author | bulwahn |
Mon, 03 Oct 2011 14:43:13 +0200 | |
changeset 45116 | f947eeef6b6f |
parent 42463 | f270e3e18be5 |
child 46231 | 76e32c39dd43 |
permissions | -rw-r--r-- |
10052 | 1 |
(* Title: HOL/ex/Records.thy |
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
2 |
Author: Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, |
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
3 |
TU Muenchen |
10052 | 4 |
*) |
5 |
||
6 |
header {* Using extensible records in HOL -- points and coloured points *} |
|
7 |
||
33596 | 8 |
theory Records |
9 |
imports Main Record |
|
10 |
begin |
|
10052 | 11 |
|
12 |
subsection {* Points *} |
|
13 |
||
14 |
record point = |
|
11939 | 15 |
xpos :: nat |
16 |
ypos :: nat |
|
10052 | 17 |
|
18 |
text {* |
|
11939 | 19 |
Apart many other things, above record declaration produces the |
20 |
following theorems: |
|
10052 | 21 |
*} |
22 |
||
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
23 |
|
10052 | 24 |
thm "point.simps" |
25 |
thm "point.iffs" |
|
12266 | 26 |
thm "point.defs" |
10052 | 27 |
|
28 |
text {* |
|
11939 | 29 |
The set of theorems @{thm [source] point.simps} is added |
30 |
automatically to the standard simpset, @{thm [source] point.iffs} is |
|
31 |
added to the Classical Reasoner and Simplifier context. |
|
10052 | 32 |
|
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
33 |
\medskip Record declarations define new types and type abbreviations: |
10357 | 34 |
@{text [display] |
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
35 |
" point = \<lparr>xpos :: nat, ypos :: nat\<rparr> = () point_ext_type |
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
36 |
'a point_scheme = \<lparr>xpos :: nat, ypos :: nat, ... :: 'a\<rparr> = 'a point_ext_type"} |
10052 | 37 |
*} |
38 |
||
11939 | 39 |
consts foo2 :: "(| xpos :: nat, ypos :: nat |)" |
40 |
consts foo4 :: "'a => (| xpos :: nat, ypos :: nat, ... :: 'a |)" |
|
10052 | 41 |
|
42 |
||
43 |
subsubsection {* Introducing concrete records and record schemes *} |
|
44 |
||
22737 | 45 |
definition |
46 |
foo1 :: point |
|
47 |
where |
|
48 |
foo1_def: "foo1 = (| xpos = 1, ypos = 0 |)" |
|
49 |
||
50 |
definition |
|
51 |
foo3 :: "'a => 'a point_scheme" |
|
52 |
where |
|
53 |
foo3_def: "foo3 ext = (| xpos = 1, ypos = 0, ... = ext |)" |
|
10052 | 54 |
|
55 |
||
56 |
subsubsection {* Record selection and record update *} |
|
57 |
||
19736 | 58 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
59 |
getX :: "'a point_scheme => nat" where |
19736 | 60 |
"getX r = xpos r" |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
61 |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
62 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
63 |
setX :: "'a point_scheme => nat => 'a point_scheme" where |
19736 | 64 |
"setX r n = r (| xpos := n |)" |
10052 | 65 |
|
66 |
||
67 |
subsubsection {* Some lemmas about records *} |
|
68 |
||
10357 | 69 |
text {* Basic simplifications. *} |
10052 | 70 |
|
11939 | 71 |
lemma "point.make n p = (| xpos = n, ypos = p |)" |
72 |
by (simp only: point.make_def) |
|
10052 | 73 |
|
11939 | 74 |
lemma "xpos (| xpos = m, ypos = n, ... = p |) = m" |
10052 | 75 |
by simp |
76 |
||
11939 | 77 |
lemma "(| xpos = m, ypos = n, ... = p |) (| xpos:= 0 |) = (| xpos = 0, ypos = n, ... = p |)" |
10052 | 78 |
by simp |
79 |
||
80 |
||
10357 | 81 |
text {* \medskip Equality of records. *} |
10052 | 82 |
|
11939 | 83 |
lemma "n = n' ==> p = p' ==> (| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |)" |
10052 | 84 |
-- "introduction of concrete record equality" |
85 |
by simp |
|
86 |
||
11939 | 87 |
lemma "(| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |) ==> n = n'" |
10052 | 88 |
-- "elimination of concrete record equality" |
89 |
by simp |
|
90 |
||
11939 | 91 |
