572
lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1573
apply (simp add: subseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1574
apply (auto dest!: less_imp_Suc_add)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1575
apply (induct_tac k)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1576
apply (auto intro: less_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1577
done
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1578
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1579
text{* for any sequence, there is a monotonic subsequence *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1580
lemma seq_monosub:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1581
  fixes s :: "nat => 'a::linorder"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1582
  shows "\<exists>f. subseq f \<and> monoseq (\<lambda>n. (s (f n)))"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1583
proof cases
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1584
  assume "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. s m \<le> s p"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1585
  then have "\<exists>f. \<forall>n. (\<forall>m\<ge>f n. s m \<le> s (f n)) \<and> f n < f (Suc n)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1586
    by (intro dependent_nat_choice) (auto simp: conj_commute)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1587
  then obtain f where "subseq f" and mono: "\<And>n m. f n \<le> m \<Longrightarrow> s m \<le> s (f n)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1588
    by (auto simp: subseq_Suc_iff)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1589
  moreover 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1590
  then have "incseq f"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1591
    unfolding subseq_Suc_iff incseq_Suc_iff by (auto intro: less_imp_le)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1592
  then have "monoseq (\<lambda>n. s (f n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1593
    by (auto simp add: incseq_def intro!: mono monoI2)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1594
  ultimately show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1595
    by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1596
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1597
  assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1598
  then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less)
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1599
  have "\<exists>f. \<forall>n. N < f n \<and> f n < f (Suc n) \<and> s (f n) \<le> s (f (Suc n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1600
  proof (intro dependent_nat_choice)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1601
    fix x assume "N < x" with N[of x] show "\<exists>y>N. x < y \<and> s x \<le> s y"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1602
      by (auto intro: less_trans)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1603
  qed auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1604
  then show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1605
    by (auto simp: monoseq_iff incseq_Suc_iff subseq_Suc_iff)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1606
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1607
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1608
lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1609
proof(induct n)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1610
  case 0 thus ?case by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1611
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1612
  case (Suc n)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1613
  from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1614
  have "n < f (Suc n)" by arith
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1615
  thus ?case by arith
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1616
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1617
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1618
lemma eventually_subseq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1619
  "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1620
  unfolding eventually_sequentially by (metis seq_suble le_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1621
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1622
lemma not_eventually_sequentiallyD:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1623
  assumes P: "\<not> eventually P sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1624
  shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1625
proof -
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1626
  from P have "\<forall>n. \<exists>m\<ge>n. \<not> P m"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1627
    unfolding eventually_sequentially by (simp add: not_less)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1628
  then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1629
    by (auto simp: choice_iff)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1630
  then show ?thesis
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1631
    by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"]
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1632
             simp: less_eq_Suc_le subseq_Suc_iff)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1633
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1634
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1635
lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1636
  unfolding filterlim_iff by (metis eventually_subseq)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1637
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1638
lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1639
  unfolding subseq_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1640
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1641
lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1642
  using assms by (auto simp: subseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1643
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1644
lemma incseq_imp_monoseq:  "incseq X \<Longrightarrow> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1645
  by (simp add: incseq_def monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1646
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1647
lemma decseq_imp_monoseq:  "decseq X \<Longrightarrow> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1648
  by (simp add: decseq_def monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1649
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1650
lemma decseq_eq_incseq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1651
  fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)" 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1652
  by (simp add: decseq_def incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1653
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1654
lemma INT_decseq_offset:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1655
  assumes "decseq F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1656
  shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1657
proof safe
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1658
  fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1659
  show "x \<in> F i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1660
  proof cases
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1661
    from x have "x \<in> F n" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1662
    also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1663
      unfolding decseq_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1664
    finally show ?thesis .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1665
  qed (insert x, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1666
qed auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1667
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1668
lemma LIMSEQ_const_iff:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1669
  fixes k l :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1670
  shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1671
  using trivial_limit_sequentially by (rule tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1672
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1673
lemma LIMSEQ_SUP:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1674
  "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1675
  by (intro increasing_tendsto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1676
     (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1677
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1678
lemma LIMSEQ_INF:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1679
  "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1680
  by (intro decreasing_tendsto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1681
     (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1682
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1683
lemma LIMSEQ_ignore_initial_segment:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1684
  "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1685
  unfolding tendsto_def
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1686
  by (subst eventually_sequentially_seg[where k=k])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1687
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1688
lemma LIMSEQ_offset:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1689
  "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1690
  unfolding tendsto_def
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1691
  by (subst (asm) eventually_sequentially_seg[where k=k])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1692
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1693
lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1694
by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1695
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1696
lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1697
by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1698
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1699
lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1700
by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1701
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1702
lemma LIMSEQ_unique:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1703
  fixes a b :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1704
  shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1705
  using trivial_limit_sequentially by (rule tendsto_unique)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1706
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1707
lemma LIMSEQ_le_const:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1708
  "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1709
  using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1710
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1711
lemma LIMSEQ_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1712
  "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1713
  using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1714
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1715
lemma LIMSEQ_le_const2:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1716
  "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1717
  by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1718
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1719
lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1720
by (simp add: convergent_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1721
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1722
lemma convergentI: "(X ----> L) ==> convergent X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1723
by (auto simp add: convergent_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1724
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1725
lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1726
by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1727
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1728
lemma convergent_const: "convergent (\<lambda>n. c)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1729
  by (rule convergentI, rule tendsto_const)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1730
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1731
lemma monoseq_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1732
  "monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow>
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1733
    ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1734
  by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1735
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1736
lemma LIMSEQ_subseq_LIMSEQ:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1737
  "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1738
  unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1739
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1740
lemma convergent_subseq_convergent:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1741
  "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1742
  unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1743
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1744
lemma limI: "X ----> L ==> lim X = L"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1745
  by (rule tendsto_Lim) (rule trivial_limit_sequentially)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1746
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1747
lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1748
  using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1749
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1750
subsubsection{*Increasing and Decreasing Series*}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1751
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1752
lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1753
  by (metis incseq_def LIMSEQ_le_const)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1754
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1755
lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1756
  by (metis decseq_def LIMSEQ_le_const2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1757
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1758
subsection {* First countable topologies *}
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1759
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1760
class first_countable_topology = topological_space +
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1761
  assumes first_countable_basis:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1762
    "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1763
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1764
lemma (in first_countable_topology) countable_basis_at_decseq:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1765
  obtains A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1766
    "\<And>i. open (A i)" "\<And>i. x \<in> (A i)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1767
    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1768
proof atomize_elim
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1769
  from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1770
    nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1771
    and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S"  by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1772
  def F \<equiv> "\<lambda>n. \<Inter>i\<le>n. A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1773
  show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and>
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1774
      (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1775
  proof (safe intro!: exI[of _ F])
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1776
    fix i
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1777
    show "open (F i)" using nhds(1) by (auto simp: F_def)
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1778
    show "x \<in> F i" using nhds(2) by (auto simp: F_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1779
  next
