| 
8745
 | 
     1  | 
(*<*)
  | 
| 
 | 
     2  | 
theory Tree = Main:
  | 
| 
 | 
     3  | 
(*>*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
text{*\noindent
 | 
| 
11456
 | 
     6  | 
Define the datatype of \rmindex{binary trees}:
 | 
| 
8745
 | 
     7  | 
*}
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
datatype 'a tree = Tip | Node "'a tree" 'a "'a tree";(*<*)
  | 
| 
 | 
    10  | 
  | 
| 
10795
 | 
    11  | 
consts mirror :: "'a tree \<Rightarrow> 'a tree";
  | 
| 
8745
 | 
    12  | 
primrec
  | 
| 
 | 
    13  | 
"mirror Tip = Tip"
  | 
| 
9493
 | 
    14  | 
"mirror (Node l x r) = Node (mirror r) x (mirror l)";(*>*)
  | 
| 
8745
 | 
    15  | 
  | 
| 
 | 
    16  | 
text{*\noindent
 | 
| 
11456
 | 
    17  | 
Define a function @{term"mirror"} that mirrors a binary tree
 | 
| 
10795
 | 
    18  | 
by swapping subtrees recursively. Prove
  | 
| 
8745
 | 
    19  | 
*}
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma mirror_mirror: "mirror(mirror t) = t";
  | 
| 
 | 
    22  | 
(*<*)
  | 
| 
 | 
    23  | 
apply(induct_tac t);
  | 
| 
9458
 | 
    24  | 
by(auto);
  | 
| 
8745
 | 
    25  | 
  | 
| 
9493
 | 
    26  | 
consts flatten :: "'a tree => 'a list"
  | 
| 
 | 
    27  | 
primrec
  | 
| 
 | 
    28  | 
"flatten Tip = []"
  | 
| 
 | 
    29  | 
"flatten (Node l x r) = flatten l @ [x] @ flatten r";
  | 
| 
 | 
    30  | 
(*>*)
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
text{*\noindent
 | 
| 
9792
 | 
    33  | 
Define a function @{term"flatten"} that flattens a tree into a list
 | 
| 
9493
 | 
    34  | 
by traversing it in infix order. Prove
  | 
| 
 | 
    35  | 
*}
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma "flatten(mirror t) = rev(flatten t)";
  | 
| 
 | 
    38  | 
(*<*)
  | 
| 
 | 
    39  | 
apply(induct_tac t);
  | 
| 
 | 
    40  | 
by(auto);
  | 
| 
 | 
    41  | 
  | 
| 
8745
 | 
    42  | 
end
  | 
| 
 | 
    43  | 
(*>*)
  |