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)" |
10052 | 92 |
-- "introduction of abstract record equality" |
93 |
by simp |
|
94 |
||
11939 | 95 |
lemma "r (| xpos := n |) = r (| xpos := n' |) ==> n = n'" |
10052 | 96 |
-- "elimination of abstract record equality (manual proof)" |
97 |
proof - |
|
11939 | 98 |
assume "r (| xpos := n |) = r (| xpos := n' |)" (is "?lhs = ?rhs") |
99 |
hence "xpos ?lhs = xpos ?rhs" by simp |
|
10052 | 100 |
thus ?thesis by simp |
101 |
qed |
|
102 |
||
103 |
||
10357 | 104 |
text {* \medskip Surjective pairing *} |
10052 | 105 |
|
11939 | 106 |
lemma "r = (| xpos = xpos r, ypos = ypos r |)" |
10052 | 107 |
by simp |
108 |
||
12591 | 109 |
lemma "r = (| xpos = xpos r, ypos = ypos r, ... = point.more r |)" |
10052 | 110 |
by simp |
111 |
||
112 |
||
10357 | 113 |
text {* |
11939 | 114 |
\medskip Representation of records by cases or (degenerate) |
115 |
induction. |
|
10357 | 116 |
*} |
10052 | 117 |
|
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
118 |
lemma "r(| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)" |
11939 | 119 |
proof (cases r) |
120 |
fix xpos ypos more |
|
121 |
assume "r = (| xpos = xpos, ypos = ypos, ... = more |)" |
|
122 |
thus ?thesis by simp |
|
123 |
qed |
|
124 |
||
125 |
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)" |
|
126 |
proof (induct r) |
|
127 |
fix xpos ypos more |
|
128 |
show "(| xpos = xpos, ypos = ypos, ... = more |) (| xpos := n, ypos := m |) = |
|
129 |
(| xpos = xpos, ypos = ypos, ... = more |) (| ypos := m, xpos := n |)" |
|
10052 | 130 |
by simp |
131 |
qed |
|
132 |
||
11939 | 133 |
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)" |
134 |
proof (cases r) |
|
135 |
fix xpos ypos more |
|
136 |
assume "r = \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>" |
|
137 |
thus ?thesis by simp |
|
10052 | 138 |
qed |
139 |
||
11939 | 140 |
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)" |
141 |
proof (cases r) |
|
142 |
case fields |
|
143 |
thus ?thesis by simp |
|
144 |
qed |
|
145 |
||
146 |
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)" |
|
147 |
by (cases r) simp |
|
148 |
||
10052 | 149 |
|
10357 | 150 |
text {* |
151 |
\medskip Concrete records are type instances of record schemes. |
|
152 |
*} |
|
10052 | 153 |
|
19736 | 154 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
155 |
foo5 :: nat where |
19736 | 156 |
"foo5 = getX (| xpos = 1, ypos = 0 |)" |
10052 | 157 |
|
158 |
||
11939 | 159 |
text {* \medskip Manipulating the ``@{text "..."}'' (more) part. *} |
10052 | 160 |
|
19736 | 161 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
162 |
incX :: "'a point_scheme => 'a point_scheme" where |
19736 | 163 |
"incX r = (| xpos = xpos r + 1, ypos = ypos r, ... = point.more r |)" |
10052 | 164 |
|
11939 | 165 |
lemma "incX r = setX r (Suc (getX r))" |
166 |
by (simp add: getX_def setX_def incX_def) |
|
167 |
||
10052 | 168 |
|
10357 | 169 |
text {* An alternative definition. *} |
10052 | 170 |
|
19736 | 171 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
172 |
incX' :: "'a point_scheme => 'a point_scheme" where |
19736 | 173 |
"incX' r = r (| xpos := xpos r + 1 |)" |
10052 | 174 |
|
175 |
||
176 |
subsection {* Coloured points: record extension *} |
|
177 |
||
178 |
datatype colour = Red | Green | Blue |
|
179 |
||
180 |
record cpoint = point + |
|
181 |
colour :: colour |
|
182 |
||
183 |
||
184 |
text {* |
|
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
185 |
The record declaration defines a new type constructure and abbreviations: |
10357 | 186 |
@{text [display] |
14700
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
187 |
" cpoint = (| xpos :: nat, ypos :: nat, colour :: colour |) = |
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
188 |