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1780
    fix S assume "open S" "x \<in> S"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1781
    from incl[OF this] obtain i where "F i \<subseteq> S" unfolding F_def by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1782
    moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1783
      by (auto simp: F_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1784
    ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1785
      by (auto simp: eventually_sequentially)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1786
  qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1787
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1788
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1789
lemma (in first_countable_topology) nhds_countable:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1790
  obtains X :: "nat \<Rightarrow> 'a set"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1791
  where "decseq X" "\<And>n. open (X n)" "\<And>n. x \<in> X n" "nhds x = (INF n. principal (X n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1792
proof -
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1793
  from first_countable_basis obtain A :: "nat \<Rightarrow> 'a set"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1794
    where A: "\<And>n. x \<in> A n" "\<And>n. open (A n)" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1795
    by metis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1796
  show thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1797
  proof
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1798
    show "decseq (\<lambda>n. \<Inter>i\<le>n. A i)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1799
      by (auto simp: decseq_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1800
    show "\<And>n. x \<in> (\<Inter>i\<le>n. A i)" "\<And>n. open (\<Inter>i\<le>n. A i)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1801
      using A by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1802
    show "nhds x = (INF n. principal (\<Inter> i\<le>n. A i))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1803
      using A unfolding nhds_def
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1804
      apply (intro INF_eq)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1805
      apply simp_all
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1806
      apply force
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1807
      apply (intro exI[of _ "\<Inter> i\<le>n. A i" for n] conjI open_INT)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1808
      apply auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1809
      done
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1810
  qed
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1811
qed
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1812
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1813
lemma (in first_countable_topology) countable_basis:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1814
  obtains A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1815
    "\<And>i. open (A i)" "\<And>i. x \<in> A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1816
    "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F ----> x"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1817
proof atomize_elim
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1818
  obtain A :: "nat \<Rightarrow> 'a set" where A:
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1819
    "\<And>i. open (A i)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1820
    "\<And>i. x \<in> A i"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1821
    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1822
    by (rule countable_basis_at_decseq) blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1823
  {
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1824
    fix F S assume "\<forall>n. F n \<in> A n" "open S" "x \<in> S"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1825
    with A(3)[of S] have "eventually (\<lambda>n. F n \<in> S) sequentially"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1826
      by (auto elim: eventually_elim1 simp: subset_eq)
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1827
  }
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1828
  with A show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F ----> x)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1829
    by (intro exI[of _ A]) (auto simp: tendsto_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1830
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1831
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1832
lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1833
  assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1834
  shows "eventually P (inf (nhds a) (principal s))"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1835
proof (rule ccontr)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1836
  obtain A :: "nat \<Rightarrow> 'a set" where A:
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1837
    "\<And>i. open (A i)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1838
    "\<And>i. a \<in> A i"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1839
    "\<And>F. \<forall>n. F n \<in> A n \<Longrightarrow> F ----> a"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1840
    by (rule countable_basis) blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1841
  assume "\<not> ?thesis"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1842
  with A have P: "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1843
    unfolding eventually_inf_principal eventually_nhds by (intro choice) fastforce
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1844
  then obtain F where F0: "\<forall>n. F n \<in> s" and F2: "\<forall>n. F n \<in> A n" and F3: "\<forall>n. \<not> P (F n)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1845
    by blast
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1846
  with A have "F ----> a" by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1847
  hence "eventually (\<lambda>n. P (F n)) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1848
    using assms F0 by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1849
  thus "False" by (simp add: F3)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1850
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1851
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1852
lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1853
  "eventually P (inf (nhds a) (principal s)) \<longleftrightarrow> 
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1854
    (\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1855
proof (safe intro!: sequentially_imp_eventually_nhds_within)
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1856
  assume "eventually P (inf (nhds a) (principal s))" 
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1857
  then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1858
    by (auto simp: eventually_inf_principal eventually_nhds)
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1859
  moreover fix f assume "\<forall>n. f n \<in> s" "f ----> a"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1860
  ultimately show "eventually (\<lambda>n. P (f n)) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1861
    by (auto dest!: topological_tendstoD elim: eventually_elim1)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1862
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1863
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1864
lemma (in first_countable_topology) eventually_nhds_iff_sequentially:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1865
  "eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1866
  using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1867
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1868
lemma tendsto_at_iff_sequentially:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1869
  fixes f :: "'a :: first_countable_topology \<Rightarrow> _"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1870
  shows "(f ---> a) (at x within s) \<longleftrightarrow> (\<forall>X. (\<forall>i. X i \<in> s - {x}) \<longrightarrow> X ----> x \<longrightarrow> ((f \<circ> X) ----> a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1871
  unfolding filterlim_def[of _ "nhds a"] le_filter_def eventually_filtermap at_within_def eventually_nhds_within_iff_sequentially comp_def
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1872
  by metis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1873
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1874
subsection {* Function limit at a point *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1875
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1876
abbreviation
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1877
  LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1878
        ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1879
  "f -- a --> L \<equiv> (f ---> L) (at a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1880
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1881
lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f ---> l) (at a within S) \<longleftrightarrow> (f -- a --> l)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1882
  unfolding tendsto_def by (simp add: at_within_open[where S=S])
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1883
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1884
lemma LIM_const_not_eq[tendsto_intros]:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1885
  fixes a :: "'a::perfect_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1886
  fixes k L :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1887
  shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1888
  by (simp add: tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1889
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1890
lemmas LIM_not_zero = LIM_const_not_eq [where L = 0]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1891
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1892
lemma LIM_const_eq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1893
  fixes a :: "'a::perfect_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1894
  fixes k L :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1895
  shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1896
  by (simp add: tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1897
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1898
lemma LIM_unique:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1899
  fixes a :: "'a::perfect_space" and L M :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1900
  shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1901
  using at_neq_bot by (rule tendsto_unique)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1902
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1903
text {* Limits are equal for functions equal except at limit point *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1904
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1905
lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1906
  unfolding tendsto_def eventually_at_topological by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1907
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1908
lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1909
  by (simp add: LIM_equal)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1910
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1911
lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1912
  by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1913
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1914
lemma tendsto_at_iff_tendsto_nhds:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1915
  "g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1916
  unfolding tendsto_def eventually_at_filter
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1917
  by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1918
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1919
lemma tendsto_compose:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1920
  "g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1921
  unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1922
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1923
lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1924
  unfolding o_def by (rule tendsto_compose)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1925
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1926
lemma tendsto_compose_eventually:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1927
  "g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1928
  by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1929
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1930
lemma LIM_compose_eventually:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1931
  assumes f: "f -- a --> b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1932
  assumes g: "g -- b --> c"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1933
  assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1934
  shows "(\<lambda>x. g (f x)) -- a --> c"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1935
  using g f inj by (rule tendsto_compose_eventually)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1936
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1937
lemma tendsto_compose_filtermap: "((g \<circ> f) ---> T) F \<longleftrightarrow> (g ---> T) (filtermap f F)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1938
  by (simp add: filterlim_def filtermap_filtermap comp_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1939
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1940
subsubsection {* Relation of LIM and LIMSEQ *}
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1941
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1942
lemma (in first_countable_topology) sequentially_imp_eventually_within:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1943
  "(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow>
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1944
    eventually P (at a within s)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1945
  unfolding at_within_def
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1946
  by (intro sequentially_imp_eventually_nhds_within) auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1947
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1948
lemma (in first_countable_topology) sequentially_imp_eventually_at:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1949
  "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1950
  using assms sequentially_imp_eventually_within [where s=UNIV] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1951
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1952
lemma LIMSEQ_SEQ_conv1:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1953
  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1954
  assumes f: "f -- a --> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1955
  shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1956
  using tendsto_compose_eventually [OF f, where F=sequentially] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1957
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1958
lemma LIMSEQ_SEQ_conv2:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1959
  fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1960
  assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1961
  shows "f -- a --> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1962
  using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1963
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1964
lemma LIMSEQ_SEQ_conv:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1965
  "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::'a::first_countable_topology) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) =
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1966
   (X -- a --> (L::'b::topological_space))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1967
  using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 ..
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1968
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1969
lemma sequentially_imp_eventually_at_left:
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1970
  fixes a :: "'a :: {dense_linorder, linorder_topology, first_countable_topology}"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1971
  assumes b[simp]: "b < a"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1972
  assumes *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1973
  shows "eventually P (at_left a)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1974
proof (safe intro!: sequentially_imp_eventually_within)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1975
  fix X assume X: "\<forall>n. X n \<in> {..< a} \<and> X n \<noteq> a" "X ----> a"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1976
  show "eventually (\<lambda>n. P (X n)) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1977
  proof (rule ccontr)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1978
    assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1979
    have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> b < X (s n)) \<and> (X (s n) \<le> X (s (Suc n)) \<and> Suc (s n) \<le> s (Suc n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1980
    proof (rule dependent_nat_choice)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1981
      have "\<not> eventually (\<lambda>n. b < X n \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1982
        by (intro not_eventually_impI neg order_tendstoD(1) [OF X(2) b])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1983
      then show "\<exists>x. \<not> P (X x) \<and> b < X x"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1984
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1985
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1986
      fix x n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1987
      have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> b < X n \<longrightarrow> X x < X n \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1988
        using X by (intro not_eventually_impI order_tendstoD(1)[OF X(2)] eventually_ge_at_top neg) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1989
      then show "\<exists>n. (\<not> P (X n) \<and> b < X n) \<and> (X x \<le> X n \<and> Suc x \<le> n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1990
        by (auto dest!: not_eventuallyD)
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1991
    qed
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1992
    then guess s ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1993
    then have "\<And>n. b < X (s n)" "\<And>n. X (s n) < a" "incseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1994
      using X by (auto simp: subseq_Suc_iff Suc_le_eq incseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF `X ----> a`, unfolded comp_def])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1995
    from *[OF this(1,2,3,4)] this(5) show False by auto
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1996
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1997
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1998
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1999
lemma tendsto_at_left_sequentially:
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2000
  fixes a :: "_ :: {dense_linorder, linorder_topology, first_countable_topology}"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2001
  assumes "b < a"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2002
  assumes *: "\<And>S. (\<And>n. S n < a) \<Longrightarrow> (\<And>n. b < S n) \<Longrightarrow> incseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2003
  shows "(X ---> L) (at_left a)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2004
  using assms unfolding tendsto_def [where l=L]
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2005
  by (simp add: sequentially_imp_eventually_at_left)
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  2006
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2007
lemma sequentially_imp_eventually_at_right:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2008
  fixes a :: "'a :: {dense_linorder, linorder_topology, first_countable_topology}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2009
  assumes b[simp]: "a < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2010
  assumes *: "\<And>f. (\<And>n. a < f n) \<Longrightarrow> (\<And>n. f n < b) \<Longrightarrow> decseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2011
  shows "eventually P (at_right a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2012
proof (safe intro!: sequentially_imp_eventually_within)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2013
  fix X assume X: "\<forall>n. X n \<in> {a <..} \<and> X n \<noteq> a" "X ----> a"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2014
  show "eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2015
  proof (rule ccontr)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2016
    assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2017
    have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> X (s n) < b) \<and> (X (s (Suc n)) \<le> X (s n) \<and> Suc (s n) \<le> s (Suc n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2018
    proof (rule dependent_nat_choice)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2019
      have "\<not> eventually (\<lambda>n. X n < b \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2020
        by (intro not_eventually_impI neg order_tendstoD(2) [OF X(2) b])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2021
      then show "\<exists>x. \<not> P (X x) \<and> X x < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2022
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2023
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2024
      fix x n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2025
      have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> X n < b \<longrightarrow> X n < X x \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2026
        using X by (intro not_eventually_impI order_tendstoD(2)[OF X(2)] eventually_ge_at_top neg) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2027
      then show "\<exists>n. (\<not> P (X n) \<and> X n < b) \<and> (X n \<le> X x \<and> Suc x \<le> n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2028
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2029
    qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2030
    then guess s ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2031
    then have "\<And>n. a < X (s n)" "\<And>n. X (s n) < b" "decseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2032
      using X by (auto simp: subseq_Suc_iff Suc_le_eq decseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF `X ----> a`, unfolded comp_def])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2033
    from *[OF this(1,2,3,4)] this(5) show False by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2034
  qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2035
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2036
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2037
lemma tendsto_at_right_sequentially:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2038
  fixes a :: "_ :: {dense_linorder, linorder_topology, first_countable_topology}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2039
  assumes "a < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2040
  assumes *: "\<And>S. (\<And>n. a < S n) \<Longrightarrow> (\<And>n. S n < b) \<Longrightarrow> decseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2041
  shows "(X ---> L) (at_right a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2042
  using assms unfolding tendsto_def [where l=L]
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2043
  by (simp add: sequentially_imp_eventually_at_right)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2044
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2045
subsection {* Continuity *}
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2046
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2047
subsubsection {* Continuity on a set *}
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2048
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2049
definition continuous_on :: "'a set \<Rightarrow> ('a :: topological_space \<Rightarrow> 'b :: topological_space) \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2050
  "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2051
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2052
lemma continuous_on_cong [cong]:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2053
  "s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2054
  unfolding continuous_on_def by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2055
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2056
lemma continuous_on_topological:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2057
  "continuous_on s f \<longleftrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2058
    (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2059
  unfolding continuous_on_def tendsto_def eventually_at_topological by metis
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2060
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2061
lemma continuous_on_open_invariant:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2062
  "continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2063
proof safe
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2064
  fix B :: "'b set" assume "continuous_on s f" "open B"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2065
  then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2066
    by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2067
  then obtain A where "\<forall>x\<in>f -` B \<inter> s. open (A x) \<and> x \<in> A x \<and> s \<inter> A x \<subseteq> f -` B"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2068
    unfolding bchoice_iff ..
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2069
  then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2070
    by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2071
next
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2072
  assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2073
  show "continuous_on s f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2074
    unfolding continuous_on_topological
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2075
  proof safe
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2076
    fix x B assume "x \<in> s" "open B" "f x \<in> B"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2077
    with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2078
    with `x \<in> s` `f x \<in> B` show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2079
      by (intro exI[of _ A]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2080
  qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2081
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2082
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2083
lemma continuous_on_open_vimage:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2084
  "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2085
  unfolding continuous_on_open_invariant
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2086
  by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2087
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  2088
corollary continuous_imp_open_vimage:
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  2089
  assumes "continuous_on s f" "open s" "open B" "f -` B \<subseteq> s"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  2090
    shows "open (f -` B)"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  2091
by (metis assms continuous_on_open_vimage le_iff_inf)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  2092
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2093
corollary open_vimage[continuous_intros]:
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  2094
  assumes "open s" and "continuous_on UNIV f"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  2095
  shows "open (f -` s)"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  2096
  using assms unfolding continuous_on_open_vimage [OF open_UNIV]
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  2097
  by simp
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  2098
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2099
lemma continuous_on_closed_invariant:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2100
  "continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2101
proof -
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2102
  have *: "\<And>P Q::'b set\<Rightarrow>bool. (\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2103
    by (metis double_compl)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2104
  show ?thesis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2105
    unfolding continuous_on_open_invariant by (intro *) (auto simp: open_closed[symmetric])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2106
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2107
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2108
lemma continuous_on_closed_vimage:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2109
  "closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2110
  unfolding continuous_on_closed_invariant
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2111
  by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2112
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2113
corollary closed_vimage[continuous_intros]:
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2114
  assumes "closed s" and "continuous_on UNIV f"
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2115
  shows "closed (f -` s)"
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2116
  using assms unfolding continuous_on_closed_vimage [OF closed_UNIV]
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2117
  by simp
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2118
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2119
lemma continuous_on_open_Union:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2120
  "(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2121
  unfolding continuous_on_def by safe (metis open_Union at_within_open UnionI)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2122
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2123
lemma continuous_on_open_UN:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2124
  "(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> continuous_on (\<Union>s\<in>S. A s) f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2125
  unfolding Union_image_eq[symmetric] by (rule continuous_on_open_Union) auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2126
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2127
lemma continuous_on_closed_Un:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2128
  "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2129
  by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2130
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2131
lemma continuous_on_If:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2132
  assumes closed: "closed s" "closed t" and cont: "continuous_on s f" "continuous_on t g"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2133
    and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2134
  shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" (is "continuous_on _ ?h")
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2135
proof-
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2136
  from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2137
    by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2138
  with cont have "continuous_on s ?h" "continuous_on t ?h"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2139
    by simp_all
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2140
  with closed show ?thesis
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2141
    by (rule continuous_on_closed_Un)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2142
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2143
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2144
lemma continuous_on_id[continuous_intros]: "continuous_on s (\<lambda>x. x)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  2145
  unfolding continuous_on_def by fast
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2146
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2147
lemma continuous_on_const[continuous_intros]: "continuous_on s (\<lambda>x. c)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  2148
  unfolding continuous_on_def by auto
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2149
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  2150
lemma continuous_on_compose[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2151
  "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2152
  unfolding continuous_on_topological by simp metis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2153
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2154
lemma continuous_on_compose2:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2155
  "continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> t = f ` s \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2156
  using continuous_on_compose[of s f g] by (simp add: comp_def)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2157
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2158
subsubsection {* Continuity at a point *}
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2159
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2160
definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2161
  "continuous F f \<longleftrightarrow> (f ---> f (Lim F (\<lambda>x. x))) F"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2162
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2163
lemma continuous_bot[continuous_intros, simp]: "continuous bot f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2164
  unfolding continuous_def by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2165
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2166
lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2167
  by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2168
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2169
lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f x) (at x within s)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2170
  by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2171
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2172
lemma continuous_within_topological:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2173
  "continuous (at x within s) f \<longleftrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2174
    (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2175
  unfolding continuous_within tendsto_def eventually_at_topological by metis
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2176
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2177
lemma continuous_within_compose[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2178
  "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2179
  continuous (at x within s) (g o f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2180
  by (simp add: continuous_within_topological) metis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2181
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2182
lemma continuous_within_compose2:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2183
  "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2184
  continuous (at x within s) (\<lambda>x. g (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2185
  using continuous_within_compose[of x s f g] by (simp add: comp_def)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2186
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2187
lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f -- x --> f x"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2188
  using continuous_within[of x UNIV f] by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2189
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2190
lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2191
  unfolding continuous_within by (rule tendsto_ident_at)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2192
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2193
lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2194
  unfolding continuous_def by (rule tendsto_const)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2195
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2196
lemma continuous_on_eq_continuous_within:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2197
  "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2198
  unfolding continuous_on_def continuous_within ..