() cpoint_ext_type point_ext_type |
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
189 |
'a cpoint_scheme = (| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |) = |
2f885b7e5ba7
reimplementation of HOL records; only one type is created for
schirmer
parents:
12591
diff
changeset
|
190 |
'a cpoint_ext_type point_ext_type"} |
10052 | 191 |
*} |
192 |
||
193 |
consts foo6 :: cpoint |
|
11939 | 194 |
consts foo7 :: "(| xpos :: nat, ypos :: nat, colour :: colour |)" |
195 |
consts foo8 :: "'a cpoint_scheme" |
|
196 |
consts foo9 :: "(| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |)" |
|
10052 | 197 |
|
198 |
||
10357 | 199 |
text {* |
200 |
Functions on @{text point} schemes work for @{text cpoints} as well. |
|
201 |
*} |
|
10052 | 202 |
|
19736 | 203 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
204 |
foo10 :: nat where |
19736 | 205 |
"foo10 = getX (| xpos = 2, ypos = 0, colour = Blue |)" |
10052 | 206 |
|
207 |
||
208 |
subsubsection {* Non-coercive structural subtyping *} |
|
209 |
||
10357 | 210 |
text {* |
211 |
Term @{term foo11} has type @{typ cpoint}, not type @{typ point} --- |
|
212 |
Great! |
|
213 |
*} |
|
10052 | 214 |
|
19736 | 215 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19736
diff
changeset
|
216 |
foo11 :: cpoint where |
19736 | 217 |
"foo11 = setX (| xpos = 2, ypos = 0, colour = Blue |) 0" |
10052 | 218 |
|
219 |
||
220 |
subsection {* Other features *} |
|
221 |
||
10357 | 222 |
text {* Field names contribute to record identity. *} |
10052 | 223 |
|
224 |
record point' = |
|
11939 | 225 |
xpos' :: nat |
226 |
ypos' :: nat |
|
10052 | 227 |
|
10357 | 228 |
text {* |
11939 | 229 |
\noindent May not apply @{term getX} to @{term [source] "(| xpos' = |
230 |
2, ypos' = 0 |)"} -- type error. |
|
10357 | 231 |
*} |
10052 | 232 |
|
10357 | 233 |
text {* \medskip Polymorphic records. *} |
10052 | 234 |
|
235 |
record 'a point'' = point + |
|
236 |
content :: 'a |
|
237 |
||
42463 | 238 |
type_synonym cpoint'' = "colour point''" |
10052 | 239 |
|
25707 | 240 |
|
241 |
||
242 |
text {* Updating a record field with an identical value is simplified.*} |
|
243 |
lemma "r (| xpos := xpos r |) = r" |
|
244 |
by simp |
|
245 |
||
246 |
text {* Only the most recent update to a component survives simplification. *} |
|
247 |
lemma "r (| xpos := x, ypos := y, xpos := x' |) = r (| ypos := y, xpos := x' |)" |
|
248 |
by simp |
|
249 |
||
250 |
text {* In some cases its convenient to automatically split |
|
251 |
(quantified) records. For this purpose there is the simproc @{ML [source] |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
252 |
"Record.split_simproc"} and the tactic @{ML [source] |
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
253 |
"Record.split_simp_tac"}. The simplification procedure |
25707 | 254 |
only splits the records, whereas the tactic also simplifies the |
255 |
resulting goal with the standard record simplification rules. A |
|
256 |
(generalized) predicate on the record is passed as parameter that |
|
257 |
decides whether or how `deep' to split the record. It can peek on the |
|
258 |
subterm starting at the quantified occurrence of the record (including |
|
259 |
the quantifier). The value @{ML "0"} indicates no split, a value |
|
260 |
greater @{ML "0"} splits up to the given bound of record extension and |
|
261 |
finally the value @{ML "~1"} completely splits the record. |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
262 |
@{ML [source] "Record.split_simp_tac"} additionally takes a list of |
25707 | 263 |
equations for simplification and can also split fixed record variables. |
264 |
||
265 |
*} |
|
266 |
||
267 |
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)" |
|
268 |
apply (tactic {* simp_tac |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