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2199
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2200
abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2201
  "isCont f a \<equiv> continuous (at a) f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2202
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2203
lemma isCont_def: "isCont f a \<longleftrightarrow> f -- a --> f a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2204
  by (rule continuous_at)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2205
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2206
lemma continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2207
  by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2208
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2209
lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  2210
  by (simp add: continuous_on_def continuous_at at_within_open[of _ s])
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2211
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2212
lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2213
  unfolding continuous_on_def by (metis subset_eq tendsto_within_subset)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2214
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2215
lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2216
  by (auto intro: continuous_at_within simp: continuous_on_eq_continuous_within)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2217
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2218
lemma isContI_continuous: "continuous (at x within UNIV) f \<Longrightarrow> isCont f x"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2219
  by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2220
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2221
lemma isCont_ident[continuous_intros, simp]: "isCont (\<lambda>x. x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2222
  using continuous_ident by (rule isContI_continuous)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2223
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2224
lemmas isCont_const = continuous_const
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2225
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2226
lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2227
  unfolding isCont_def by (rule tendsto_compose)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2228
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2229
lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2230
  unfolding o_def by (rule isCont_o2)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2231
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2232
lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2233
  unfolding isCont_def by (rule tendsto_compose)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2234
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2235
lemma continuous_within_compose3:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2236
  "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  2237
  using continuous_within_compose2[of x s f g] by (simp add: continuous_at_within)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2238
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2239
lemma filtermap_nhds_open_map:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2240
  assumes cont: "isCont f a" and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2241
  shows "filtermap f (nhds a) = nhds (f a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2242
  unfolding filter_eq_iff
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2243
proof safe
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2244
  fix P assume "eventually P (filtermap f (nhds a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2245
  then guess S unfolding eventually_filtermap eventually_nhds ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2246
  then show "eventually P (nhds (f a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2247
    unfolding eventually_nhds by (intro exI[of _ "f`S"]) (auto intro!: open_map)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2248
qed (metis filterlim_iff tendsto_at_iff_tendsto_nhds isCont_def eventually_filtermap cont)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2249
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2250
lemma continuous_at_split: 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2251
  "continuous (at (x::'a::linorder_topology)) f = (continuous (at_left x) f \<and> continuous (at_right x) f)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2252
  by (simp add: continuous_within filterlim_at_split)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2253
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2254
subsubsection{* Open-cover compactness *}
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2255
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2256
context topological_space
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2257
begin
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2258
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2259
definition compact :: "'a set \<Rightarrow> bool" where
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2260
  compact_eq_heine_borel: -- "This name is used for backwards compatibility"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2261
    "compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2262
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2263
lemma compactI:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2264
  assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union> C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union> C'"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2265
  shows "compact s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2266
  unfolding compact_eq_heine_borel using assms by metis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2267
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2268
lemma compact_empty[simp]: "compact {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2269
  by (auto intro!: compactI)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2270
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2271
lemma compactE:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2272
  assumes "compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2273
  obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2274
  using assms unfolding compact_eq_heine_borel by metis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2275
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2276
lemma compactE_image:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2277
  assumes "compact s" and "\<forall>t\<in>C. open (f t)" and "s \<subseteq> (\<Union>c\<in>C. f c)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2278
  obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2279
  using assms unfolding ball_simps[symmetric] SUP_def
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2280
  by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s])
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2281
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2282
lemma compact_inter_closed [intro]:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2283
  assumes "compact s" and "closed t"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2284
  shows "compact (s \<inter> t)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2285
proof (rule compactI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2286
  fix C assume C: "\<forall>c\<in>C. open c" and cover: "s \<inter> t \<subseteq> \<Union>C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2287
  from C `closed t` have "\<forall>c\<in>C \<union> {-t}. open c" by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2288
  moreover from cover have "s \<subseteq> \<Union>(C \<union> {-t})" by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2289
  ultimately have "\<exists>D\<subseteq>C \<union> {-t}. finite D \<and> s \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2290
    using `compact s` unfolding compact_eq_heine_borel by auto
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2291
  then obtain D where "D \<subseteq> C \<union> {- t} \<and> finite D \<and> s \<subseteq> \<Union>D" ..
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2292
  then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2293
    by (intro exI[of _ "D - {-t}"]) auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2294
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2295
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2296
lemma inj_setminus: "inj_on uminus (A::'a set set)"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2297
  by (auto simp: inj_on_def)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2298
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2299
lemma compact_fip:
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2300
  "compact U \<longleftrightarrow>
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2301
    (\<forall>A. (\<forall>a\<in>A. closed a) \<longrightarrow> (\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}) \<longrightarrow> U \<inter> \<Inter>A \<noteq> {})"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2302
  (is "_ \<longleftrightarrow> ?R")
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2303
proof (safe intro!: compact_eq_heine_borel[THEN iffD2])
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2304
  fix A
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2305
  assume "compact U"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2306
    and A: "\<forall>a\<in>A. closed a" "U \<inter> \<Inter>A = {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2307
    and fi: "\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2308
  from A have "(\<forall>a\<in>uminus`A. open a) \<and> U \<subseteq> \<Union>(uminus`A)"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2309
    by auto
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2310
  with `compact U` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<subseteq> \<Union>(uminus`B)"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2311
    unfolding compact_eq_heine_borel by (metis subset_image_iff)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2312
  with fi[THEN spec, of B] show False
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2313
    by (auto dest: finite_imageD intro: inj_setminus)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2314
next
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2315
  fix A
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2316
  assume ?R
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2317
  assume "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2318
  then have "U \<inter> \<Inter>(uminus`A) = {}" "\<forall>a\<in>uminus`A. closed a"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2319
    by auto
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2320
  with `?R` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<inter> \<Inter>(uminus`B) = {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2321
    by (metis subset_image_iff)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2322
  then show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2323
    by  (auto intro!: exI[of _ B] inj_setminus dest: finite_imageD)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2324
qed
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2325
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2326
lemma compact_imp_fip:
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2327
  "compact s \<Longrightarrow> \<forall>t \<in> f. closed t \<Longrightarrow> \<forall>f'. finite f' \<and> f' \<subseteq> f \<longrightarrow> (s \<inter> (\<Inter> f') \<noteq> {}) \<Longrightarrow>
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2328
    s \<inter> (\<Inter> f) \<noteq> {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2329
  unfolding compact_fip by auto
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2330
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2331
lemma compact_imp_fip_image:
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2332
  assumes "compact s"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2333
    and P: "\<And>i. i \<in> I \<Longrightarrow> closed (f i)"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2334
    and Q: "\<And>I'. finite I' \<Longrightarrow> I' \<subseteq> I \<Longrightarrow> (s \<inter> (\<Inter>i\<in>I'. f i) \<noteq> {})"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2335
  shows "s \<inter> (\<Inter>i\<in>I. f i) \<noteq> {}"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2336
proof -
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2337
  note `compact s`
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2338
  moreover from P have "\<forall>i \<in> f ` I. closed i" by blast
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2339
  moreover have "\<forall>A. finite A \<and> A \<subseteq> f ` I \<longrightarrow> (s \<inter> (\<Inter>A) \<noteq> {})"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2340
  proof (rule, rule, erule conjE)
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2341
    fix A :: "'a set set"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2342
    assume "finite A"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2343
    moreover assume "A \<subseteq> f ` I"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2344
    ultimately obtain B where "B \<subseteq> I" and "finite B" and "A = f ` B"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2345
      using finite_subset_image [of A f I] by blast
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2346
    with Q [of B] show "s \<inter> \<Inter>A \<noteq> {}" by simp
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2347
  qed
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2348
  ultimately have "s \<inter> (\<Inter>(f ` I)) \<noteq> {}" by (rule compact_imp_fip)
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2349
  then show ?thesis by simp
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  2350
qed
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  2351
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2352
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  2353
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2354
lemma (in t2_space) compact_imp_closed:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2355
  assumes "compact s" shows "closed s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2356
unfolding closed_def
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2357
proof (rule openI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2358
  fix y assume "y \<in> - s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2359
  let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2360
  note `compact s`
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2361
  moreover have "\<forall>u\<in>?C. open u" by simp
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2362
  moreover have "s \<subseteq> \<Union>?C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2363
  proof
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2364
    fix x assume "x \<in> s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2365
    with `y \<in> - s` have "x \<noteq> y" by clarsimp
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2366
    hence "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2367
      by (rule hausdorff)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2368
    with `x \<in> s` show "x \<in> \<Union>?C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2369
      unfolding eventually_nhds by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2370
  qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2371
  ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2372
    by (rule compactE)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2373
  from `D \<subseteq> ?C` have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2374
  with `finite D` have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2375
    by (simp add: eventually_Ball_finite)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2376
  with `s \<subseteq> \<Union>D` have "eventually (\<lambda>y. y \<notin> s) (nhds y)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2377
    by (auto elim!: eventually_mono [rotated])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2378
  thus "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2379
    by (simp add: eventually_nhds subset_eq)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2380
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2381
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2382
lemma compact_continuous_image:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2383
  assumes f: "continuous_on s f" and s: "compact s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2384
  shows "compact (f ` s)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2385
proof (rule compactI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2386
  fix C assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2387
  with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2388
    unfolding continuous_on_open_invariant by blast
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2389
  then obtain A where A: "\<forall>c\<in>C. open (A c) \<and> A c \<inter> s = f -` c \<inter> s"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2390
    unfolding bchoice_iff ..
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2391
  with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2392
    by (fastforce simp add: subset_eq set_eq_iff)+
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2393
  from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" .
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2394
  with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2395
    by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2396
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2397
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2398
lemma continuous_on_inv:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2399
  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2400
  assumes "continuous_on s f"  "compact s"  "\<forall>x\<in>s. g (f x) = x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2401
  shows "continuous_on (f ` s) g"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2402
unfolding continuous_on_topological
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2403
proof (clarsimp simp add: assms(3))
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2404
  fix x :: 'a and B :: "'a set"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2405
  assume "x \<in> s" and "open B" and "x \<in> B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2406
  have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2407
    using assms(3) by (auto, metis)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2408
  have "continuous_on (s - B) f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2409
    using `continuous_on s f` Diff_subset
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2410
    by (rule continuous_on_subset)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2411
  moreover have "compact (s - B)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2412
    using `open B` and `compact s`
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2413
    unfolding Diff_eq by (intro compact_inter_closed closed_Compl)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2414
  ultimately have "compact (f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2415
    by (rule compact_continuous_image)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2416
  hence "closed (f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2417
    by (rule compact_imp_closed)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2418
  hence "open (- f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2419
    by (rule open_Compl)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2420
  moreover have "f x \<in> - f ` (s - B)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2421
    using `x \<in> s` and `x \<in> B` by (simp add: 1)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2422
  moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2423
    by (simp add: 1)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2424
  ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2425
    by fast
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2426
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2427
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2428
lemma continuous_on_inv_into:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2429
  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2430
  assumes s: "continuous_on s f" "compact s" and f: "inj_on f s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2431
  shows "continuous_on (f ` s) (the_inv_into s f)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2432
  by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  2433
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2434
lemma (in linorder_topology) compact_attains_sup:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2435
  assumes "compact S" "S \<noteq> {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2436
  shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2437
proof (rule classical)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2438
  assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2439
  then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2440
    by (metis not_le)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2441
  then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2442
    by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2443
  with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2444
    by (erule compactE_image)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2445
  with `S \<noteq> {}` have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2446
    by (auto intro!: Max_in)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2447
  with C have "S \<subseteq> {..< Max (t`C)}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2448
    by (auto intro: less_le_trans simp: subset_eq)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2449
  with t Max `C \<subseteq> S` show ?thesis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2450
    by fastforce
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2451
qed
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2452
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2453
lemma (in linorder_topology) compact_attains_inf:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2454
  assumes "compact S" "S \<noteq> {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2455
  shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2456
proof (rule classical)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2457
  assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2458
  then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2459
    by (metis not_le)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2460
  then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2461
    by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2462
  with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2463
    by (erule compactE_image)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2464
  with `S \<noteq> {}` have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2465
    by (auto intro!: Min_in)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2466
  with C have "S \<subseteq> {Min (t`C) <..}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2467
    by (auto intro: le_less_trans simp: subset_eq)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2468
  with t Min `C \<subseteq> S` show ?thesis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2469
    by fastforce
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2470
qed
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2471
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2472
lemma continuous_attains_sup:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2473
  fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2474
  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s.  f y \<le> f x)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2475
  using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2476
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2477
lemma continuous_attains_inf:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2478
  fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2479
  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2480
  using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2481
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2482
subsection {* Connectedness *}
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2483
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2484
context topological_space
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2485
begin
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2486
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2487
definition "connected S \<longleftrightarrow>
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2488
  \<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2489
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2490
lemma connectedI:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2491
  "(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2492
  \<Longrightarrow> connected U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2493
  by (auto simp: connected_def)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2494
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2495
lemma connected_empty[simp]: "connected {}"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2496
  by (auto intro!: connectedI)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2497
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2498
lemma connectedD:
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2499
  "connected A \<Longrightarrow> open U \<Longrightarrow> open V \<Longrightarrow> U \<inter> V \<inter> A = {} \<Longrightarrow> A \<subseteq> U \<union> V \<Longrightarrow> U \<inter> A = {} \<or> V \<inter> A = {}" 
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2500
  by (auto simp: connected_def)
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2501
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2502
end
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  2503
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2504
lemma connected_iff_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2505
  fixes S :: "'a::topological_space set"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2506
  shows "connected S \<longleftrightarrow> (\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c))"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2507
proof safe
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2508
  fix P :: "'a \<Rightarrow> bool" assume "connected S" "continuous_on S P"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2509
  then have "\<And>b. \<exists>A. open A \<and> A \<inter> S = P -` {b} \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2510
    unfolding continuous_on_open_invariant by simp
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2511
  from this[of True] this[of False]
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2512
  obtain t f where "open t" "open f" and *: "f \<inter> S = P -` {False} \<inter> S" "t \<inter> S = P -` {True} \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2513
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2514
  then have "t \<inter> S = {} \<or> f \<inter> S = {}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2515
    by (intro connectedD[OF `connected S`])  auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2516
  then show "\<exists>c. \<forall>s\<in>S. P s = c"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2517
  proof (rule disjE)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2518
    assume "t \<inter> S = {}" then show ?thesis
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2519
      unfolding * by (intro exI[of _ False]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2520
  next
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2521
    assume "f \<inter> S = {}" then show ?thesis
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2522
      unfolding * by (intro exI[of _ True]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2523
  qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2524
next
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2525
  assume P: "\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2526
  show "connected S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2527
  proof (rule connectedI)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2528
    fix A B assume *: "open A" "open B" "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2529
    have "continuous_on S (\<lambda>x. x \<in> A)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2530
      unfolding continuous_on_open_invariant
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2531
    proof safe
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2532
      fix C :: "bool set"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2533
      have "C = UNIV \<or> C = {True} \<or> C = {False} \<or> C = {}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2534
        using subset_UNIV[of C] unfolding UNIV_bool by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2535
      with * show "\<exists>T. open T \<and> T \<inter> S = (\<lambda>x. x \<in> A) -` C \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2536
        by (intro exI[of _ "(if True \<in> C then A else {}) \<union> (if False \<in> C then B else {})"]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2537
    qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2538
    from P[rule_format, OF this] obtain c where "\<And>s. s \<in> S \<Longrightarrow> (s \<in> A) = c" by blast
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2539
    with * show False
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2540
      by (cases c) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2541
  qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2542
qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2543
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2544
lemma connectedD_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2545
  fixes P :: "'a::topological_space \<Rightarrow> bool"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2546
  shows "connected S \<Longrightarrow> continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2547
  unfolding connected_iff_const by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2548
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2549
lemma connectedI_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2550
  "(\<And>P::'a::topological_space \<Rightarrow> bool. continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c) \<Longrightarrow> connected S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2551
  unfolding connected_iff_const by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2552
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2553
lemma connected_local_const:
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2554
  assumes "connected A" "a \<in> A" "b \<in> A"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2555
  assumes *: "\<forall>a\<in>A. eventually (\<lambda>b. f a = f b) (at a within A)"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2556
  shows "f a = f b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2557
proof -
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2558
  obtain S where S: "\<And>a. a \<in> A \<Longrightarrow> a \<in> S a" "\<And>a. a \<in> A \<Longrightarrow> open (S a)"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2559
    "\<And>a x. a \<in> A \<Longrightarrow> x \<in> S a \<Longrightarrow> x \<in> A \<Longrightarrow> f a = f x"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2560
    using * unfolding eventually_at_topological by metis
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2561
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2562
  let ?P = "\<Union>b\<in>{b\<in>A. f a = f b}. S b" and ?N = "\<Union>b\<in>{b\<in>A. f a \<noteq> f b}. S b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2563
  have "?P \<inter> A = {} \<or> ?N \<inter> A = {}"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2564
    using `connected A` S `a\<in>A`
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2565
    by (intro connectedD) (auto, metis)
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2566
  then show "f a = f b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2567
  proof
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2568
    assume "?N \<inter> A = {}"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2569
    then have "\<forall>x\<in>A. f a = f x"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2570