269 |
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*}) |
25707 | 270 |
apply simp |
271 |
done |
|
272 |
||
273 |
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)" |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
274 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 275 |
apply simp |
276 |
done |
|
277 |
||
278 |
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)" |
|
279 |
apply (tactic {* simp_tac |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
280 |
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*}) |
25707 | 281 |
apply simp |
282 |
done |
|
283 |
||
284 |
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)" |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
285 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 286 |
apply simp |
287 |
done |
|
288 |
||
289 |
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)" |
|
290 |
apply (tactic {* simp_tac |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
291 |
(HOL_basic_ss addsimprocs [Record.split_simproc (K ~1)]) 1*}) |
25707 | 292 |
apply auto |
293 |
done |
|
294 |
||
295 |
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)" |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
296 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 297 |
apply auto |
298 |
done |
|
299 |
||
300 |
lemma "P (xpos r) \<Longrightarrow> (\<exists>x. P x)" |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
301 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 302 |
apply auto |
303 |
done |
|
304 |
||
305 |
lemma fixes r shows "P (xpos r) \<Longrightarrow> (\<exists>x. P x)" |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
306 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 307 |
apply auto |
308 |
done |
|
309 |
||
310 |
||
311 |
lemma True |
|
312 |
proof - |
|
313 |
{ |
|
26932 | 314 |
fix P r |
25707 | 315 |
assume pre: "P (xpos r)" |
316 |
have "\<exists>x. P x" |
|
317 |
using pre |
|
318 |
apply - |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
319 |
apply (tactic {* Record.split_simp_tac [] (K ~1) 1*}) |
25707 | 320 |
apply auto |
321 |
done |
|
322 |
} |
|
323 |
show ?thesis .. |
|
324 |
qed |
|
325 |
||
326 |
text {* The effect of simproc @{ML [source] |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
327 |
"Record.ex_sel_eq_simproc"} is illustrated by the |
25707 | 328 |
following lemma. |
329 |
*} |
|
330 |
||
331 |
lemma "\<exists>r. xpos r = x" |
|
332 |
apply (tactic {*simp_tac |
|
38012
3ca193a6ae5a
delete structure Basic_Record; avoid `record` in names in structure Record
haftmann
parents:
37826
diff
changeset
|
333 |
(HOL_basic_ss addsimprocs [Record.ex_sel_eq_simproc]) 1*}) |
25707 | 334 |
done |
335 |
||
336 |
||
34971
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
337 |
subsection {* A more complex record expression *} |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
338 |
|
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
339 |
record ('a, 'b, 'c) bar = bar1 :: 'a |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
340 |
bar2 :: 'b |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
341 |
bar3 :: 'c |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
342 |
bar21 :: "'b \<times> 'a" |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
343 |
bar32 :: "'c \<times> 'b" |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
344 |
bar31 :: "'c \<times> 'a" |
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
345 |
|
5c290f56ebf7
a more complex record expression -- cf. src/HOL/Tools/quickcheck_generators.ML
haftmann
parents:
33613
diff
changeset
|
346 |
|
33613 | 347 |
subsection {* Some code generation *} |
348 |
||
37826 | 349 |
export_code foo1 foo3 foo5 foo10 checking SML |
33613 | 350 |
|
10052 | 351 |
end |