      using S(1) by auto
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2571
    with `b\<in>A` show ?thesis by auto
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2572
  next
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2573
    assume "?P \<inter> A = {}" then show ?thesis
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2574
      using `a \<in> A` S(1)[of a] by auto
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2575
  qed
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2576
qed
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2577
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2578
lemma (in linorder_topology) connectedD_interval:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2579
  assumes "connected U" and xy: "x \<in> U" "y \<in> U" and "x \<le> z" "z \<le> y"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2580
  shows "z \<in> U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2581
proof -
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2582
  have eq: "{..<z} \<union> {z<..} = - {z}"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2583
    by auto
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2584
  { assume "z \<notin> U" "x < z" "z < y"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2585
    with xy have "\<not> connected U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2586
      unfolding connected_def simp_thms
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2587
      apply (rule_tac exI[of _ "{..< z}"])
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2588
      apply (rule_tac exI[of _ "{z <..}"])
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2589
      apply (auto simp add: eq)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2590
      done }
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2591
  with assms show "z \<in> U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2592
    by (metis less_le)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2593
qed
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2594
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2595
lemma connected_continuous_image:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2596
  assumes *: "continuous_on s f"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2597
  assumes "connected s"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2598
  shows "connected (f ` s)"
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2599
proof (rule connectedI_const)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2600
  fix P :: "'b \<Rightarrow> bool" assume "continuous_on (f ` s) P"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2601
  then have "continuous_on s (P \<circ> f)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2602
    by (rule continuous_on_compose[OF *])
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2603
  from connectedD_const[OF `connected s` this] show "\<exists>c. \<forall>s\<in>f ` s. P s = c"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2604
    by auto
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2605
qed
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2606
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2607
section {* Connectedness *}
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2608
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2609
class linear_continuum_topology = linorder_topology + linear_continuum
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2610
begin
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2611
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2612
lemma Inf_notin_open:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2613
  assumes A: "open A" and bnd: "\<forall>a\<in>A. x < a"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2614
  shows "Inf A \<notin> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2615
proof
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2616
  assume "Inf A \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2617
  then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2618
    using open_left[of A "Inf A" x] assms by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2619
  with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2620
    by (auto simp: subset_eq)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2621
  then show False
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2622
    using cInf_lower[OF `c \<in> A`] bnd by (metis not_le less_imp_le bdd_belowI)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2623
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2624
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2625
lemma Sup_notin_open:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2626
  assumes A: "open A" and bnd: "\<forall>a\<in>A. a < x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2627
  shows "Sup A \<notin> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2628
proof
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2629
  assume "Sup A \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2630
  then obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2631
    using open_right[of A "Sup A" x] assms by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2632
  with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2633
    by (auto simp: subset_eq)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2634
  then show False
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2635
    using cSup_upper[OF `c \<in> A`] bnd by (metis less_imp_le not_le bdd_aboveI)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2636
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2637
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2638
end
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2639
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2640
instance linear_continuum_topology \<subseteq> perfect_space
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2641
proof
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2642
  fix x :: 'a
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2643
  obtain y where "x < y \<or> y < x"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2644
    using ex_gt_or_lt [of x] ..
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2645
  with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y]
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2646
  show "\<not> open {x}"
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2647
    by auto
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2648
qed
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2649
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2650
lemma connectedI_interval:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2651
  fixes U :: "'a :: linear_continuum_topology set"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2652
  assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2653
  shows "connected U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2654
proof (rule connectedI)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2655
  { fix A B assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2656
    fix x y assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2657
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2658
    let ?z = "Inf (B \<inter> {x <..})"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2659
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2660
    have "x \<le> ?z" "?z \<le> y"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2661
      using `y \<in> B` `x < y` by (auto intro: cInf_lower cInf_greatest)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2662
    with `x \<in> U` `y \<in> U` have "?z \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2663
      by (rule *)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2664
    moreover have "?z \<notin> B \<inter> {x <..}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2665
      using `open B` by (intro Inf_notin_open) auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2666
    ultimately have "?z \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2667
      using `x \<le> ?z` `A \<inter> B \<inter> U = {}` `x \<in> A` `U \<subseteq> A \<union> B` by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2668
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2669
    { assume "?z < y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2670
      obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2671
        using open_right[OF `open A` `?z \<in> A` `?z < y`] by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2672
      moreover obtain b where "b \<in> B" "x < b" "b < min a y"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2673
        using cInf_less_iff[of "B \<inter> {x <..}" "min a y"] `?z < a` `?z < y` `x < y` `y \<in> B`
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2674
        by (auto intro: less_imp_le)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53215
diff changeset
  2675
      moreover have "?z \<le> b"
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53215
diff changeset
  2676
        using `b \<in> B` `x < b`
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2677
        by (intro cInf_lower) auto
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2678
      moreover have "b \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2679
        using `x \<le> ?z` `?z \<le> b` `b < min a y`
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2680
        by (intro *[OF `x \<in> U` `y \<in> U`]) (auto simp: less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2681
      ultimately have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2682
        by (intro bexI[of _ b]) auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2683
    then have False
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2684
      using `?z \<le> y` `?z \<in> A` `y \<in> B` `y \<in> U` `A \<inter> B \<inter> U = {}` unfolding le_less by blast }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2685
  note not_disjoint = this
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2686
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2687
  fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2688
  moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2689
  moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2690
  moreover note not_disjoint[of B A y x] not_disjoint[of A B x y]
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2691
  ultimately show False by (cases x y rule: linorder_cases) auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2692
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2693
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2694
lemma connected_iff_interval:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2695
  fixes U :: "'a :: linear_continuum_topology set"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2696
  shows "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2697
  by (auto intro: connectedI_interval dest: connectedD_interval)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2698
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2699
lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2700
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2701
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2702
lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2703
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2704
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2705
lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2706
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2707
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2708
lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2709
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2710
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2711
lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2712
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2713
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2714
lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2715
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2716
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2717
lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2718
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2719
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2720
lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2721
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2722
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2723
lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2724
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2725
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2726
lemma connected_contains_Ioo: 
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2727
  fixes A :: "'a :: linorder_topology set"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2728
  assumes A: "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2729
  using connectedD_interval[OF A] by (simp add: subset_eq Ball_def less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2730
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2731
subsection {* Intermediate Value Theorem *}
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2732
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2733
lemma IVT':
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2734
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2735
  assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2736
  assumes *: "continuous_on {a .. b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2737
  shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2738
proof -
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2739
  have "connected {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2740
    unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2741
  from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2742
  show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2743
    by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2744
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2745
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2746
lemma IVT2':
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2747
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2748
  assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2749
  assumes *: "continuous_on {a .. b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2750
  shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2751
proof -
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2752
  have "connected {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2753
    unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2754
  from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2755
  show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2756
    by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2757
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2758
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2759
lemma IVT:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2760
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2761
  shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2762
  by (rule IVT') (auto intro: continuous_at_imp_continuous_on)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2763
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2764
lemma IVT2:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2765
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2766
  shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2767
  by (rule IVT2') (auto intro: continuous_at_imp_continuous_on)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2768
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2769
lemma continuous_inj_imp_mono:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2770
  fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2771
  assumes x: "a < x" "x < b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2772
  assumes cont: "continuous_on {a..b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2773
  assumes inj: "inj_on f {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2774
  shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2775
proof -
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2776
  note I = inj_on_iff[OF inj]
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2777
  { assume "f x < f a" "f x < f b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2778
    then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2779
      using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2780
      by (auto simp: continuous_on_subset[OF cont] less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2781
    with x I have False by auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2782
  moreover
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2783
  { assume "f a < f x" "f b < f x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2784
    then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2785
      using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2786
      by (auto simp: continuous_on_subset[OF cont] less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2787
    with x I have False by auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2788
  ultimately show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2789
    using I[of a x] I[of x b] x less_trans[OF x] by (auto simp add: le_less less_imp_neq neq_iff)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2790
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2791
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2792
lemma continuous_at_Sup_mono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2793
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2794
  assumes "mono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2795
  assumes cont: "continuous (at_left (Sup S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2796
  assumes S: "S \<noteq> {}" "bdd_above S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2797
  shows "f (Sup S) = (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2798
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2799
  have f: "(f ---> f (Sup S)) (at_left (Sup S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2800
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2801
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2802
  show "f (Sup S) \<le> (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2803
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2804
    assume "Sup S \<in> S" then show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2805
      by (rule cSUP_upper) (auto intro: bdd_above_image_mono S `mono f`)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2806
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2807
    assume "Sup S \<notin> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2808
    from `S \<noteq> {}` obtain s where "s \<in> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2809
      by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2810
    with `Sup S \<notin> S` S have "s < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2811
      unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2812
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2813
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2814
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2815
      with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "b < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2816
        and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> (SUP s:S. f s) < f y"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2817
        by (auto simp: not_le eventually_at_left[OF `s < Sup S`])
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2818
      with `S \<noteq> {}` obtain c where "c \<in> S" "b < c"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2819
        using less_cSupD[of S b] by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2820
      with `Sup S \<notin> S` S have "c < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2821
        unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2822
      from *[OF `b < c` `c < Sup S`] cSUP_upper[OF `c \<in> S` bdd_above_image_mono[of f]]
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2823
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2824
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2825
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2826
  qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2827
qed (intro cSUP_least `mono f`[THEN monoD] cSup_upper S)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2828
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2829
lemma continuous_at_Sup_antimono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2830
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2831
  assumes "antimono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2832
  assumes cont: "continuous (at_left (Sup S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2833
  assumes S: "S \<noteq> {}" "bdd_above S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2834
  shows "f (Sup S) = (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2835
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2836
  have f: "(f ---> f (Sup S)) (at_left (Sup S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2837
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2838
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2839
  show "(INF s:S. f s) \<le> f (Sup S)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2840
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2841
    assume "Sup S \<in> S" then show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2842
      by (intro cINF_lower) (auto intro: bdd_below_image_antimono S `antimono f`)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2843
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2844
    assume "Sup S \<notin> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2845
    from `S \<noteq> {}` obtain s where "s \<in> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2846
      by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2847
    with `Sup S \<notin> S` S have "s < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2848
      unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2849
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2850
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2851
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2852
      with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "b < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2853
        and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> f y < (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2854
        by (auto simp: not_le eventually_at_left[OF `s < Sup S`])
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2855
      with `S \<noteq> {}` obtain c where "c \<in> S" "b < c"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2856
        using less_cSupD[of S b] by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2857
      with `Sup S \<notin> S` S have "c < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2858
        unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2859
      from *[OF `b < c` `c < Sup S`] cINF_lower[OF bdd_below_image_antimono, of f S c] `c \<in> S`
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2860
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2861
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2862
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2863
  qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2864
qed (intro cINF_greatest `antimono f`[THEN antimonoD] cSup_upper S)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2865
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2866
lemma continuous_at_Inf_mono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2867
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2868
  assumes "mono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2869
  assumes cont: "continuous (at_right (Inf S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2870
  assumes S: "S \<noteq> {}" "bdd_below S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2871
  shows "f (Inf S) = (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2872
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2873
  have f: "(f ---> f (Inf S)) (at_right (Inf S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2874
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2875
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2876
  show "(INF s:S. f s) \<le> f (Inf S)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2877
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2878
    assume "Inf S \<in> S" then show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2879
      by (rule cINF_lower[rotated]) (auto intro: bdd_below_image_mono S `mono f`)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2880
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2881
    assume "Inf S \<notin> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2882
    from `S \<noteq> {}` obtain s where "s \<in> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2883
      by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2884
    with `Inf S \<notin> S` S have "Inf S < s"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2885
      unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2886
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2887
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2888
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2889
      with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "Inf S < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2890
        and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> f y < (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2891
        by (auto simp: not_le eventually_at_right[OF `Inf S < s`])
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2892
      with `S \<noteq> {}` obtain c where "c \<in> S" "c < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2893
        using cInf_lessD[of S b] by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2894
      with `Inf S \<notin> S` S have "Inf S < c"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2895
        unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2896
      from *[OF `Inf S < c` `c < b`] cINF_lower[OF bdd_below_image_mono[of f] `c \<in> S`]
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2897
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2898
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2899
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2900
  qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2901
qed (intro cINF_greatest `mono f`[THEN monoD] cInf_lower `bdd_below S` `S \<noteq> {}`)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2902
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2903
lemma continuous_at_Inf_antimono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2904
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2905
  assumes "antimono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2906
  assumes cont: "continuous (at_right (Inf S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2907
  assumes S: "S \<noteq> {}" "bdd_below S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2908
  shows "f (Inf S) = (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2909
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2910
  have f: "(f ---> f (Inf S)) (at_right (Inf S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2911
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2912
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2913
  show "f (Inf S) \<le> (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2914
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2915
    assume "Inf S \<in> S" then show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2916
      by (rule cSUP_upper) (auto intro: bdd_above_image_antimono S `antimono f`)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2917
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2918
    assume "Inf S \<notin> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2919
    from `S \<noteq> {}` obtain s where "s \<in> S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2920
      by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2921
    with `Inf S \<notin> S` S have "Inf S < s"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2922
      unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2923
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2924
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2925
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2926
      with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "Inf S < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2927
        and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> (SUP s:S. f s) < f y"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2928
        by (auto simp: not_le eventually_at_right[OF `Inf S < s`])
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2929
      with `S \<noteq> {}` obtain c where "c \<in> S" "c < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2930
        using cInf_lessD[of S b] by auto
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2931
      with `Inf S \<notin> S` S have "Inf S < c"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2932
        unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2933
      from *[OF `Inf S < c` `c < b`] cSUP_upper[OF `c \<in> S` bdd_above_image_antimono[of f]]
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2934
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2935
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2936
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2937
  qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2938
qed (intro cSUP_least `antimono f`[THEN antimonoD] cInf_lower S)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2939
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2940
subsection {* Setup @{typ "'a filter"} for lifting and transfer *}
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2941
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2942
context begin interpretation lifting_syntax .
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2943
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2944
definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2945
where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2946
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2947
lemma rel_filter_eventually:
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2948
  "rel_filter R F G \<longleftrightarrow> 
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2949
  ((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2950
by(simp add: rel_filter_def eventually_def)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2951
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2952
lemma filtermap_id [simp, id_simps]: "filtermap id = id"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2953
by(simp add: fun_eq_iff id_def filtermap_ident)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2954
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2955
lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2956
using filtermap_id unfolding id_def .
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2957
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2958
lemma Quotient_filter [quot_map]:
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2959
  assumes Q: "Quotient R Abs Rep T"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2960
  shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2961
unfolding Quotient_alt_def
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2962
proof(intro conjI strip)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2963
  from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2964
    unfolding Quotient_alt_def by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2965
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2966
  fix F G
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2967
  assume "rel_filter T F G"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2968
  thus "filtermap Abs F = G" unfolding filter_eq_iff
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  2969
    by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2970
next
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2971
  from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2972
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2973
  fix F
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2974
  show "rel_filter T (filtermap Rep F) F" 
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  2975
    by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2976
            del: iffI simp add: eventually_filtermap rel_filter_eventually)
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2977
qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2978
         fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def])
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2979
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2980
lemma eventually_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2981
  "((A ===> op =) ===> rel_filter A ===> op =) eventually eventually"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  2982
by(simp add: rel_fun_def rel_filter_eventually)
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2983
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2984
lemma rel_filter_eq [relator_eq]: "rel_filter op = = op ="
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  2985
by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff)
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2986
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2987
lemma rel_filter_mono [relator_mono]:
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2988
  "A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2989
unfolding rel_filter_eventually[abs_def]
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2990
by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2991
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  2992
lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  2993
by(auto simp add: rel_filter_eventually fun_eq_iff rel_fun_def)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2994
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2995
lemma is_filter_parametric_aux:
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2996
  assumes "is_filter F"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2997
  assumes [transfer_rule]: "bi_total A" "bi_unique A"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2998
  and [transfer_rule]: "((A ===> op =) ===> op =) F G"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  2999
  shows "is_filter G"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3000
proof -
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3001
  interpret is_filter F by fact
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3002
  show ?thesis
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3003
  proof
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3004
    have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3005
    thus "G (\<lambda>x. True)" by(simp add: True)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3006
  next
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3007
    fix P' Q'
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3008
    assume "G P'" "G Q'"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3009
    moreover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3010
    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3011
    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3012
    have "F P = G P'" "F Q = G Q'" by transfer_prover+
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3013
    ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3014
    moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3015
    ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3016
  next
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3017
    fix P' Q'
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3018
    assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3019
    moreover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3020
    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3021
    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3022
    have "F P = G P'" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3023
    moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3024
    ultimately have "F Q" by(simp add: mono)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3025
    moreover have "F Q = G Q'" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3026
    ultimately show "G Q'" by simp
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3027
  qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3028
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3029
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3030
lemma is_filter_parametric [transfer_rule]:
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3031
  "\<lbrakk> bi_total A; bi_unique A \<rbrakk>
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3032
  \<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3033
apply(rule rel_funI)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3034
apply(rule iffI)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3035
 apply(erule (3) is_filter_parametric_aux)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3036
apply(erule is_filter_parametric_aux[where A="conversep A"])
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3037
apply(auto simp add: rel_fun_def)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3038
done
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3039
56518
beb3b6851665 left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
kuncar
parents: 56371
diff changeset
  3040
lemma left_total_rel_filter [transfer_rule]:
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3041
  assumes [transfer_rule]: "bi_total A" "bi_unique A"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3042
  shows "left_total (rel_filter A)"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3043
proof(rule left_totalI)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3044
  fix F :: "'a filter"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3045
  from bi_total_fun[OF bi_unique_fun[OF `bi_total A` bi_unique_eq] bi_total_eq]
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3046
  obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G" 
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3047
    unfolding  bi_total_def by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3048
  moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3049
  hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter)
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3050
  ultimately have "rel_filter A F (Abs_filter G)"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3051
    by(simp add: rel_filter_eventually eventually_Abs_filter)
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3052
  thus "\<exists>G. rel_filter A F G" ..
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3053
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3054
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3055
lemma right_total_rel_filter [transfer_rule]:
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3056
  "\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3057
using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3058
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3059
lemma bi_total_rel_filter [transfer_rule]:
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3060
  assumes "bi_total A" "bi_unique A"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3061
  shows "bi_total (rel_filter A)"
56524
f4ba736040fa setup for Transfer and Lifting from BNF; tuned thm names
kuncar
parents: 56518
diff changeset
  3062
unfolding bi_total_alt_def using assms
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3063
by(simp add: left_total_rel_filter right_total_rel_filter)
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3064
56518
beb3b6851665 left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
kuncar
parents: 56371
diff changeset
  3065
lemma left_unique_rel_filter [transfer_rule]:
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3066
  assumes "left_unique A"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3067
  shows "left_unique (rel_filter A)"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3068
proof(rule left_uniqueI)
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3069
  fix F F' G
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3070
  assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3071
  show "F = F'"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3072
    unfolding filter_eq_iff
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3073
  proof
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3074
    fix P :: "'a \<Rightarrow> bool"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3075
    obtain P' where [transfer_rule]: "(A ===> op =) P P'"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3076
      using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3077
    have "eventually P F = eventually P' G" 
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3078
      and "eventually P F' = eventually P' G" by transfer_prover+
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3079
    thus "eventually P F = eventually P F'" by simp
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3080
  qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3081
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3082
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3083
lemma right_unique_rel_filter [transfer_rule]:
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3084
  "right_unique A \<Longrightarrow> right_unique (rel_filter A)"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3085
using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3086
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3087
lemma bi_unique_rel_filter [transfer_rule]:
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3088
  "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
56524
f4ba736040fa setup for Transfer and Lifting from BNF; tuned thm names
kuncar
parents: 56518
diff changeset
  3089
by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3090
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3091
lemma top_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3092
  "bi_total A \<Longrightarrow> (rel_filter A) top top"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3093
by(simp add: rel_filter_eventually All_transfer)
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3094
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3095
lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3096
by(simp add: rel_filter_eventually rel_fun_def)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3097
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3098
lemma sup_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3099
  "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3100
by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3101
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3102
lemma Sup_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3103
  "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3104
proof(rule rel_funI)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3105
  fix S T
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3106
  assume [transfer_rule]: "rel_set (rel_filter A) S T"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3107
  show "rel_filter A (Sup S) (Sup T)"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3108
    by(simp add: rel_filter_eventually eventually_Sup) transfer_prover
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3109
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3110
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3111
lemma principal_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3112
  "(rel_set A ===> rel_filter A) principal principal"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3113
proof(rule rel_funI)
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3114
  fix S S'
55938
f20d1db5aa3c renamed 'set_rel' to 'rel_set'
blanchet
parents: 55775
diff changeset
  3115
  assume [transfer_rule]: "rel_set A S S'"
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3116
  show "rel_filter A (principal S) (principal S')"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3117
    by(simp add: rel_filter_eventually eventually_principal) transfer_prover
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3118
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3119
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3120
context
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3121
  fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3122
  assumes [transfer_rule]: "bi_unique A" 
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3123
begin
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3124
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3125
lemma le_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3126
  "(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3127
unfolding le_filter_def[abs_def] by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3128
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3129
lemma less_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3130
  "(rel_filter A ===> rel_filter A ===> op =) op < op <"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3131
unfolding less_filter_def[abs_def] by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3132
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3133
context
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3134
  assumes [transfer_rule]: "bi_total A"
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3135
begin
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3136
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3137
lemma Inf_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3138
  "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf"
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3139
unfolding Inf_filter_def[abs_def] by transfer_prover
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3140
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3141
lemma inf_filter_parametric [transfer_rule]:
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3142
  "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf"
55945
e96383acecf9 renamed 'fun_rel' to 'rel_fun'
blanchet
parents: 55942
diff changeset
  3143
proof(intro rel_funI)+
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3144
  fix F F' G G'
55942
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3145
  assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'"
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3146
  have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
c2d96043de4b renamed 'filter_rel' to 'rel_filter'
blanchet
parents: 55938
diff changeset
  3147
  thus "rel_filter A (inf F G) (inf F' G')" by simp
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3148
qed
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3149
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  3150
end
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  3151
53946
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3152
end
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3153
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3154
end
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3155
5431e1392b14 add relator for 'a filter and parametricity theorems
Andreas Lochbihler
parents: 53860
diff changeset
  3156
end